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Abstract: Background: The use of Artificial Intelligence (AI) systems for automatic diagnoses is
increasingly in the clinical field, being a useful support for the identification of several diseases.
Nonetheless, the acceptance of AI-based diagnoses by the physicians is hampered by the black-box
approach implemented by most performing systems, which do not clearly state the classification
rules adopted. Methods: In this framework we propose a classification method based on a Cartesian
Genetic Programming (CGP) approach, which allows for the automatic identification of the presence
of the disease, and concurrently, provides the explicit classification model used by the system. Results:
The proposed approach has been evaluated on the publicly available HandPD dataset, which contains
handwriting samples drawn by Parkinson’s disease patients and healthy controls. We show that
our approach compares favorably with state-of-the-art methods, and more importantly, allows the
physician to identify an explicit model relevant for the diagnosis based on the most informative subset
of features. Conclusion: The obtained results suggest that the proposed approach is particularly
appealing in that, starting from the explicit model, it allows the physicians to derive a set of guidelines
for defining novel testing protocols and intervention strategies.

Keywords: E-health; explainable artificial intelligence; Parkinson disease; machine learning;
evolutionary computation

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects dopaminergic neurons in
the Basal Ganglia, whose death causes several motor and cognitive symptoms [1]. PD patients show
impaired ability in controlling movements and disruption in the execution of everyday skills due to
postural instability, the onset of tremors, stiffness, and bradykinesia [2–4]. As with other motor tasks,
handwriting production, which involves the fine control of complex movements of the fingers and
wrist, and consequently, is influenced by Basal Ganglia activity [5], is characterized by slowness,
lack of fluency (dysgraphia), abrupt changes of pen tip direction, and micrographia (reduction of
letter size) [6–9]. In the last decades, the analysis of handwriting (or, more in general, the analysis of
handwritten production) has brought many insights for uncovering the processes occurring during
both physiological and pathological conditions [10–14] and provided a non-invasive method for
evaluating the stages of the disease [15].

A reliable, early diagnosis of PD is very challenging due to the difficulty in correctly interpreting
the first symptoms, which may be easily attributed to other disorders. It would, however, provide
more prompt and effective intervention strategies. Since handwriting deterioration could appear in

Information 2019, 10, 30; doi:10.3390/info10010030 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-4092-6102
https://orcid.org/0000-0002-2019-2826
http://www.mdpi.com/2078-2489/10/1/30?type=check_update&version=1
http://dx.doi.org/10.3390/info10010030
http://www.mdpi.com/journal/information


Information 2019, 10, 30 2 of 11

the early stage of the disease, its analysis could provide some insight for an early diagnosis. In the field
of graphonomics and pattern recognition, many studies have proposed different AI based approaches
for the automatic identification of tremors and the micrographia phenomena in handwriting, i.e.,
the identification of letter size reduction (or, more generally, a reduction in the graphical gesture) for
supplying useful information to the clinician. These tests involve the analysis of more automated
writing patterns (such as signatures [16]), or the inspection of specific words or letters, such as the
cursive “e” and “l” [12,14], in which it is easier to observe the horizontal micrographia. However,
as suggested by the evaluation of different PD detection tests carried out by Zham et al. [17], word and
letter handwriting is influenced by several factors, such as writing style, education level, and language
ability. As a result of these influencing variables, this study concludes that PD evaluation should rely
on graphical tests that involve the production of geometric shapes, such as spirals or meanders, in free
conditions or following a printed trace.

From handwritten ink traces, both static (size, curvature, slant) and dynamic (velocity, acceleration,
pressure, fluency, duration) features can be extracted. The former can be acquired with a pen and
paper and the analysis can be performed on a scanned image of the ink trace, whereas the latter can
be acquired through the use of a graphic tablet. As expected, the analysis of combined static and
dynamic features allows one to achieve better results than those obtained by the analysis of static
features only [18–20]. However, improving the performance obtained with only static features should
be considered a goal worthy of attention, since (1) analyzing old writing or drawings from the subject
(available only on the paper) could be useful for reconstructing the patient’s medical history or to date
the onset of the disease; (2) some subjects, especially elderly ones, do not feel comfortable writing on a
graphic tablet, and this can lead to errors in assessment.

Pereira et al. [21] addressed this goal by asking a group of patients and healthy subjects to
retrace a set of drawings (spirals and meanders) printed on paper. From the collected data, they
computed a set of static features, calculated on the basis of some spatial parameters, mainly based
on the difference between the printed trace and that created by the writer. Eventually, they applied
different classifiers, namely the support vector machine classifier (SVM), the Naive Bayes (NB) classifier,
and the Optimum-Path Forest (OPF) classifier, to automatically identify the presence of the disease in
the writer. Their results show that a better classification performance (67% global accuracy) could be
achieved through the meander analysis using a SVM classifier.

However, the classification accuracy reached by the methods proposed by Pereira is not
satisfactory for application in a real scenario, and the used classifiers provide no clue about the
way the decision is taken. In other words, they do not provide any information about the influence
of each feature in the classification decision. As a consequence, the acceptance of their diagnosis
by doctors would be hampered in that they would look to the Artificial Intelligence (AI) system as
a black-box. For this reason, Explainable AI has recently become increasingly prevalent, especially
related to the rationale behind the decision-making process.

The work proposed aims to develop a system that provides explicit criteria for discriminating
between healthy and unhealthy patients handwriting productions, while exhibiting comparable or
even better performance than state-of-the-art methods. We tackle the problem by using for the
classification step Evolutionary Algorithms, in particular the Cartesian Genetic Programming (CGP)
approach [22,23], which allowed us to construct an explicit representation of the problem, built from
the considered features and a predetermined set of functions.

In the remainder of the paper, Section 2 describes the proposed approach and the tuning phase
for calibrating the algorithm parameters, Section 3 shows and discusses the obtained results, and the
last section reports the conclusions and give an outline of future investigations.
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2. The Proposed Method

Genetic Programming [24] is a heuristic methodology well suited for optimization purposes [25–29].
It has its roots in implementing in computer programs mechanisms borrowed from the natural
evolutionary process.

CGP is a highly flexible and efficient form of Genetic Programming, that can be used for finding
the solutions to a broad class of problems and applied to many domains [22].

In this work, with the application of CGP, we aim to provide some insights into the automatic
diagnosis of PD. In particular, we use a CGP approach for the automatic identification of the disease
through the analysis of drawing shapes. Compared to other classification techniques, this approach
also provides the explicit model of the classification criteria, and therefore allows the clinician to
highlight the most informative handwriting features (and their relationships), thus learning which
should be taken into account for the diagnosis.

CGP uses a very simple representation of the computational structure in the form of a directed
acyclic graph, represented though a two-dimensional grid of nodes, organized in nr number of rows
and nc number of columns. Figure 1 shows an example of a simple CGP network, where six nodes
are arranged in a 2 × 3 rectangular format. The graph has two inputs (x0 and x1) and four outputs
(y0, y1, y2, y3).
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Figure 1. An example of a simple Cartesian Genetic Programming (CPG) network, composed of six
nodes arranged in a 2 × 3 rectangular format. The directed graph represents the phenotype, whereas,
in the bottom left of the figure, the corresponding genotype is reported.

Each node is numbered progressively (starting from zero) and is associated with a particular
function, chosen among a set of predefined ones (these can be algebraic, logic, non-linear, etc.). Inputs to
the nodes are manipulated according to the node function and the results are then provided to the
output nodes. Nodes are connected in a feed-forward manner: each node provides an output to the
nodes of the next columns and takes one or more inputs (depending on the arity of the function, that is
the number of its input parameters) from the nodes in the previous columns. In order to manipulate
this kind of structure (the phenotype), CGP makes use of a different representation, called the genotype,
made up of a fixed length array of integers representing a sequence of chromosomes (the individuals
of the population) (bottom part of Figure 1). Chromosomes are composed of values representing
the node function (function gene) and the node inputs (connection genes). Phenotype ends with the
values representing the outputs of the computational structure (output genes). The phenotype can
be obtained from the genotype by a decoding procedure. It is noteworthy that when genotypes are
decoded into phenotypes not all the nodes are connected in the path from inputs to outputs, and
therefore, with the CGP approach, one genotype can correspond to different phenotypes. Nodes that
are not connected in the phenotype are referred to as non-coding nodes.
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As in other genetic programming approaches, the chromosomes in the initial population are
initialized with random values and a fitness function is used for quantitatively evaluating the efficacy
of the solution in solving the problem. According to the value of the fitness measured for each member
of the population, parents are selected according to their quality and mutation is applied to generate
offsprings. Through mutation, the status of both coding and non-coding genes is changed according
to a probability value, the mutation rate, and can result in offspring that are very different from the
parents. The process is repeated until the maximum number of generations is reached or the optimum
solution is found.

3. Experimental Results and Discussion

The evaluate the performance of the proposed approach in providing explainable yet effective
solutions, and following the suggestions by Zham et al. [17], we ran a set of experiments on the
HandPD dataset [21], which contains handwritten data collected from 92 graphical tests performed by
74 PD patients and 18 healthy subjects. It is composed of 368 spirals and 368 meanders drawn by the
participants following a printed template on paper with a pen. As a result, we have two unbalanced
datasets, i.e., spirals and meanders, each of which is composed of 296 samples belonging to PD patients
and 72 belonging to healthy subjects. Examples of the handwriting tasks and their execution by both
healthy subjects and PD patients are reported in Figure 2.

Figure 2. Examples of spirals and meanders extracted from the HandPD dataset [21]. First and second
column: 58-year-old male and 28-year-old female individuals from the control group. Third and fourth
column: 56-year-old male and 65-year-old female individuals from the patient group.

Nine handwriting features, reported in Table 1, were extracted from the dataset, as proposed in
Reference [21], and used as the input for the CGP. Figure 3 shows, together on one sample, the two main
geometric entities, namely the distance between the centre of the template and the template/written
trace (ET/HT radius), from which all the features are computed. Following Reference [21], we divided
the dataset into a Training set and a Test set made of 75% and 25% of the original dataset, respectively,
in such a way as to maintain the relative occurrence of patients and healthy subjects.
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Table 1. Features description of the dataset used. HT: handwritten trace, ET: exam template.

Feature Description

x0 RMS of the difference between HT and ET radius
x1 Maximum difference between HT and ET radius
x2 Minimum difference between HT and ET radius
x3 Standard Deviation of the difference between HT and ET radius
x4 Mean Relative Tremor
x5 Maximum HT radius
x6 Minimum HT radius
x7 Standard Deviation of HT radius
x8 Number of times the difference between HT and ET radius changes sign

Figure 3. An example of the feature extraction process for a spiral. The blue line is the ET, while the
red line is the HT. The arrows indicate the radii for both ET and HT, the white circles indicate the
intersection of a radius with the ET and the HT traces and the red circle represents the center of the ET.
In order to compute all the features, the radius is shifted by using a predefined spanning angle (for a
detailed description of the feature extraction process see Reference [21].

3.1. Parameter Settings

In order to choose the values of the parameters that regulate the behavior of the CGP, and because
there is not an established procedure to follow [22], we performed an exploratory tuning phase. We ran
a set of experiments on the Training set with different morphologies of the network and selected
the parameters that maximized the performance, also taking into account the trade-off between
computational cost and performance. The analyzed ranges for the values of the parameters and those
selected for performing the analysis on the entire dataset are reported in Table 2. As regards the
evolution strategy, we considered two alternatives in the exploratory phase: tournament selection and
(λ + µ) strategy. The latter provided a better performance.

Table 2. CGP Parameters values.

Parameter Value Analyzed Range

Row number nr 2
Column number nc 25
Node Configuration 2 × 25 [1 × 20; 1 × 25; 1 × 40; 2 × 25]
Generation number 50,000 [1–60,000] step: 10,000

Levels-back 25
Population 15 [5 − 20]

Evolution Strategy µ + λ (µ = 5, λ = 10)
Mutation Rate 15% 3%–20% step: 1%
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Regarding the set of functions associated with the nodes of the CGP, the exploratory phase was
aimed at identifying the minimum set of functions with the best performance. We started with a
set comprising arithmetic functions (for defining the expressions) and selection functions (if-then-else
functions, which help to define the structure of the decision model). Subsequently, we added different
function subsets (logical, non linear, and comparison). Overall we analyzed the behavior of 23
functions, and we selected 10 functions, out of 23, for the final set, which is reported in Table 3.

Table 3. The function set.

Function Definition Arity

sum OUT = x1 + x2 2
subtraction OUT = x1 − x2 2

multiplication OUT = x1 ∗ x2 2
less if (x1 < x2) OUT = 1 else OUT = 0 2

less or equal if (x1 ≤ x2) OUT = 1 else OUT = 0 2
greater if (x1 > x2) OUT = 1 else OUT = 0 2

greater or equal if (x1 ≥ x2) OUT = 1 else OUT = 0 2
negation OUT = −x1 1

if-then-else if (x1 ≥ 0) OUT = x2 else OUT = x3 3
if-less-then-else if (x1 < 0) OUT = x2 else OUT = x3 3

To numerically assess the quality of each classification model M achieved during the CGP
execution, the fitness function was designed taking into account two aspects of the problem: (1) In a
real scenario the detection of PD is more important than having false positives; (2) the dataset on which
we tested our approach is unbalanced (80.44% patients vs. 19.56% healthy subjects). Consequently,
we defined the fitness function as follows:

φ(M) = PDacc · Hrate + Hacc · PDrate · k (1)

where PDacc and Hacc represent PD and H group accuracy (i.e., the fraction of correctly identified
patients and healthy subjects), respectively. The coefficient k was introduced to give priority to the PD
accuracy, and the constants PDrate and Hrate were introduced to mitigate the dataset disequilibrium.

In particular,

PDrate =
nPD

n
, Hrate =

nH

n
(2)

represent the ratio between the number of drawings performed by the PD group and H group,
respectively, and the total number n of drawings. In the exploratory phase, we analyzed the
performance trend obtained by varying the parameter k in the range [0.05; 0.15] and selected the
value k = 0.125, which provided the best performance.

At the end of the evolution, in order to compare the results provided by CGP with those provided
by Reference [21], the global accuracy of the best model found so far was computed using the method
described in Reference [30] for unbalanced datasets.

3.2. Results

The results were obtained by applying a cross-validation procedure with 20 runs. For the sake of
comparison with state-of-the-art methods, both recognition rates per class and global accuracy were
averaged over runs and compared with those obtained with three different algorithms (Support Vector
Machine, Naive Bayes, and Optimum-Path Forest) used in Reference [21]. Tables 4 and 5 report the
results (in terms of mean ± sd) for spirals and meanders, respectively.
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Table 4. Recognition rates per class and global accuracy (mean ± sd) for the spiral dataset.

Healthy Subjects PD Patients Global

CGP 65.56 ± 17.74 49.46 ± 8.03 57.51 ± 6.76
NB 65.56 ± 11.48 62.91 ± 12.65 64.23 ± 7.11
OPF 26.39 ± 9.17 78.58 ± 5.02 52.48 ± 5.32
SVM 1.67 ± 4.07 98.65 ± 4.34 50.16 ± 1.71

Table 5. Recognition rates per class and global accuracy (mean ± sd) for the meander dataset.

Healthy Subjects PD Patients Global

CGP 52.50 ± 14.02 92.23 ± 4.57 72.36 ± 7.97
NB 80.83 ± 16.37 37.57 ± 22.83 59.20 ± 4.78

OPF 32.78 ± 12.08 82.30 ± 3.72 57.54 ± 6.35
SVM 36.94 ± 10.71 96.49 ± 2.5 66.72 ± 5.33

As regards the spiral dataset, CGP performs better than OPF and SVM, but worse than NB,
which provides the best solution in terms of global accuracy. However, if we consider the recognition
rates per class, CGP performs worse than OPF on the PD patients, while it is much better on healthy
subjects. Moreover, it is evident that SVM classifies all the subjects as patients.

As regards the results obtained with the meanders, CGP is the best performing method, since
it reaches the highest value of global accuracy. In particular, while CGP reaches a performance very
close to SVM on PD patients, it is able to outperform SVM on healthy patients, thus gaining better
global accuracy. High standard deviation values could be due to the high variability of the datasets,
which contains images drawn by PD patients in different stages of the disease.

3.3. Explicit Models of Classification Criteria

As already mentioned, one of the key features motivating our choice of using the CGP is the
possibility of obtaining some insights into the rationale behind the classification process. Indeed,
by decoding the genotype obtained at the end of the training phase, one can obtain the explicit
classification model inferred by the CGP. This model, in turn, allows one to achieve two goals: to
highlight the most informative features, and by interpreting the identified relationships, to obtain
more efficient guidelines for the diagnosis of the disease.

Looking at the explicit models obtained at the end of 19 out of 20 cross validation runs, a general
model can be extracted. This model (reported in Algorithm 1) takes into account the relationship among
three features (x0, x5, and x7) and a combination of other features, indicated with C(x). This suggests
that, regardless of the data used for training the CGP, an underlying scheme is always present in the
obtained models, which involves three main global features: x0 and x7, related to the global difference
between handwritten and template trace, and x5, related to the maximum extension of the handwritten
trace. One model out of twenty was more complex and was not characterized by the same underlying
scheme. This model was the one with the worst performance.

Algorithm 1 The general model inferred by using all the best models at the end of each run. C(x) can
contain both local and global features.

if (2 ∗ x0 + x5 − x7) < C(x)) then

output = ”control”;
else

output = ”patient”;
end if



Information 2019, 10, 30 8 of 11

Table 6 reports the occurrence of the features in the models evolved by the CGP across all the
runs. The data shows that, among the features included in the expression C(x), x1 is always present,
while the other ones are exploited for further refinements of the classification criteria, and presumably,
are less informative then the others in highlighting the graphical signs caused by the disease.

Table 6. Percentage occurrence of each feature in the models evolved by CGP in all the runs. The most
occurring features are reported in bold, while the less occurring features are reported in italics.

x0 x1 x2 x3 x4 x5 x6 x7 x8

100 95 10 30 65 100 50 60 40

In order to evaluate whether the features which occurred least (x2 and x3) were those carrying
less information about the handwriting signs of the disease, we excluded them from the training phase
of the CGP. As expected, since those features rarely contribute to the definition of the evolved models,
information carried by them does not capture distinctive signs of the disease, and in some cases,
could represent a noise component for the classification process. Indeed, looking at the results reported
in Table 7, it can be observed that, on average, classification performance is not significantly different
in the three conditions and the standard deviation of the results decreases by removing the features.

Table 7. Recognition rates per class and global accuracy (mean ± sd) for the original meander dataset
and reduced versions.

Healthy Subjects PD Patients Global

CGP (all features) 52.50 ± 14.02 92.23 ± 4.57 72.36 ± 7.97
CGP (x2 removed) 49.17 ± 7.71 92.03 ± 4.27 70.60 ± 3.76
CGP (x2 and x3 removed) 51.25 ± 8.23 91.55 ± 3.08 71.40 ± 3.89

Among the evolved models, we selected the one with the best performance (reported in
Algorithm 2) and, in order to evaluate whether it captures the most informative features and their
related relationships, we employed the model for classifying the 20 datasets used in the previous
cross-validation experiment.

Algorithm 2 The best performing model evolved by CGP among all the 20 runs.

if (2 ∗ x0 + x5 − x7) ≤ (x1 + x4 + 2 ∗ x6) then

output = ”control”;
else

output = ”patient”;
end if

Table 8 reports the obtained results and shows that using the best-evolved model gives an even
better performance than those obtained in the cross validation analysis.

Table 8. Recognition rates per class and global accuracy (mean ± sd) obtained by the best-evolved model.

Healthy Subjects PD Patients Global

58.33 ± 13.31 94.86 ± 2.96 76.60 ± 6.92

Furthermore, looking at the relationship among features included in the best performing model
(see Figure 4), some guidelines for the diagnosis of the disease can be extracted. First of all, the model
analyzes the relationship between six features, dropping three of them, namely x2, x3, and x8. This
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suggests that an overly fine characterization of the trace drawn by the subjects, such as the one
measured by x8, negatively affects the performance and therefore should be avoided. From a numerical
point of view, the order of magnitude of the values of the features x0 and x1 is 103, for x5 and x7 is 102,
for x4 is 101, and eventually, for x6 is 10−2. Because x0 and x1 are on different sides of the inequality,
and because x6 values are negligible, the decision mainly depends on the relationship between x4

and the difference between x5 and x7. In the case of PD patients, the tremor, measured by x4, must
be larger than the maximum distance between the template and the written trace, measured by x5,
minus the standard deviation of the written trace radius, expressed by x7. This algebraic relationship
may be linked to signs clinically associated to Parkinson’s disease by noting that the higher the values
of x5 and x7, the larger the difference between the template and the written trace, and therefore their
difference can be used to characterize the skill of the subject in following the template. Thus, the model
learned by the CGP suggests that, for diagnostic purpose, the tremor plays a crucial role, but in relation
to the subject skill in tracing the reference pattern. Therefore, a large value of the tremor by itself does
not suffice for a PD diagnosis, as there may be subject exhibiting high values of x4 not because of
the pathology, but because of their poor motor skills, which leads to larger values for x0, x1, and x5.
Eventually, it is interesting to note that, in comparison with the best model discovered by the CGP,
the simplest model (Algorithm 3) completely gets rid of the feature x6, which is perfectly plausible
once the numerical values are considered.

-2000 0 2000 4000 6000 8000

Spirals Patients

Spirals Healty

-5000 0 5000 10000 15000

Meanders Patients

Meanders Healty

Figure 4. Scatter plot of the best rule condition, rearranged as (2 ∗ x0 + x5 − x7 − (x1 + x4 + 2 ∗ x6)) ≤ 0,
applied to the whole dataset. Bars represent the average and standard deviation.

Algorithm 3 The simplest model evolved by CGP among all the 20 runs.

if (2 ∗ x0 + x5 − x7) ≤ (x1 + x4) then

output = ”control”;
else

output = ”patient”;
end if

4. Conclusions

This work proposed an evolutionary approach for the automatic diagnosis of Parkinson’s disease
through handwritten shape analysis. In particular, we used Cartesian Genetic Programming on a set
of static features, reported in a publicly available dataset, to improve the performance obtained in
previous work and to provide an explicit model of the classification criteria.

The experimental results show that the features extracted by spirals are less informative than
the ones extracted by meanders and that the global accuracy achieved by the analysis of meanders
outperforms that obtained by other works. They also show that in its best configuration, the CGP
performance is comparable or even better than the state-of-the-art methodologies proposed in the
literature for PD diagnosis.
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In our opinion, however, the most relevant feature of the proposed approach is the unveiling of
the decision criteria with respect to the top performing state-of-the-art method based on SVM. As we
have discussed above, by linking the feature values with the distinctive aspects of the handwriting
they are meant to capture, it is possible to map the decision criteria onto the clinical signs, so as to aid
the acceptance by clinicians of such an automatic system in the assistance of the diagnosis of PD.

However, to help the application of this approach in a real scenario, future work will be aimed at
improving the obtained accuracy by (1) investigating an enlarged feature set, and (2) performing a more
in-depth analysis on the more meaningful features involved in the classification step. Furthermore, as
previous studies suggest that dynamic features generally improve the accuracy, we envisage testing
the approach presented here on datasets such as PaHaw [19] and NewHandPD [20], which contain
both static and dynamic features. According to our previous results on loop shapes [14], we expect
that dynamic features, and in particular, changes in the acceleration of the pen tip due to its association
with tremors, will appear among the most selected ones.
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