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Abstract: We address multimodal product attribute prediction of fashion items based on product
images and titles. The product attributes, such as type, sub-type, cut or fit, are in a chain format,
with previous attribute values constraining the values of the next attributes. We propose to address this
task with a sequential prediction model that can learn to capture the dependencies between the different
attribute values in the chain. Our experiments on three product datasets show that the sequential model
outperforms two non-sequential baselines on all experimental datasets. Compared to other models,
the sequential model is also better able to generate sequences of attribute chains not seen during training.
We also measure the contributions of both image and textual input and show that while text-only models
always outperform image-only models, only the multimodal sequential model combining both image
and text improves over the text-only model on all experimental datasets.

Keywords: Fashion E-Commerce; product attribute prediction; multimodal classification; sequential
prediction; CNN; RNN

1. Introduction

Modeling garment data is a theme that has achieved considerable attention during recent years
because of the developments in deep-learning methods. There is now an assortment of research on various
tasks in garment modeling and redrawing in 2D or 3D environments [1], recognizing the garment [2],
parsing the semantic parts of the garment in the image [3], retrieving the garment based on specified
attributes [4], and making garment recommendations based on previous choices [5]. An expanding number
of papers are concentrating on garment data retrieval [6–8], which is a fundamental task relevant for the
customers of the web-based fashion businesses.

To enable sorting, standardizing and searching fashion products on e-commerce retail platforms,
garments must be supplied with relevant product attributes, such as product category and type,
gender information, etc. However, this index data is often incomplete as the merchants may fail to
provide all relevant information together with the product. Considering many fashion products offered on
e-commerce platforms, adding the missing attributes manually is not feasible. As a result, merchants can
lose potential sales because due to missing attributes, some relevant fashion items may not be returned
in response to a potential customer’s search query. Thus, systems that can infer the missing attributes of
garment products are of practical importance.
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Several pieces of information, such as images and textual descriptions, are typically available for
fashion items sold on e-commerce platforms and this data can be used to extract missing attribute
information. Consider an example in Figure 1 that shows a preview of an item search form of T-shirts and
Tank Tops on Rakuten.com, a Japanese e-commerce company similar to Amazon.com. For each product
the page shows an image and a title that potentially contain information about the item’s missing attributes.
For instance, the values of the attributes highlighted in the upper right part of Figure 1, such as American
Casual (Fashion Taste), Short Sleeves (Sleeve Length), and Medium (Clothing Length) can be inferred from
such multimodal data.

Extracting missing attributes from the textual and image data of fashion products is challenging in
several respects. Product images contain visual features of several attributes (for instance, the Sleeve
Length is short and the Fashion Taste is American Casual) and the system must learn to distinguish
between visual features characterizing these different attributes. The textual data comprises unstructured
image titles or product descriptions that may or may not contain relevant attribute information. The system
must be able to analyze unstructured textual data and make proper inferences based on it.

Figure 1. Snapshot of a T-shirt search page taken from Rakuten.com.

Most previous approaches have addressed the attribute extraction as a multitask classification problem
where the values of different attributes are predicted independently of each other [9–11]. While such an
independence assumption is justified for certain attribute categories, it provides the system too many
degrees of freedom in other cases. For instance, the value of the attribute of the product type constrains
the set of possible values for the product sub-type attribute: if the product type attribute value is Top, then
T-shirt would be a legal value for the sub-type attribute while Skirt would be not as skirts do not belong to
the type of Top garment.

Rakuten.com
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This observation suggests that if the available attributes are organized in a tree-like structure, where
the value of each previous node constrains the possible values in the next branch of the tree, attribute
prediction can be formulated as a sequential prediction problem where the value of each next attribute
is dependent on the values of the previously predicted attributes. While previous work has explored
sequential product attribute prediction based on textual data [12,13], we are not aware of such work on
multimodal input. Also, neither of these previous works compared the sequential prediction with the
multitask formulation.

In this paper, we propose to formulate the multimodal product attribute prediction as a sequential
prediction problem to enable the model to learn to capture the dependencies between different attribute
values. We compare our model to three different non-sequential task formulations. The following list
summarizes all models:

(1) MultiClass Prediction: This is a simple baseline where the values of all attributes of an item are
concatenated and predicted as a single united label. This formulation is suitable when the number of
different attribute value combinations is not too large; however, it does not allow prediction of value
combinations that were not seen during training.

(2) MultiLabel Prediction: Here the problem is formalized as a multilabel classification task where the
value of each attribute is considered to be a different label and thus, each input instance is assigned
multiple labels. We experiment with several multilabel models, starting with a simple binary model
and including several multiclass multilabel models similar to the multitask models used in previous
work [9–11].

(a) Binary MultiLabel Prediction: This is the most basic multilabel baseline where the model
predicts the presence or absence of each attribute value.

(b) MultiTask Prediction: This is the multiclass multilabel model that adopts a multiclass
classifier for predicting one value for each attribute.

(c) Attentive MultiTask Prediction: This is the multitask model with an attention component
between the image, text and each label.

(d) Self-Attentive MultiTask Prediction: This is the attentive multitask model with an additional
self-attention component between the multiclass attribute classifiers.

(3) Sequential Prediction: This formulation predicts each attribute value in sequence and each next
prediction is conditioned on the previously predicted attribute values. We hypothesize that this
formulation is the best in cases where the attribute categories are organized into a tree-like structure.
According to our knowledge, while the sequential prediction approach is not novel in the attribute
prediction domain [12,13], the multimodal sequential prediction has not been explored before.

We tested our models on three multimodal datasets, containing both image and text:

1. Rakuten dataset, which is an in-house proprietary dataset obtained from Rakuten.com,
2. Kaggle Fashion-Product-Images Dataset, where each product item is supplied with the image, title,

and several attribute values of the product, and
3. Amazon Product Dataset, which includes Amazon product metadata, such as titles,

descriptions, category information, price, brand, image URLs and image features belonging to product
data profiles.

Rakuten.com
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For encoding the data, we use the CNN-based Resnet-50 [14] architecture for product images,
and RNN-based RNMT+ model [15] for textual data. We use this encoder in combination with all
output prediction approaches on our experimental datasets. In Rakuten and Kaggle datasets, the attributes
are organized in a chain-like structure and thus we expect the sequential modeling to perform best on
those two datasets. For the Amazon dataset, we do not know the category structure of the attribute chains
and thus on that dataset, we can only apply the MultiClass and the Sequential prediction approaches.
On all datasets, we expect Sequential and MultiLabel approaches to outperform the MultiClass model.

Our contributions in this paper are:

(1) We propose the sequential modeling approach for multimodal fashion attribute prediction and
show that it outperforms other methods on datasets where the product attributes are organized
in a tree-like structure. You can find the source code for reproducing our experiments at
https://github.com/saitarslanboun/MultimodalSequential

(2) Besides multimodal models, we also experiment with text-only and image-only models and show
that while text-only models always outperform image-only predictions, only the sequential model
always benefits from multimodal input.

(3) We perform extensive experiments in real-life datasets to demonstrate the sequential model’s efficacy
and show that it is also better than the multilabel models in predicting novel attribute chains.

2. Related Work

All our models are multimodal deep-learning classification models and there is quite a lot of research
in this area [16–19]. Here we focus our review of recent work on category/attribute extraction in the
e-commerce/fashion domain using both multimodal and only image or only text input.

2.1. Attribute Prediction Based on Multimodal Data

There is little previous work on multimodal attribute extraction for commercial products and
none of them has explored sequential modeling of attribute value chains. Cardoso et al. [9] predict
attribute values for fashion products using both product images and textual information as input
on a dataset driven from the ASOS e-commerce marketplace. They encode both image and with
CNNs and predict the value of each attribute independently of each other conditioned on the same
input text and image representation, similar to the multitask approach also used in our presented
work. However, whereas we predict the values of all attributes of a product item together, which
to some extent enables the multitask model to learn the dependencies between different attribute
values, they only learn one attribute of each product item at one time, thus diminishing the
advantages of the multitask model in capturing the dependencies between different attribute values.
Also Logan et al. [10] use a multitask model, predicting the values of several attributes of generic
commercial products on a multimodal dataset. Similar to Cardoso et al. [9], they also only predict a
single attribute value for each product item at a time. They use an additional input called “query” to
encode the category of the predicted attribute that is used to guide the model to predict only those values
relevant to that category. Both images, text, and queries are encoded with CNNs, and they are fused in a
fusion layer. They experiment with two different fusion techniques; the first technique just concatenates
the three encoded representations, and the second technique uses a special gating mechanism.

Zahavy et al. [20] focus on fusing the representations of multimodal inputs for the category prediction
on a general-domain commercial product dataset derived from the Walmart.com e-commerce website.
Both image and text are encoded with CNN, and their representations are fused to predict the value
of the product category in a multiclass setting. They experiment with two different fusion techniques:
feature-level fusion and decision-level fusion. The feature-level fusion is based on end-to-end training,

https://github.com/saitarslanboun/MultimodalSequential
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where the output representation vectors from image CNN and text CNN are ensembled for the subsequent
prediction. In the decision-level fusion, the image and text models are trained separately, and their
predictions are fed through a policy layer which decides between image CNN and text CNN prediction.

2.2. Attribute Prediction for Fashion Based on Image Data

Inspired by the recent popularity of CNN-based deep-learning methods for image processing, there
have been several approaches proposed for a fashion product classification and attribute prediction
based on image data. Chen et al. [21] predict attribute values for fashion products on an image dataset
derived from the Taobao e-commerce marketplace. They encode images with a CNN with spatial
attention and predict the value of each attribute independent of each other, conditioned on the same input
image representation. This is similar to the multitask approach used in our work. Schindler et al. [22]
predict the product category of fashion images using a multiclass model. Their dataset is derived from
online e-commerce companies such as Asos-EU, Farfetch or Zalando. They analyzed five different CNN
architectures pretrained with ImageNet [23].

Liu et al. [24] introduced the DeepFashion dataset with the FashionNet model, which learns fashion
features for general usage in the fashion domain. Several subsequent works have used this dataset to
train models for various fashion-related prediction tasks. For example, Li et al. [25] perform clothing
classification using the multiclass approach. They make use of CNN, HOG [26] and color histograms to
learn garment classification from different image representations. Li et al. [11] predict product categories
and attributes. They use multiclass learning for category prediction and a binary multilabel model to
predict multiple attributes for an item.

2.3. Product Categorization Based on Text

Hiramatsu and Wakabayashi [12] and Li et al. [13] experimented with the encoder-decoder network
to predict attribute chains on a dataset sampled from the Rakuten.com product catalog. Their work is
very similar to us as they also predict the values of attributes sequentially. However, whereas our work
leverages multimodal data, their dataset only contains text. Also, neither of those works compare to the
neural multitask baseline as we do in this work. Hiramatsu and Wakabayashi [12] compare their sequential
model to a multiclass Random Forest baseline, while Li et al. [13] only experiment with sequential models.
On the same dataset Lin et al. [27] proposes various other methods for predicting product attribute chains.

Krishnan and Amarthaluri [28] compare CNN and RNN encoders for categorizing products on
a textual dataset driven from Walmart’s e-commerce marketplace, where each product data includes
both structured product features as well as unstructured textual information. OpenTag [29] casts the
problem of attribute prediction as a sequence tagging task, using an end-to-end neural model comprising a
bidirectional LSTM, CRF and an attention mechanism for extracting attribute values from the textual data
of item profiles such as title and description. The advantage of this approach is that the set of attribute
values does not have to be fixed in advance and the model can predict new attribute values that it has
never observed during training, allowing also multi-word attribute values and multiple attributes per item
if appropriate. The downside lies in the assumption that the relevant attribute values have to be explicitly
represented in the text. Hsieh et al. [30] use a more traditional K-means clustering method for generating
product hierarchies based on text encoded with word embeddings.
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2.4. Fashion Product Categorization Using Noisy Data or Transfer Learning

Several works have tackled the problem of fashion product categorization using semi-supervised learning
techniques or noisy data. For example, Inoue et al. [31] predict attribute values for fashion images on the
Fashion550k dataset where only a subset of the database is human-verified. Their proposed model learns to
clean the noisy labels while simultaneously also predicting the attributes.

Dong et al. [32] classify unconstrained images taken from Google street views using a two-level
transfer learning method. The first level is a multitask learning model trained on images from the
X-Domain benchmark dataset [33]. On the second level, they fine-tune the trained model for learning the
street-view images. They perform transfer learning by matching each garment on street-view images with
an equivalent garment from the X-Domain dataset.

Corbiere et al. [8] proposed an unsupervised method for garment category prediction using a dataset
crawled from e-commerce web pages. The dataset comprises images and textual descriptions of products,
and the textual descriptions serve as noisy labels. Their model encodes images with a CNN and is
trained to predict the words in the description that serve as the most likely candidates for representing the
garment category.

3. The Sequential Attribute Prediction Model

In this section, we describe the sequential architecture used in our experimental work. First, we will
describe the image and text encoders that are the same for all models. Then we describe the sequential
prediction model.

3.1. Encoding Image and Text

For decoding images, we use the Resnet-50 CNN model [14], which consists of 50 CNN layers that
all extract latent feature vectors from the image segments of increasing size. The last layer outputs the
representation of the whole image concerning different object labels. Because our models might benefit
from a more fine-grained image representation, we extract the image features from a lower convolutional
layer of Resnet. In this way, we obtain a separate feature vector for different image segments. In particular,
we extract the feature vectors from the 47th layer where the feature vector size is 1024 and the image is
divided into 14 × 14 segments. These feature vectors are organized into an image representation matrix I.

For encoding text, we use the recurrent encoder (see Figure 2a) from the RNMT+ model [15]. RNMT+
is a state-of-the-art encoder-decoder architecture designed for machine translation and neural sequence
generation. In the RNMT+ encoder, there are six bidirectional recurrent layers. (We use GRU cells).
For each bidirectional layer, we concatenate the outputs of the forward layer and the backward layer
before feeding into the following layer. Starting from the third layer, the concatenated outputs are passed
through the residual connections. After each bidirectional layer (including residual connections), we apply
layer normalization [34], and dropout. The output of the text encoder is a matrix containing a feature
vector for each input word. This matrix is subsequently called a text representation matrix, denoted by T.
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(a) RNMT+ encoder (b) Sequential architecture

Figure 2. RNMT+ encoder and the sequential architecture.

3.2. Sequential Model

The Sequential model (see Figure 2b) is an encoder-decoder generation model that predicts the output
attribute values one by one. It uses as input the encoders for image and text described previously in
Section 3.1 and has a very similar architecture to the RNMT+ sequential decoder [15].

Denote an attribute chain by Y = y1, y1, ..., yn, where yt are the values of each attribute category in the
chain and n is the total number of attribute values in the chain. The joint probability of the attribute chain
can be decomposed into the conditionals:

p(Y) =
n

∏
t=1

p(yt|y1, ..., yt−1, I, T) (1)

I ∈ R194×d is the image representation matrix computed by the image encoder containing a d =

1024-dimensional vector for each of the 14× 14 = 196 image segments. T ∈ Rm×d is the text representation
matrix computed by the text encoder, where m is the number of words in the textual input. In the following
subsections we describe the components of the sequential decoder in more detail.

3.2.1. Input and Output Formats of the Labels

The input and output format of the attributes follows the standard language modeling input-output
format (see Figure 3). The generation of an attribute sequence starts with a beginning-of-sequence symbol
<BOS>, and ends with an end-of-sequence symbol <EOS>. Similar to language modeling, the output
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sequence is equivalent to the input but offset by one, the input sequence lacks the last <EOS> item while
the output sequence lacks the first <BOS> item.

Figure 3. Input format of the sequential decoder.

3.2.2. Embedding Layer

The attribute embedding layer captures the context of an attribute value within the set of all possible
attribute values. The context information captures semantic similarities and relations with other attribute
values. Each label is represented with a one-hot encoded vector. The embedding layer projects the
one-hot encoded vectors into d-dimensional attribute embedding vectors. We use d = 1024-dimensional
embedding vectors.

3.2.3. Decoder Layers

The decoder consists of 8 GRU [35] layers and the output of each decoder layer is fed as input to the
next decoder layer. Attribute embeddings are input to the first decoder layer. Starting from the third layer,
the output of the decoder layers is additionally fed through the residual layers. Both dropout and layer
normalization are applied after each decoder layer. After the first decoder layer, the attentional context
vectors are computed. They are concatenated with the decoder layer outputs and fed through all the
decoder layers, except the first.

In each GRU layer, the next hidden state is computed as:

st = GRUCell(xt, sl
t−1) (2)

where xt is input to that GRU layer, and sl
t−1 is the previous hidden state of the lth GRU layer. We initialize

the initial hidden state vector sl
0 with 0.

At each prediction step, the embedding of the last predicted attribute value yt−1 is fed as input to
the first GRU layer to compute the current hidden state vector s1

t . Then, two attentional context vectors
are calculated using multi-headed attention, cI

t and cT
t , where cI

t is the alignment information between s1
t

and the input image representation I, and cT
t is the alignment information between s1

t and the input text
representation T. The alignment vectors cI

t and cT
t are concatenated with the hidden state vector s1

t and
fed as an input to the next GRU layer. The rest of the GRU layers l = 2 . . . L use the concatenation of the
output hidden state of the previous GRU layer sl−1

t , cI
t , and cT

t as input. The context vectors cI
t and cT

t are
calculated only after the first GRU layer.

3.2.4. Multi-Headed Attention

The multi-headed attention is used to compute attention over the source text representation
T and the source image representation I. The multi-headed attention component has several
attention heads, each of which can focus on different part of the input representation.
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Following Vaswani et al. [36], the context vector of each attention head is computed with the scaled
dot-product attention:

head = Attention(q, K, V) = softmax
(

qK′√
dK

)
V, (3)

where q is the query vector, K is a set of key vectors and V denotes the values corresponding to the keys. K′

denotes the transpose of the keys matrix and dK is dimensionality of the key vectors. In our setting, q is the
hidden state vector output by the first GRU layer s1

t , K and V are both either image representation matrix
I in the visual multi-headed attention layer or textual representation matrix T in the textual multi-headed
attention layer.

The final context vector of the multi-headed attention is formed by concatenating the outputs of the
different attention heads and applying a linear projection with weights WO and bias bO on top of it:

MultiHead(q, K, V) = concat(head1, ..., headh)(WO)′ + bO (4)

To enable the multi-head attention to focus on different parts of the input, for each head, the query,
keys and values are projected into a d′-dimensional subspace, where d′ = d/h with d being the original
dimensionality of q, K and V, and h is the number of heads. Thus, each attention head is computed as:

headi = Attention(q(Wq
i )
′ + bq

i , K(WK
i )
′ + bK

i , V(WV
i )′ + bV

i ), i = 1 . . . h, (5)

where Wq
i , WK

i and WV
i are the projection matrices, and bq

i , bK
i and bV

i are the bias vectors for the query,
keys and values, respectively, for each head i = 1 . . . h, and W ′ denotes the transpose of the matrix W.

The visual multi-headed attention context vector cI , and the textual multi-headed attention context
vector cT are concatenated to the inputs for all subsequent GRU layers. All weight matrices and bias
vectors of the multi-headed attention are trainable parameters and are learned together with the rest of the
model parameters.

3.2.5. Attribute Value Prediction

The output of the last decoder layer sL
t is fed through projection and softmax layers to compute the

probability distribution over all possible attribute values. Then, the value with the highest probability is
picked as the next predicted attribute value yt. The following equations summarize these operations:

pt = softmax(sL
t (W

P)′)

yt = argmax(pt)
(6)

where WP is the weight matrix of the projection layer.

4. Data and Experimental Setup

In this section, we first describe the three datasets—Rakuten, Kaggle, and Amazon—used for the
experiments. Then we will describe the baseline models and detail the experimental setup that was used
to train the classification models.
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4.1. Data

All three datasets are multimodal, including both image and textual data and are labeled with
attribute values. For each dataset, we fetch 5000 samples for validation and test sets at random and use the
rest for training. The statistics of the datasets are presented in Table 1.

Table 1. Statistics of the experimental datasets.

Train Dev Test

Rakuten 206,104 5000 5000
Kaggle 34,446 5000 5000
Amazon 1,492,475 5000 5000

4.1.1. Rakuten Dataset

The Rakuten data used in this paper is a confidential dataset prepared by Rakuten Fits.Me
(https://fits.me/) annotators. In this dataset, each garment item is manually annotated with 7 hierarchical
attributes for detailed classification. Each sample in the Rakuten dataset (Figure 4a) comprises the image
and the title of the garment paired with a chain of attribute values. Each value in the category chain is an
attribute which belongs to one attribute class or category, and is in a hierarchical relationship with previous
and next attributes in the chain. The attribute chain involves the values for the following categories:

(1) GENDER: Male, Female;
(2) CATEGORY: Upper, Trousers, Coverall;
(3) TYPE: Outerwear, Topwear, Skirts, Trousers, Dresses, Jumpsuits;
(4) SUB-TYPE: Knitwear, Vest, Cardigan, Coat, Top, Suit, Underwear, 1st layer, Jacket, Twinset, Trousers,

Dress, Skirt, Playsuit, Sportswear, Jumpsuit;
(5) CUT: 78 different values such as for instance Blouse, Sweatpants, Shirt, Anorak, Rugby, etc.;
(6) FIT: Extra Slim, Slim, Regular, Relaxed, Oversized, Extra Oversized, Over-oversized;
(7) STRETCH-FACTOR: Large, Normal, Stretchy, Very Stretchy.

(a) Rakuten (b) Kaggle (c) Amazon

Figure 4. The examples of fashion product items for each of the three datasets.

https://fits.me/
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4.1.2. Kaggle Dataset

This dataset was obtained from the Kaggle platform (https://www.kaggle.com/paramaggarwal/
fashion-product-images-dataset). In the dataset, each item sample involves images, 8 different category
values, and the product title (Figure 4b). The attribute categories are:

(1) GENDER: Men, Women, Unisex, Boys, Girls;
(2) MASTER CATEGORY: Apparel, Accessories, Footwear, Personal Care, Free Items, Sporting

Goods, Home;
(3) SUB-CATEGORY: 45 different values such as for instance Topwear, Shoes, Bags, Bottomwear, Watches,

Innerwear, Eyewear, Jewelry, Fragrance, Sandals, etc.;
(4) ARTICLE TYPE: 141 different values such as for instance T-shirts, Shirts, Casual Shoes, Watches,

Sports Shoes, Kurtas, Tops, Handbags, Heels, Sunglasses, Wallets, Flip Flops, etc.;
(5) BASE COLOR: 46 different colors or None;
(6) SEASON: Winter, Spring, Summer, Fall, or None;
(7) YEAR: years from 2008 to 2019, or None;
(8) USAGE: Casual, Smart Casual, Sports, Ethnic, Formal, Party, Travel, Home, and None.

Amazon Dataset

We obtained this data from public datasets of amazon web services (https://registry.opendata.aws/).
This dataset has been used for several natural language processing and information retrieval tasks [37,38].
It comprises Amazon product metadata including product image URL, title, textual description, category
information, price, brand, image, and recommendation links (also viewed / also bought info). It contains
24 main categories, such as BOOKS, CLOTHING, SHOES AND JEWELRY, SPORTS AND OUTDOORS etc.
We only use for our experiments the items belonging to the CLOTHING, SHOES AND JEWELRY category,
since it this category shares the same domain with the Rakuten and Kaggle datasets. As the textual
description is available only for a small part of the whole dataset, we use only product titles as textual
input. The attribute chain to be predicted is a list of sub-page names, where each sub-page indicates
a sub-category where the item belongs to. For instance, consider the following two example attribute
value chains:

(a) Clothing, Shoes & Jewelry → Shoes & Accessories: International Shipping Available
(b) Clothing, Shoes & Jewelry → Women → Shoes → Sandals

In the example (a) the first part Clothing, Shoes & Jewelry is the main page indicating the main category
while Shoes & Accessories: International Shipping Available is the sub-page indicating sub-category. In
the second example (b), there are three sub-categories Women, Shoes, and Sandals, following each other
hierarchically. Since the structure of the category chain is dynamic, unlike in Rakuten and Kaggle datasets,
and since the attribute category structure is not specified in the dataset description, we do not know which
sub-attributes belong to which category class. For training our models, we use images downloaded from
provided URLs, titles and category chains (see Figure 4c for an example).

4.2. Data Preprocessing

The titles of the Kaggle and Amazon datasets are in English, whereas the titles in the Rakuten dataset
are in Japanese but may also contain words in Latin characters. To handle this mixture of languages,
we process the titles of all datasets with the sentence-piece tokenizer [39]. In the sequential model, we
feed the predicted attributes to the model in the textual format as well but here we do not apply the
sentence-piecing but treat each attribute value as a single token.

https://www.kaggle.com/paramaggarwal/fashion-product-images-dataset
https://www.kaggle.com/paramaggarwal/fashion-product-images-dataset
https://registry.opendata.aws/
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The images are preprocessed to convert them to the format compatible with the Resnet image
encoder. The images are cropped between 0.08 and 1 of the original size at random, and a random aspect
ratio between 0.75 and 1.33 of the original aspect ratio is kept. Finally, the crop is resized to 224× 224
dimensions. The resized image is normalized over 3 channels. For data augmentation, the normalized
image is flipped at random with 0.5 probability. The image preprocessing procedures are integrated into
the training pipeline.

While preprocessing the Kaggle and Rakuten datasets is straightforward, there is an additional
preprocessing step necessary for the Amazon dataset. Each sample in the Amazon dataset involves one
image, one title, and might involve more than one category chains. For example, the item with the title
“14K Yellow Gold Cameo Stud Earrings Polished Jewelry” there are two different category chains:

(a) Clothing, Shoes & Jewelry → Women → Jewelry → Fine → Earrings → Stud
(b) Clothing, Shoes & Jewelry → Novelty, Costumes & More Novelty

Thus, we extend our training and validation sets by creating separate data items for each chain. For
instance, we create two samples from the above item with both samples sharing the same image and title,
but each of them with a different category chain as label.

4.3. Baseline Models

As baselines, we adopt several models that perform product attribute prediction using either
multiclass or multilabel formulation. All baseline models incorporate image and text as input, encoded
as described in Section 3.1. The outputs of both encoders are average-pooled to obtain fixed-length final
feature vectors for both image and text and then concatenated to form the input to the model.

4.3.1. MultiClass Baseline

The first baseline is the standard multiclass classification model that predicts the whole attribute
chain as a single label. The finite set of possible attribute chains is constructed during training from the
training set and while making new predictions, the model is constrained to choose the attribute chains
only from this fixed finite set.

The problem with the multiclass setting in our case is that the label set of attribute chains is not
finite. Although not all attribute combinations make sense, there is no guarantee that all valid and sensible
attribute chains are present in the training set.

4.3.2. MultiLabel Baselines

Multilabel prediction solves the problem of fixed label set related to the multiclass formulation. We
experiment with several different multilabel baselines with increasing complexity.

Binary MultiLabel Model

The first multilabel baseline is the binary multilabel classifier that predicts the presence or absence of
each attribute value independently. The problem with this formulations is that although each category
(e.g., CATEGORY) can have only one value (e.g., Upper, Trousers, or Coverall), the Binary MultiLabel
model can predict multiple values for a single attribute category, as it makes the decision for the
presence or absence of each attribute value and does not take into account the values predicted for
other attribute values.
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For each attribute class, we create a binary vector with the size of the number of labels in the class.
In this vector, the index of the annotated label is 1, and the rest is 0. We concatenate all attribute-specific
vectors and use a label vector for training. In this way, during training, we learn the binary probability
of each attribute value for each sample. During the inference, we de-concatenate the vector of binary
probabilities of attributes back into attribute-specific vectors and choose for each attribute class the value
with the highest probability.

MultiTask Model

The second multilabel model resembles multitask prediction models used in previous work,
i.e., the prediction of each attribute category is treated as a separate task solved with a multiclass classifier.
The difference between the Binary MultiLabel and MultiTask models is that while the former makes binary
predictions for each attribute value, the latter makes multiclass predictions over attribute categories thus
ensuring that each category will be predicted only a single value.

Attentive MultiTask Model

The Attentive MultiTask model [40] extends the regular MultiTask model with a set of label-specific
attention module, one for each attribute category. Each of those modules computes an attentional context
vector between the input text and image, and its respective attribute category, scanning the input for words
or image segments relevant for predicting the value for that attribute category. As attention function the
same multi-head attention described in Section 3.2.4 is used:

cIT = MultiHead(ai, concat(I, T), concat(I, T)) (7)

where the query ai ∈ R1024 is the category-specific representation vector that is obtained by applying a
category-specific linear transformation layer to the input representation vector. Both the keys K and values
V are concat(I, T), which is the concatenation of the image and text representation matrices. The attention
uses h = 8 heads. The context vectors obtained from all heads are concatenated with the representation
vector ai, and then fed through the linear output layer of the category classifier.

Self-Attentive MultiTask Model

Finally, the Self-Attentive MultiTask model extends the Attentive MultiTask model by also computing
self-attention between attribute categories. The attention function is again the multi-head attention:

cAIT = MultiHead(ai, concat(A, I, T), concat(A, I, T)), (8)

where ai is again the category-specific representation vector. However, here the keys and values are
extended with the matrix A that consists of the representation vectors ai for all categories i = 1 . . . n.

4.4. Training

We trained our models on P100 GPUs. Our minibatch size is 32, and each training step took about
1 s. On Rakuten and Kaggle datasets, we applied early stopping by monitoring the validation accuracy.
The training was stopped when the validation accuracy did not improve within three epochs. It took about
30 min to train an epoch on these datasets. The Amazon dataset is much larger compared to the other two
and it took around 22 h to train an epoch. Therefore, we did not use early stopping there and trained each
model for 7 epochs, choosing the model obtained after the last 7th epoch.

We use categorical cross-entropy as loss function that minimizes the negative log-likelihood of the
attribute chains. We employ the same optimizer, learning rate scheduler, and the same regularization
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methods as used by Vaswani et al. [36]. The optimizer is Adam [41], with β1 = 0.9, β2 = 0.98 and ε = 10−9.
Learning rate scheduler is performed according to the following formula:

lrate = d−0.5 ×min(step−0.5, step×warmup_steps−1.5)

where d is the embedding size, step is the current iteration number, and warmup_steps = 4000. Attribute
embedding size and encoder and decoder hidden layer sizes are 1024. We use eight heads for the
multi-head attention for both image and text.

While we update all the layers for text encoder in all models and decoders in sequential models, we
update only the last dense layer in Resnet-50 architecture, which is pretrained by ImageNet.

5. Results and Discussion

Table 2 presents the full-chain accuracy for all models on each dataset on both validation and test
set. An attribute chain is counted as correct if all attribute values in the chain are predicted correctly. On
Rakuten and Kaggle dataset, the sequential model performs the best as predicted, although on the Rakuten
dataset, the difference with the MultiClass model is not large. Within multilabel models, the Binary
MultiLabel model performance is the worst on the Rakuten Dataset and the basic MultiTask model is
the worst on the Kaggle dataset. On both datasets, the multilabel models using attention are the best.
However, we can see that the MultiTask model does not benefit from self-attention, as the Self-Attentive
MultiTask model performs worse than the Attentive MultiTask model on both datasets.

Table 2. Full-chain accuracy of all models on all datasets.

Rakuten Kaggle Amazon

Dev Test Dev Test Dev Test

MultiClass 26.82 25.98 52.08 51.54 82.82 82.98

Binary MultiLabel 19.98 20.84 55.00 54.70 - -
MultiTask 22.34 22.66 53.58 52.40 - -
Attentive MultiTask 26.28 26.36 56.10 54.70 - -
Self-Attentive MultiTask 25.06 25.14 55.42 54.60 - -

Sequence 27.34 27.62 68.86 67.70 80.36 80.32

On the Amazon dataset, we could not train the multilabel models as we do not know the category
structure. Also, on the Amazon dataset, the MultiClass model performs better on both validation and test
sets than the sequential model. There are about 4K unique attribute chains in the Amazon dataset. Because
the Amazon training set is very large containing around 4M items, it might be easier for the model to learn
to classify items into 4K classes, rather than learn to generate the exact combinations of attributes. Overall,
the differences between the validation and test set results are very small, suggesting that all our models
generalize well.

Tables 3 and 4 show the prediction accuracies on the attribute level for the Rakuten and Kaggle test
sets, respectively. We could not perform the same analysis for the Amazon dataset as we do not know the
category structure of that dataset.
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Table 3. Attribute level accuracies on the Rakuten test set for all models. Binary ML stands for Binary
MultiLabel model, Attn. MT stands for Attentive MultiTask model, Self-Attn. MT denotes the Self-Attentive
MultiTask model.

Attribute # Values MultiClass Binary ML MultiTask Attn. MT Self-Attn. MT Sequence

GENDER 2 94.40 94.08 94.46 96.86 96.70 96.26
CATEGORY 3 98.58 98.76 98.90 99.20 98.66 98.24
TYPE 6 94.20 94.52 94.30 94.96 94.92 93.74
SUB-TYPE 16 87.68 88.20 87.62 89.36 89.42 88.02
CUT 78 60.62 57.90 58.10 62.06 61.94 62.58
FIT 7 49.72 48.06 49.90 51.94 51.80 52.50
STRETCH-FACTOR 4 79.38 78.60 77.20 79.64 80.12 78.80

AVERAGE - 80.65 80.02 80.07 82.00 81.94 81.45

Table 4. Attribute level accuracies on the Kaggle test set for all models. Binary ML stands for Binary
MultiLabel model, Attn. MT stands for Attentive MultiTask model, Self-Attn. MT denotes the Self-Attentive
MultiTask model.

Attribute # Values MultiClass Binary ML MultiTask Attn. MT Self-Attn. MT Sequence

GENDER 5 96.56 99.12 99.12 98.94 99.26 99.18
MASTER CATEGORY 7 95.96 97.84 97.24 98.76 98.36 99.48
SUB-CATEGORY 45 91.64 94.60 94.00 96.10 96.30 98.70
ARTICLE TYPE 141 84.62 88.72 87.80 91.26 90.96 96.50
BASE COLOR 47 79.10 83.76 82.76 85.86 85.02 90.80
SEASON 5 79.92 82.44 81.00 81.42 80.84 85.06
YEAR 14 81.32 83.60 83.18 83.54 84.22 86.64
USAGE 10 92.10 93.18 92.50 92.90 92.82 94.06

AVERAGE - 87.65 90.41 89.70 91.10 90.97 93.80

On the Rakuten dataset (in Table 3), the Attentional MultiTask model has the highest accuracy on
three attributes out of seven, while both the Self-Attentional and the Sequential model achieve the highest
accuracy on two attribute categories. Although based on average accuracy, the Attentional MultiTask
model has the best performance, the difference with Self-Attentional MultiTask model and the Sequential
Model is not large. We also note that the Sequential model obtains the highest accuracy on the attribute
categories (CUT and FIT) that in general have the lowest accuracy, suggesting that these are the attributes
that are hardest to predict.

On the Kaggle dataset, the Sequential model performs the best on seven attribute categories, and it
also achieves competitive accuracy on the remaining GENDER attribute. One can observe the largest
differences between the Sequential and the other models on those attributes that have more values and that
are thus more difficult to predict. For example, the BASE COLOR attribute category has 47 different color
attribute values. Many color attribute values are very similar to each other, like for instance Blue and Navy
Blue, or Pink, Rose and Red, or Grey and Grey Melange. If the text specifically does not mention the name of
the color, it is non-trivial to extract the exact tone and intensity of the main color from product images
which might involve several color combinations. The MultiClass model achieves the lowest accuracy on
average on the Kaggle dataset. While all multilabel models achieve the average accuracy in similar range,
the Attentive MultiTask is again the best.

When looking at the average attribute accuracy of the four different multilabel models in Tables 3 and 4,
we see that the Attentive MultiTask model performs the best. This is the same pattern as observed in
Table 2 for the full-chain accuracy. Therefore, we choose the Attentive MultiTask model as the best baseline
multilabel model and omit the other multilabel models in the following analyses.
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5.1. Predicting Unseen Attribute Chains

While technically the MultiClass model cannot predict the chains that it has not seen during training,
other models can. In the Rakuten test set, there were only three items with novel attribute chains in the
test set and these were predicted incorrectly by all models. In the Amazon test set, there were no items
with unseen attribute chains. However, in the Kaggle test set, there were 453 items with novel attribute
chains. We present results that show the accuracy of the Kaggle test set for both known and new attribute
chains in Table 5. The total column is copied from Table 2.

The accuracy of the MultiClass model on the unseen chains is 0.00 as expected. The Attentive
MultiTask model can correctly generate novel attribute chains, but the Sequential model does it better.
The overall higher performance of the Sequential model stems from higher accuracy on both seen and
unseen attribute chains.

Table 5. The accuracy of the different models on the Kaggle test set comparing the performance of seen and
unseen attribute chains.

Model Seen Unseen Total

MultiClass 56.67 0.00 51.54
Attentive MultiTask 58.04 21.19 54.70
Sequential 71.04 34.22 67.70

5.2. Contributions of Image and Text

Next, we will look at how image and text contribute to the attribute prediction accuracy. For that
purpose, we train all models with only image or only text as input. The results of these ablation experiments
are shown in Table 6.

Table 6. Full-chain attribute accuracy on the test sets of all datasets comparing only text, image-only and
multimodal models.

Rakuten Kaggle Amazon

Text Image Both Text Image Both Text Image Both

MultiClass 23.62 13.72 25.98 61.24 20.62 51.54 83.10 45.08 82.98
Attentive MultiTask 21.94 19.04 26.36 63.00 29.97 54.70 - - -
Sequential 23.24 19.52 27.62 67.48 35.20 67.70 80.02 47.20 80.32

The general trend visible from Table 6 is that the models using only images perform much worse than
the models using either text or both text and image. For the Rakuten data, all models with multimodal
input perform better than the models using only text. On the Amazon dataset, the multimodal and text
models perform on the same level. However, on the Kaggle dataset, except for the Sequential model, all
multimodal models perform significantly worse compared to the text-only models. With the Sequential
model, both text-only and multimodal model settings perform on the same level on the Kaggle dataset
with the multimodal model being slightly better.

To shed more light on these observations on the Kaggle dataset, we present in Table 7 the attribute
accuracies of all models using text and multimodal inputs. The numbers in Diff columns show the
difference between the performance of the respective multimodal and the text-only models. Inspecting
these differences reveals that the largest gaps between the text-only and multimodal models are due to three
attribute categories: SUB-CATEGORY, ARTICLE TYPE and BASE COLOR. These were the categories with the
largest number of attribute values and thus are the most challenging for the models to predict correctly.
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However, in the case of the Sequential model, the differences between the text-only and multimodal model
are the smallest for all attribute categories.

One possible reason for such differences between the MultiClass and the Attentive MultiTask models
compared to the Sequential model might be due to the different handling input representations by these
models. While all baseline models fuse the text and image representations via simple concatenation,
the Sequential model uses image and text representations through attention. It is possible that integrating
more complex fusion mechanisms into the non-sequential models would help to diminish the gap between
the text-only and multimodal settings for these models as well on the Kaggle dataset.

Overall, in two datasets out of three, the multimodal models perform as good or better than text-only
or image-only models and the Sequential model either performs better or at least does not degrade
the performance.

Table 7. Attribute accuracies on the Kaggle dataset for all models using both text and multimodal inputs.
The Diff column shows the difference between the multimodal and text-only model.

MultiClass Attentive MultiTask Sequential

Text Multi- Diff Text Multi- Diff Text Multi- DiffModal Modal Modal

GENDER 98.22 96.56 −1.66 99.44 98.94 −0.5 99.50 99.18 −0.32
MASTER CATEGORY 98.14 95.96 −2.18 99.66 98.76 −0.9 99.46 99.48 +0.02
SUB-CATEGORY 96.94 91.64 −5.30 98.78 96.10 −2.68 98.78 98.70 −0.08
ARTICLE TYPE 94.38 84.62 −9.76 96.64 91.26 −5.38 97.14 96.50 −0.64
BASE COLOR 87.10 79.10 −8.00 88.92 85.86 −3.06 90.40 90.80 +0.40
SEASON 81.58 79.92 −1.66 84.06 81.42 −2.64 84.98 85.06 +0.08
YEAR 83.10 81.32 −1.78 85.92 83.54 −2.38 86.58 86.64 +0.06
USAGE 93.18 92.10 −1.08 94.46 92.90 −1.56 95.00 94.96 −0.04

AVERAGE 91.58 87.65 −3.93 93.48 91.10 −2.38 93.98 93.91 −0.07

5.3. Qualitative Analysis

Next, we will show some qualitative examples of correctly and incorrectly predicted attribute chains.
Figure 5 shows a Rakuten test item together with the predictions from three different multimodal models.
The original attribute combination of the sample does not exist in the training set. As the Figure shows,
none of the models made a correct prediction. However, when inspecting the image and the predicted
chains, the predictions of the MultiClass and Sequential models make sense. In the annotation, the TYPE

attribute is labeled as Trousers. The MultiClass and Sequential models predicted it as Jumpsuits. According
to the image, it can be easily considered a jumpsuit instead of trousers. By looking at the text, no strong
indication about the Trousers attribute can be found. The predictions of the Attentive MultiTask model,
on the other hand, are inconsistent as hierarchically, the value Jumpsuit of the category SUB-TYPE cannot
follow the value Trousers of the category TYPE.

Figure 6 shows an example from the Rakuten test set, where the title does not give any reliable
information, and the image consists of more than one garment. Although the title contains information
that might refer to any top or bottom dress, the image features the bottom garment more than the top.
Figure 6 shows the prediction generated by the Sequential model. The generated attribute chain is
sequentially consistent and the attributes make sense with respect to the image representation.
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Figure 5. A sample item from the Rakuten test set with predicted attribute chains. Correctly predicted
attributes are in green, the wrongly predicted attributes are in red.

Figure 6. A sample item from the Rakuten test set, where the original attribute chain is annotated for
top dress, but the model focuses on bottom dress attributes. Correctly predicted attributes are in green,
the wrongly predicted attributes are in red.

Finally, Figure 7 shows the predictions of all three models for a Kaggle test instance. The prediction
of the Sequential model is fully correct while the Attentive MultiTask model makes errors in predicting
the chain. Although the chain predicted by the MultiClass model is incorrect, it is nevertheless consistent.
However, the prediction of the Attentive MultiTask model is inconsistent—the Handbags attribute cannot
appear under the hierarchy of Watches.
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Figure 7. A sample item from the Kaggle test set with predicted attribute chains. Correctly predicted
attributes are in green, the wrongly predicted attributes are in red.

6. Conclusions and Future work

In this work, we have proposed to use sequential modeling for multimodal fashion product attribute
prediction. We demonstrated that the sequential model based on the RNMT+ decoder outperforms all
the other baselines on three experimental datasets. Moreover, we showed that although both multilabel
and sequential models can generate novel attribute chains, the sequential model does it more accurately.
Finally, we also compared multimodal models to text-only and image-only models. While text-only models
always outperform image-only models, only the sequential multimodal model demonstrated as good or
better performance than the text-only model on all datasets.

We have used RNN and CNN architectures to encode the text and images. Additionally, we have
used attention layers for the model to learn relations between the predicted attribute values and the
specific areas of text and image. However, these attention layers lack the self-relation information between
different parts of the image and text, and between the predicted attribute values themselves. We believe
that this information of self-relation can help to better predict the attribute values for noisy samples,
where the self-relations can encode information important for inference. Self-attention has been successful
for encoding such information in images [42] and text [43]. Although according to our experimental
results, the Self-Attentive MultiTask model did not perform as well as the Attentive MultiTask model,
we believe that Self-Attentive model can be better formulated. Moreover, we only experimented with
the self-attention in the multilabel setting, but it can be beneficial in the sequential model as well. Based
on this motivation, in the future, we are planning to use self-attention for a similar performing model
architecture for the same task.
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