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Abstract: This work addresses the model predictive control (MPC) of the offset-free tracking problem
in the dynamic partial least square (DyPLS) framework. Firstly, state space MPC based on the
DyPLS is proposed. Then, two methods are proposed to solve the offset-free problem. One is to
reform the state space model as a velocity form. Another is to augment the state space model with
a disturbance model and estimate the mismatch between system output and model output with
an estimator. Both methods use the system output as a feedback in the control scheme. Hence,
the offset-free tracking is guaranteed, and unmeasured step disturbance can be rejected. The results
of two simulations demonstrate the effectiveness of proposed methods.
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1. Introduction

The main concept of MPC is to use a model of the system to predict the future system output.
MPC achieves its popularity in the process industry due to its ability to deal with multivariable systems
and systems with hard and soft constraints. Early MPCs such as IDCOM and DMC are based on step
or impulse models [1]. More general input-output models such as ARX, ARMAX and CARIMA models
are used in generalized predictive control, as illustrated by Clarke et al. [2]. Muske and Rawlings [3]
proposed an MPC implementation based on state space model. The state space approach provides
a unified framework for discussion of the various predictive control algorithms and is well suited for
stability analysis [4]. In addition, the input-output models can be realized as state space models [5].
Therefore, MPC based on state space models is useful as an implementation paradigm.

Although many cases have proved that MPC has many advantages, there is still a weakness that
is necessary to discuss: when unmeasurable disturbances and plant-model mismatches exist, offset
tracking performance cannot be achieved. A variety of successful algorithms have been proposed
to solve this problem. Xue Wang et al. [6] improved the dynamic matrix control algorithm by
applying disturbance model in the states of control system, and a Kalman filter was used to estimate
unmeasurable disturbance, guaranteeing that the system realized offset-free control in the presence
of unmeasurable disturbance. M. Askari et al. [7] developed a less computational method to achieve
an offset-free MPC control system. In their method, an observer which is designed to estimate the
disturbances and states is employed to eliminate the steady state error. As a result, the robustness
of the closed loop system against step-like disturbances and noisy measurement is tremendously
improved. Joel A. Paulson et al. [8] considered the linear system with two sources of additive bounded
uncertainties on the states. One is for unknown, deterministic structural/parametric plant-model
mismatch, the other is stochastic exogenous system disturbances. The proposed method used estimates
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of the deterministic model uncertainties to modify the nominal state and input targets. It allowed for
achieving offset-free tracking of the mean of the controlled variables. Betti, G. et al. [9] described the
system state model in the so-called velocity form, where the state is composed by the state increments
and the output error, while the manipulated variable is the control increment. The velocity form does
not require the use of a state estimator and does not require the steady state target for the plant state
and control variables to be computed.

Nowadays, the process of production is becoming larger and more complex, which means that the
dimensions of the system are getting bigger. It is worth noting that one can obtain a large amount of
operating data of these systems with the development of computation and storage techniques. Many of
these data contain useful information about the system, and they are highly correlated. This promotes
the development of a data-driven modeling method. Partial least square (PLS) has proved to be
rewarding in the data-driven modeling field, and has been applied to many areas, such as quality
prediction, process monitoring and chemometrics [10]. To handle the dynamic modeling problem,
a variety of methods combining dynamic models with PLS have been proposed in recent decades.
Yining Dong and S. Joe Qin [11] proposed a dynamic inner PLS model, in which an explicit dynamic
inner model was given, and the inner model and outer model were made consistent at the same
time. A method combining the autoregressive exogenous structure and PLS was proposed by Kaspar
and Ray [12]. Qinghua Chi et al. [13] extended this method and discussed the relevant identification
method in the inner PLS. Junghui Chen et al. [14] proposed another dynamic PLS framework with
ARX model. In addition to these modeling method, many attempts have been made to put forward
new control strategies that compromise the merits of PLS. Junghui Chen et al. [13] proposed a novel
decoupling PID strategy with PLS. LÜ and Liang [15] proposed a multi-loop constrained MPC scheme.
Jianhua Zhang [16,17] proposed robust control based on PLS. Tianyi Gao et al. [18] proposed a new
intelligent MPC strategy in modified PLS framework, where iterative regression in model building
and the large number of important undetermined parameters are avoided. Jin et al. [19] proposed
an offset-free MPC in PLS framework which involves integral action in the controller and guaranteed
offset-free tracking performance.

Tatjewski [20] summarized three main methods for offset-free MPC, one is with a state-space
model and a measured state, another is with state observation and estimation, the third is with extended
velocity form state-space model. The precondition of the first method is that state is measured. It is
not suitable for DyPLS. While, the second and third method is suitable for dynamic method. In this
paper, we will attempt to extend the state space MPC scheme to a DyPLS model. To get offset-free
tracking performance, two methods are proposed. One is to reform the state space model as a velocity
form. The other is to introduce an observer model in the control scheme. Both methods include output
feedback in the control scheme. The rest of paper is organized as follows: State space MPC based on
DyPLS and reasons for steady-state errors are described in Section 2. In Section 3, two offset-free state
space MPCs based on Section 2 are proposed. In Section 4, two simulations are given to demonstrate
the merit of the proposed method. In addition, conclusions are drawn in Section 5.

2. DyPLS Framework and Control Scheme

2.1. DyPLS Modeling

PLS was first proposed by Herman Wold’s original non-linear iterative partial least square
(NIPALS) algorithm [21]. The principle of PLS comprises two related models, outer model and inner
model. Consider there are l scaled samples of input dataset X with m dimensions and output dataset
Y with n dimensions. The correlation model of X and Y are obtained by the outer model, shown in
Equation (1).
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X =
R
∑

r=1
trpT

r + E∗ = TPT + E∗

Y =
R
∑

r=1
urqT

r + F∗ = UQT + F∗
(1)

where, T = [t1, t2, · · · , tR] and U = [u1, u2, · · · , uR] are the score matrices of X and Y, respectively.
P = [p1, p2, · · · , pR]

T and Q = [q1, q2, · · · , qR]
T are the loading matrices of X and Y, respectively.

E∗ and F∗ are residual matrices of X and Y, respectively. R is the number of latent variables. By the
outer model, m-dimension dataset X and n-dimension Y are mapped onto a lower R-dimension space.
Shown in Equation (2) is the inner model of PLS. This constructs the relationship between score
matrices T and U. The diagonal coefficient matrix B can be calculated by the least squares method.
According to the principle of this model, the multivariate regression problem is decomposed into R
single-variable regression problems. In addition, m 6= n is met in most cases; this method can also deal
with non-square regression problems.

ur = brtr

U = TB
(2)

where br = uT
r tr

tT
r tr

; B = (TTT)−1TTU;. Combing Equation (1) with Equation (2), the PLS regression
model can be written as

Y = TBQT + F∗ =
R

∑
r=1

brtrqT
r + F∗ (3)

A more detailed PLS algorithm has been presented elsewhere [22]. The conventional PLS is
suitable for pure algebraic structures. It is not able to cope with dynamic characteristics in a process
system. Researchers have proposed many different DyPLS models by incorporating structures like
time-series terms or dynamic filters into the PLS structure [12,23]. In this paper, an ARX model is
applied to the inner model of PLS [24] to represent the dynamic character of the process. This can be
expressed as follows:

ur(k) = Ar(q−1)ur(k− 1) + Br(q−1)tr(k) + ξr(k)

= [ur(k− 1), · · · , ur(k− na), tr(k− 1), · · · , tr(k− nb)][ar,1, · · · , ar,na , br,1, · · · , br,nb ]
T + ξr(k)

= ϕr(k)θT
r + ξr(k)Hr(ϕr)

(4)

where, Ar(q−1) = −ar,1 − ar,2q−1 − ar,na q−na+1, Br(q−1) = br,1q−1 + br,2q−2 · · · + br,nb q−nb , q−1 is
the backward shift operator. na and nb are the number of lags; ξr(k) is the model error;
θT

r =
[
ar,1, · · · , ar,na , br,1, · · · , br,nb

]T is the parameter vector to be estimated; ϕr(k) is the regressor
vector. By prefiltering by the scores tr and ur, ARMAX or CARIMA models can be reformed into an
ARX form, which would improve the quality of Equation (4) and the closed loop performance based
on it [25,26]. Bringing Equation (4) into Equation (3), the DyPLS model can be written as

Y(k) =
R

∑
r=1

ur(k)qT
r + F∗(k) = U(k)QT + F∗(k) (5)

where U(k) = diag(u1(k), u2(k), · · · , uR(k)).

2.2. Controller Design in the DyPLS Framework

The controller design in latent variable space proposed by Kaspar and Ray [12] is shown in
Figure 1. Unlike conventional control methods, the controllers Gc for the controlled system Gp are
designed under latent variable space, based on inner dynamic models (Equation (4)). In this framework,
setpoint Y set and system output Y are scaled by scaling matrix W−1

y and mapped into latent variable
space by inverse loading matrix Q. The control law T is back mapped into original space by loading
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matrix P and anti-scaled by matrix Wx; It is the same as the input of actual system. D is the disturbance
sequence, which also needs to be mapped into latent variable space. According to Equation (4),
Gc is R single-input single-output (SISO) controllers. It inherits the features of PLS, and decouples
multiple-input multiple-output (MIMO) systems into a series of SISO subsystems.
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3. Offset-Free Model Predictive Control in the DyPLS Framework

3.1. State Space-Based MPC in the DyPLS Framework

In some articles, PLS is called a latent subspace project method [27]. This is different from
a subspace identification method (SIM). In a MIMO system, SIM is the method that identifies the state
space model in original space; subsequently, many control algorithms can be applied to it. It does
not map original space into latent variable space or decompose the MIMO system into multiple SISO
subsystems. Hence, state space-based MPCs in the DyPLS are not suitable for SIM.

To simplify the description, it is assumed that the model error ξr(k) in Equation (4) is zero, and na

is equal to nb. The ARX model in the r-th latent variable space (Equation (4)) may be realized as a state
space model in an innovation form [5]

xr(k + 1) = Arxr(k) + Brtr(k)
ur(k) = Crxr(k)

(6)

where, the matrices (Ar, Br, Cr) having a canonical observer form,

Ar =


−ar,1 1 0 · · · 0
−ar,2 0 1 · · · 0

...
...

...
. . .

...
−ar,na−1 0 0 · · · 1
−ar,na 0 0 · · · 0

, Br =

 br,1
...

br,na

, Cr =


1
0
...
0


T

.

Let Np,r and Nc,r denote prediction horizon and control horizon, respectively. The Np,r step ahead
prediction of the output is Υ

ûr(k) = Ψrxr(k) + Υ rtr(k− 1) + Θr∆t̂r(k) (7)
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where ûr(k) =



ûr(k + 1|k )
...

ûr(k + Nc,r|k )
ûr(k + Nc,r + 1|k )

...
ûr(k + Np,r|k )


, Ψr =



CrAr
...

CrANc,r
r

CrANc,r+1
r
...

CrA
Np,r
r


, Υ r =



CrBr
...

Nc,r−1
∑

i=0
CrAi

rBr

Nc,r

∑
i=0

CrAi
rBr

...
Np,r

∑
i=0

CrAi
rB


,

Θr =



CrBr · · · 0
CrArBr + CrBr · · · 0

· · · · · · · · ·
Nc,r−1

∑
i=0

CrAi
rBr · · · CrBr

Nc,r

∑
i=0

CrAi
rBr · · · CrArBr + CrBr

· · · · · · · · ·
Np,r−1

∑
i=0

CrAi
rBr · · ·

Np,r−Nc,r

∑
i=0

CrAi
rBr


, ∆t̂r(k) =

 ∆t̂r(k|k )
...

∆t̂r(k + Np,r − 1|k )

, ∆ = 1− z−1.

A typical cost function of the 2-norm form used here is

Jr =
Np,r

∑
j=1

δr(j)‖uset,r(k + j)−ûr(k + j |k )‖2
2 +

Nc,r−1

∑
j=0

λr(j)
∥∥∆t̂r(k + j |k

)∥∥2
2 (8)

where, uset,r is the setpoint in the latent space which is transformed from the setpoint in original
space; δr(j) and λr(j) are weighting sequences. Bring Equation (8) into Equation (7), and solving the
minimization problem Jr, the following optimal set of future increment score matrices ∆tr is obtained as

∆t̂r(k) = (ΘT
r δrΘr + λr)

−1
ΘT

r δr[uset,r(k)−Ψrxr(k)− Υ rtr(k− 1)] (9)

where δr = diag(δr(1), · · · , δr(Np,r)), λr = diag(λr(0), · · · , λr(Nc,r − 1)), uset,r(k) =

[uset,r(k + 1), · · · , uset,r(k + Np,r)]
T .

Only the first part of the solution ∆t̂r is back-mapped to the original space and implemented
with respect to the process. One can guarantee closed-loop stability by choosing a sufficiently long
prediction and control horizon. As usual, the input of plant model Gp in Figure 1 is in the terms of
input data matrix X (in Equation (1)). There are two ways of mapping score moving ∆t̂r to the original
space in order to get the manipulated variable X. One way is to integrate score tr with

tr(k) = tr(k− 1) + ∆t̂r(k|k ) (10)

and then to back map to original space with Equation (1). The other way is back map the score move
∆t̂r(k|k ) into original space with

∆X(k) =
R

∑
r=1

∆t̂r(k|k )pT
r (11)

and then to integrate the input data as

X(k) = X(k− 1) + ∆X(k) (12)
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From Equation (7), one can conclude that these decomposed SISO control problems are
independent from each other, and latent variables are selected in pairs automatically. Hence, the state
space MPC in DyPLS not only avoids decoupling the MIMO system, but also avoids pairing the
control loop. All latent variables in cost function Equation (8) are solved separately. In addition,
the computational complexity of this method is less than the MIMO control problem.

The structure of the control scheme is illustrated in Figure 2. The feedback of the control is
the model state xr. When the state space model in the DyPLS framework matches the plant model
accurately, xr can explain the system output Y well. Due to the decoupling scheme of PLS, the mismatch
error F∗(k) (in Equation (6)) is unavoidably present. This leads to poor control performance or steady
state error. In the next two sections, two methods are proposed to solve this problem.
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3.2. Offset-free MPC Method A

Since the cost function Equation (8) includes the score move ∆tr, rather than the score, tr, itself,
it is advantageous to reformulate the state model Equation (6), which has ∆tr as the model input.
From Equation (6), the movement of the state model at time k can be formulated as

∆xr(k + 1) = Ar∆xr(k) + Br∆tr(k)
∆ur(k) = Cr∆xr(k)

(13)

Then Equation (13) can be reformulated in an augmented form as

[
∆xr(k + 1)
ur(k + 1)

]
=

[
Ar 0

CrAr 1

]
∆xr(k)
ur(k)

+

[
Br

CrBr

]
∆tr(k)

ur(k) =
[

0 1
][ ∆xr(k)

ur(k)

] (14)

Equation (14) can be rewritten in a reduced form as

Zr
′(k + 1) = A′rZ′(k) + B′r∆tr(k)

ur(k) = C′rZr
′(k)

(15)

where Zr
′(k) =

[
∆xr(k)
ur(k)

]
, A′r =

[
A′r 0

CrA′r 1

]
, B′r =

[
B′r

CrB′r

]
, C′r =

[
0 1

]
.
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The Np,r step ahead prediction of the output for j = 1, . . . , Np,r is

ûr(k) = ΘrZ′(k) + Γr∆t̂r(k) = Θrxr(k) + ur(k) + Γr∆t̂r(k) (16)

where, Θr =



C′rA′r
C′rA′r

2

· · ·
C′rA′r

Nc,r

C′rA′r
Nc,r+1

· · ·
C′rA′r

Np,r


, Θ′r =



CrAr

CrA2
r + CrAr

· · ·
Nc,r

∑
j=1

CrAj
r

Nc,r+1
∑

j=1
CrAj

r

· · ·
Np,r

∑
j=1

CrAj
r



,

Γr =



C′rB′r 0

C′rA′rB′r C′rB′r
. . .

· · · . . . 0
C′rA′r Nc,r−1B′r C′rB′r 0

C′rA′r Nc,r B′r C′r(A
′
r + I)B′r 0

· · · · · · · · · · · · . . .

C′rA′r
Np,r−1B′r · · · · · · C′r

Np,r−Nc,r

∑
j=0

A′r jB′r 0


By solving the cost function of Equation (8), the following optimal set of future increment score
matrices ∆t̂r is obtained:

∆t̂r(k) = (ΓT
r δrΓr + λr)

−1
ΓT

r δr(r(k)−Φ′r∆xr(k)− ur(k)) (17)

The control structure is illustrated in Figure 3. When the DyPLS model matches the plant precisely,
the system output score uY,r(k) is equal to the predictive output of the state space model in the latent
space ur(k). As described above, the DyPLS method makes a tradeoff between the complexity and
dimensions of the model structure and the accuracy of the model. Chi et al. [28] point out that this
tradeoff would lead to a small degradation of control performance. That is to say, ur(k) will not
precisely map the true value of the system output. Hence, one can replace ur(k) with uY,r(k), and the
system output mapped in latent variable space could be used as the feedback of the control scheme.
Based on the stability and convergence of MPC, the control performance will be improved. In this
study, DyPLS model is used to decompose the MIMO system into several SISO subsystems, so that
a SISO velocity form state space MPC is available. The stability and convergence analysis of the
velocity form state space MPC in a SISO case has been illustrated by Liuping [29] and Betti [30].
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3.3. Offset-free MPC Method B

The other method to eliminate the offset is to apply a state observer, which is usually incorporated
with a disturbance model. In this section, the state space model is augmented with a disturbance
model, which is used to eliminate unmeasured disturbance, and an observer is introduced to guarantee
the offset-free tracking performance.

As shown in Figure 1, the disturbances acting on the plant are the output disturbance. At each
time instant, the current and future disturbances are usually unknown. It is difficult to measure the
disturbance, especially for unmeasured disturbance. In most cases, it is assumed that the disturbance
will be unchanged during the prediction horizon. Hence, the inner model Equation (6) is augmented
with a disturbance form as

xr(k + 1) = Arxr(k) + Brtr(k)
ur(k) = Crxr(k) + dr(k)

(18)

With Equation (7), the Np,r steps ahead prediction of the output is rewritten as

ûr(k) = Ψrxr(k) + Υ rtr(k− 1) + Θr∆t̂r(k) + d̂r(k) (19)

Where, d̂r(k) =

 d̂r(k|k )
...

d̂r(k + Np,r − 1|k )

 =

 d̂r(k|k )
...

d̂r(k|k )

d̂r(k|k ) = uY,r(k)− ûr(k|k− 1 ).

Since Equation (6) cannot measure the full state of the plant, an observer is used to estimate
the state vector [31]. The condition for the observability of Equation (18) is given in the following
proposition, which is extended from Maeder’s results [32].

Proposition 1. The augmented state space model Equation (18) is observable if and only if (Ar, Cr) is
observable and [

Ar − λI 0
Cr 1

]
(20)

has full column rank.
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Proof. From the Hautus observability condition augmented system, (18) is observable if and only if[
AT

r − I 0 CT
r

0 1− λ 1

]
has full row rank ∀λ.

The first set of rows is linearly independent if and only if (Ar, Cr) is observable. The second set of
rows is linearly independent of the first set of rows, except for possibly λ = 1. Thus, for the augmented
system, the Hautus condition needs to be checked for λ = 1 only. This means that Equation (20) should
be met. �

The state observer designed based on Equation (18) is

xr(k + 1) = Arxr(k) + Brtr(k) + L′r(uY,r(k)− ûr(k|k− 1 )) (21)

where, L′r is the gain matrix to estimate the correct state xr. By appropriate design of L′r, the state
estimator can facilitate offset-free control.
There are many methods to obtain an appropriate gain matrix L′r, such as the state-feedback
pole-placement method. Meanwhile, if the state and output equations of the plant are assumed
to be subjected to white noise disturbances with known covariance matrices, L′r can be obtained
by Kalman Filters [25]. For application of the Kalman Filter, the underlying requirement is the
disturbance covariance, which is used in calculation of the estimator gain. This is estimated from the
auto-covariance of the plant data. In the DyPLS model, covariance of plant data is mapped into latent
variable space. The characteristic of covariance of it is shown as Proposition 2.

Proposition 2. Let σr denote the variance vector of the r-th score vector in the latent variable space. σr is the
sum of r-th vector of Q+.

Proof. According to Equation (1), the score variable U is obtained by U = YQ+ and ur =

[y1, · · · , yn]·q+r , where, q+r is the column vector of Q+. Based on DyPLS scheme, the output data
set are scaled to the unit variance data set. y1, · · · , yn all belong to the unit variance data set. Assuming
that all the system outputs are independent of each other, based on the property of variance, σr is the
sum of element of q+r . �

Based on Equation (19), the optimal future increment of score vector ∆tr can be obtained, as

∆t̂r(k) = (ΘT
r δrΘr + λr)

−1
ΘT

r δr
[
uset,r(k)−Ψrxr(k)− Υ rtr(k− 1)− d̂r(k)

]
(22)

Replace the state variable xr in Equation (22) with the state variable in Equation (21), and one can get
the future increment of score vector ∆tr with offset-free tracking performance. The structure of the r-th
sub controller is shown in Figure 4.
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4. Case Study

To illustrate the performance of the proposed offset-free MPC based on the dynamic PLS
framework, two study cases are presented below.

4.1. Study Case 1: Jerome-Ray Distillation Column

The Jerome-Ray distillation column is a non-minimum phase system, which has zero points at
right half-plane [33]. A lot of multivariate control algorithms have been proposed to achieve a better
control performance. In this case study, the basic state space-based MPC (SMPC), state space-based
MPC in DyPLS (SMDP), and two offset-free state space-based MPCs in DyPLS (OSMDP1, OSMDP2)
are illustrated to compare their control performance. The transfer function matrix of this process is
given as

G(s) =

 (−s+1)e−2s

s2+1.5s+1
0.5(−s+1)e−4s

(2s+1)(3s+1)

0.33(−s+1)e−6s

(4s+1)(5s+1)
(−s+1)e−3s

4s2+6s+1

 (23)

To simulate the disturbance of the real process, a disturbance model [34] is added as

Gd(s) =
[

e−s

(25s+1)
e−s

(25s+1)

]T
(24)

In this simulation, the sampling time is set to 0.5 s. To build up the DyPLS model, two random
step input signals with magnitudes ranging from −1 to 1 are applied to excite the system. White noise
with a non-zero deviation of 0.5 is added to Gd as a disturbance signal, which is used to simulate
the real process situation. The input and output data to excite the system are plotted in Figure 5.
In addition, another dataset, which is used to verify the model accuracy, is shown in Figure 6.
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To determine the number of latent variables, the performance of the model is quantified by
an indicator as:

φ =
n

∑
i=1

l

∑
k=1

(yi(k)− ŷi(k))
2

where yi(k) and ŷi(k) denote modeling data and DyLS output, respectively. φ reflects the bias between
DyPLS output and modeling data. The φ for different model parameters are shown in Table 1. φ for
r = 2 is significantly less than that for r = 1. Hence, the latent variable in this case is 2. For the model
order, na and nb are 5 and 5, because higher model orders do not significantly reduce the index φ.
In addition, higher model orders lead to heavier computational burden. To SMPC, the model order is
28. One can see that each sub model in latent variable space is much simpler than the conventional
model in original space.

Table 1. The index ϕ for different model parameters.

(na, nb) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9)

ϕ(r = 1) 802.35 805.49 806.92 806.27 805.32 804.62 805.53 804.63 803.88
ϕ(r = 2) 549.53 538.15 538.97 538.02 537.54 537.39 541.68 537.99 538.32

With the obtained dynamic PLS model, the proposed control algorithms and original MIMO state
space MPC is designed to track the square-wave signal. A positive step of 2 units is introduced in the
reference for y1 at time 201 to 1400, and for y2 at time 601 to 2000. The prediction horizon and control
horizon for 4 control algorithms is shown in Table 2. The simulation results are shown in Figure 7.
To compare the control performance with the disturbance situation, a white noise with a non-zero
deviation of 0.5 is added to Gd as a disturbance signal for all simulation runs; the results are shown in
Figure 8.

Table 2. The parameters for 4 control algorithms and computing time.

SMPC SMDP OSMDP1 OSMDP2

Np 9 6 6 6
Nu 5 5 5 5

Computing time (ms) 406.01 386.36 283.45 385.52
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Due to the mismatch of the plant model and the predictive model, SMPC and SMDP achieve a poor
offset-free performance. Although the latent variable in this case cannot be reduced, the decoupling
scheme of dynamic PLS model makes a tradeoff between the control performance and the control
structure complexity. That is to say, the steady state error of SMDP is larger than SMPC. OSMDP1 and
OSMDP2 provide a good offset-free performance when there is no disturbance. OSMDP1 is sensitive
to the colored noise. However, OSMDP2 is stable when noise exists. This indicates that OSMDP2 is
more robust than OSMDP1.

The Np and Nu of SMPC are larger than for other methods. The identified model of SMPC has
a large time delay. To include the dynamic of the system in the controller, the predictive horizon
cannot be less than 9. The form of SMPC future control increment has the same form as Equation (9).
In this case, Θ of SMPC is a 18× 10 dimensional matrix, while for the other 3 methods it is two 6× 5
dimensional matrices. Hence, the calculation complexity of matrix inverse and time consumption are
high for SMPC. The last row of Table 2 is the computing time (the computer with 4 GB RAM, 2.6 GHz
core i5) of 4 methods for the whole simulation. As can be seen, the computing time in the DyPLS
framework is less than that in the original space MPC. The main reason for this decrease is that latent
variable space controllers compute in parallel.

4.2. Study Case 2: Industrial Polyethylene Reaction

A common type of high-density polyethylene made by the catalytic homopolymerization of
ethylene through slurry polymerization was proposed by Embirucu and Fontes [35]. The typical
process has 9 inputs and 7 outputs. In this case, the first three equations shown in Equation (25) are
extracted. These equations have 4 inputs (x1—monomer feed flow, x2—solvent (n-hexane) feed flow,
x3—catalyst feed flow, x4—gas recycle/monomer feed ratio) and 3 outputs (y1—production, y2—slurry
polymer, y3—catalyst efficiency), which is a typical non-square system.

(1− 0.9021q−1)y1(k) = (0.9283− 0.8350q−1)x1(k)

(1− 0.9067q−1)y2(k) = (0.8415− 0.7664q−1)x1(k) + (0.6873− 0.6023q−1)x2(k)

(1− 0.8932q−1)y3(k) = (0.8591− 0.7536q−1)x1(k) + (0.8097− 0.7066q−1)x3(k) + 0.0081x4(k)

(25)
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The square signals with a deviation of 0.01 white noise shown in Figure 9 were generated to excite
the system. The corresponding output data are shown in Figure 10. The validation input data are
shown in Figure 11. In addition, the output data of the dynamic PLS model is shown in Figure 12.
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Figure 11. Validation input data of the system: (a) x1—monomer feed flow; (b) x2—solvent (n-hexane)
feed flow; (c) x3—catalyst feed flow; (d) x4—gas recycle/monomer feed ratio.

The indicator φ of different latent variables and lagged parameters na, nb are illustrated in Table 3.
The φ of 4 latent variables is significantly less than that of 2 or 3 latent variables. In addition, φ of na = 4
and nb = 4 is less than other parameters. That is to say, the dynamic PLS model with 4 latent variables
and na = 4, nb = 4 can describe plant models well.

Table 3. The indicator φ for different latent variables and lagged parameters of ARX in dynamic PLS.

Number of Latent Variable
(na, nb)

(2,2) (4,4) (6,6) (8,8)

2 8975.50 8976.50 8977.00 8961.8
3 1195.2 1193.5 1182.4 1187.6
4 126.88 114.67 128.3 130.08

The total simulation horizon for the control comparison is 1200. A unit signal is set as the setpoint
of outputs. In addition, 3 unmeasured step disturbances (between 150 and 450 for y1, between 550
and 750 for y2, between 850 and 1050 for y3) are acting on the 3 outputs of system. To compare the
control performance when there is unmeasured white noise, a white noise is added to all outputs of
the system. The simulation results with no noise are shown in Figures 13–15, and results with white
noise are shown in Figures 16–18. The prediction and control horizon are 5 and 6 for these simulations,
respectively. Results in Figures 13 and 16 show that SMDP is incapable of providing offset-free control,
whether there is white noise or not. The two other control algorithms, OSMDP1 and OSMDP2, reject
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these disturbances and provide offset-free tracking, see Figures 14, 15, 17 and 18. Results in Figures 14,
15, 17 and 18 also show that when unmeasured disturbance enter the system, OSMDP1 and OSMDP2
provide a correction. When unmeasured disturbances enter the system at sample points 150(y1), 550(y2)
and 850(y3); there are overshoots in the system, but they are rapidly declined, because in the proposed
method, the actual outputs are introduced to latent variable space as the feedback.
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5. Conclusions

In this paper, an MPC controller design in the DyPLS framework with an offset-free mechanism
was proposed. First, the state space MPC in the DyPLS is proposed. This has five advantages: (1) the
model structure is simple; (2) it decomposes the MIMO system into multiple SISO subsystems; (3) it can
accomplish loop pairing automatically; (4) it can handle non-square systems; and (5) the dimensions
of the system can be reduced. Meanwhile, due to the mismatch between the DyPLS model and the
plant system, steady-state error exists. To tackle this problem, two methods are proposed. One is
to reform the state model as a velocity form, where the state is composed by the state and output
increments, while the manipulated variable is the control increment. The other is to augment the state
space with a disturbance model, while assuming the disturbance model would be unchanged during
the prediction horizon. In addition, an observer is used to estimate the unmeasured state. To obtain
the Kalman filter gain matrix in the observer, the variance in the latent variable space is discussed.
The second method shifts the focus from modeling the disturbance to estimation of the observer gain,
which provides a significant simplification. A square system and a non-square system simulation
illustrate the performance of proposed methods. Both offset-free methods can guarantee the offset-free
tracking performance and unmeasured disturbance rejecting performance. Both methods can tackle
the white noise in the measurement. However, the velocity form method is sensitive to colored noise.
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