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Abstract: Word segmentation is an essential task in automatic language processing for languages
where there are no explicit word boundary markers, or where space-delimited orthographic words
are too coarse-grained. In this paper we introduce the MiNgMatch Segmenter—a fast word
segmentation algorithm, which reduces the problem of identifying word boundaries to finding
the shortest sequence of lexical n-grams matching the input text. In order to validate our method
in a low-resource scenario involving extremely sparse data, we tested it with a small corpus of
text in the critically endangered language of the Ainu people living in northern parts of Japan.
Furthermore, we performed a series of experiments comparing our algorithm with systems utilizing
state-of-the-art lexical n-gram-based language modelling techniques (namely, Stupid Backoff model
and a model with modified Kneser-Ney smoothing), as well as a neural model performing word
segmentation as character sequence labelling. The experimental results we obtained demonstrate
the high performance of our algorithm, comparable with the other best-performing models. Given
its low computational cost and competitive results, we believe that the proposed approach could be
extended to other languages, and possibly also to other Natural Language Processing tasks, such as
speech recognition.

Keywords: word segmentation; tokenization; language modelling; n-gram models; Ainu language;
endangered languages; under-resourced languages

1. Introduction

One way to handle ambiguity—a major challenge in any Natural Language Processing task—is to
consider the target text in context. A typical approach is to use an n-gram model, where the probability
of a word depends on the n− 1 previous words. In this paper we argue that in the context of word
segmentation, the problem can be reduced to finding the shortest sequence of n-grams matching
the input text, with little or no drop in performance compared to state-of-the-art methodologies.
In order to verify the usability of our approach in a scenario involving extremely sparse data, where its
performance is expected to suffer the most, we tested it with a small corpus of text in Ainu, a critically
endangered language isolate native to the island of Hokkaido in northern Japan.

Word segmentation is a part of the process of tokenization, a preprocessing stage present in a
wide range of higher level Natural Language Processing tasks (such as part-of-speech tagging, entity
recognition and machine translation), where the text is divided into basic meaningful units (referred
to as tokens), such as words and punctuation marks. In the case of writing systems using explicit
word delimiters (e.g., whitespaces), tokenization is considered a trivial task. However, sometimes
the information about word boundaries is not encoded in the surface form (as in Chinese script), or
orthographic words are too coarse-grained and need to be further analyzed — which is the case for

Information 2019, 10, 317; doi:10.3390/info10100317 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-7435-4061
https://orcid.org/0000-0002-1910-9183
https://orcid.org/0000-0001-9979-8734
http://dx.doi.org/10.3390/info10100317
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/10/317?type=check_update&version=3


Information 2019, 10, 317 2 of 19

many texts written in Ainu. In order to effectively process such texts, one needs to identify the implicit
word boundaries.

The main contributions of this work are:

(i) fast n-gram model yielding results comparable to state-of-the-art systems in the task of word
segmentation of the Ainu language;

(ii) open source implementation (https://github.com/karol-nowakowski/MiNgMatchSegmenter);
(iii) comparison of 4 different segmenters, including lexical n-gram models and a neural model

performing word segmentation in the form of character sequence labelling.

The remainder of this paper is organized as follows. In Section 2 we describe the problem of word
segmentation in the Ainu language. In Section 3 we review the related work. Section 4 explains the
proposed approach to word segmentation. In Section 5 we introduce the Ainu language resources
used in this research. This section also provides a description of word segmentation models applied
in our experiments, as well as evaluation metrics. In Section 6 we analyze the experimental results.
Finally, Section 7 contains conclusions and ideas for future improvements.

2. Word Segmentation in the Ainu Language

Ainu is an agglutinative language exhibiting some of the characteristics associated with
polysynthesis, such as pronominal marking and noun incorporation (especially in the language
of classical Ainu literature [1] (p. 5)). The following example demonstrates noun incorporation in Ainu:

kotan apapa ta a=eponciseanu [2] (p. 111)
kotan apa-pa ta a-e-pon-cise-anu
village entrance-mouth at we/people-for[someone]-small-house-lay

“We built a small hut for [her] at the entrance to the village.”

Ainu verbs and nouns combine with a variety of affixes—marking reciprocity, causativity, plurality
and other categories—as well as function words: adnouns, verb auxiliaries and various types of
postpositions, among others (in her analysis of the Shizunai dialect of Ainu, Kirsten Refsing [3] refers
to both groups of grammatical morphemes with a common term: “clitics”).

Most written documents in the Ainu language are transcribed using Latin alphabet, Japanese
katakana script, or a combination of both (all textual data used in this research is written in Latin
script). After two centuries of constant evolution—with multiple alternative notation methods being
simultaneously in use—Ainu orthography has been, to a certain degree, standardized. One of the
milestones in that process was a textbook compiled by the Hokkaido Utari Association (now Hokkaido
Ainu Association) in cooperation with Ainu language scholars, published in 1994 under the title
Akor itak (“our language”) [4]. It was intended for the use in Ainu language classes held throughout
Hokkaido and included a set of orthographic rules for both Latin alphabet and katakana-based
transcription. They are widely followed to this day, for example by Hiroshi Nakagawa [5], Suzuko
Tamura [2] and the authors of the Topical Dictionary of Conversational Ainu [6]. For detailed analyses
of notation methods employed by different authors and how they changed with time, please refer to
Kirikae [7], Nakagawa [8] and Endō [9].

Concerning word segmentation, however, no standard guidelines have been established to
date [10] (p. 198), [11] (p. 5), and polysynthetic verb morphology only adds to the confusion [5] (p. 5).
Contemporary Ainu language experts—while taking different approaches to handling certain forms,
such as compound nouns and lexicalized expressions—generally treat morphemes entering in syntactic
relations with other words as distinct units, even if they are cliticized to a host word in the phonological
realization. In dictionaries, study materials and written transcripts of Ainu oral tradition that
were published in the last few decades [2,12,13], it is a popular practice to use katakana to reflect
pronunciation, while parallel text in Latin characters represents the underlying forms. The problem
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is most noticeable in older documents and texts written by native speakers without a background in
linguistics, who tended to divide text into phonological words or larger prosodic units (sometimes
whole verses)—see Sunasawa [10] (p. 196). As a consequence, orthographic words in their notation
comprise, on average, more morphemes. This, in turn, leads to an increase in the proportion of
items not to be found in the existing dictionaries, which makes the content of such texts difficult to
comprehend by less experienced learners. Furthermore, in the context of Natural Language Processing
it renders the already limited data even more sparse. In order to facilitate the analysis and processing
of such documents, a mechanism for word boundary detection is necessary.

3. Related Work

Existing approaches to the problem of tokenization and word segmentation can be largely divided
into rule-based and data-driven methods. Data-driven systems may be further subdivided into
lexicon-based systems and those employing statistical language models or machine learning.

In space-delimited languages, rule-based tokenizers—such as the Stanford Tokenizer (https:
//nlp.stanford.edu/software/tokenizer.html; accessed on 26 September 2019) [14]—are sufficient
for most applications. On the other hand, in languages where word boundaries are not explicitly
marked in text (such as Chinese and Japanese), word segmentation is a challenging task, receiving
a great deal of attention from the research community. For such languages, a variety of data-driven
word segmentation systems have been proposed. Among dictionary-based algorithms, one of the
most popular approaches is the longest match method (also referred to as the maximum matching
algorithm or MaxMatch) [15] and its variations [16,17]. In more recent work, however, statistical
and machine learning methods prevail [18–22]. Furthermore, as in many other Natural Language
Processing tasks, the past few years have witnessed an increasing interest towards artificial neural
networks among the researchers studying word segmentation, especially for Chinese. A substantial
part of the advancements in this area stem from using large external resources, such as raw text
corpora, for pretraining neural models [23–27]. Unfortunately, such large-scale data is not available
for many lesser-studied languages, including Ainu. For Japanese and Chinese, word segmentation is
sometimes modelled jointly with part-of-speech tagging, as the output of the latter task can provide
useful information to the segmenter [21,28–30].

Outside of the East Asian context, word segmentation-related research is focused mainly on
languages with complex morphology and/or extensive compounding—such as Finnish, Turkish,
German, Arabic and Hebrew—where splitting coarse-grained surface forms into smaller units leads
to a significant reduction in the vocabulary size and thus lower proportion of out-of-vocabulary
words [31–35]. Apart from that, even in languages normally using explicit word delimiters, there exist
special types of text specific to the web domain, such as Uniform Resource Locators (URL) and hashtags,
whose analysis requires the application of a word segmentation procedure [35,36].

In 2016 Grant Jenks released WordSegment—a Python module for word segmentation, utilizing a
Stupid Backoff model (http://www.grantjenks.com/docs/wordsegment/; accessed on 26 September
2019). Due to relatively low computational cost, Stupid Backoff [37] is good for working with
extremely large models, such as the Google’s trillion-word corpus (https://ai.googleblog.com/2006/
08/all-our-n-gram-are-belong-to-you.html; accessed on 26 September 2019) used as WordSegment’s
default training data. In terms of the model’s accuracy, however, other language modelling
methods—in particular the approach proposed by Kneser and Ney [38] and enhanced by Chen
and Goodman [39]—proved to perform better, especially with smaller amounts of data [37]. For that
reason, in this research, apart from comparing our word segmentation algorithm to WordSegment, we
carried out additional experiments with a segmentation algorithm based on an n-gram model with
modified Kneser-Ney smoothing. In the context of word segmentation, Kneser-Ney smoothing has
previously been used by Doval and Gómez-Rodríguez [35].

Apart from models concerned directly with words, a widely practised approach to word
segmentation is to define it as a character sequence labelling task, where each character is assigned with

https://nlp.stanford.edu/software/tokenizer.html
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a tag representing its position in relation to word boundaries. While the early works belonging to this
category relied on “traditional” classification techniques, such as maximum entropy models [40]
and Conditional Random Fields [41], in recent studies neural architectures are being actively
explored [23,27,28,30,42]. In 2018, Shao et al. [43] released a language-independent character sequence
tagging model based on recurrent neural networks with Conditional Random Fields interface,
designed for performing word segmentation in the Universal Dependencies framework. It obtained
state-of-the-art accuracies on a wide range of languages. One of the key components of their
methodology (originally proposed in [30]) are the concatenated n-gram character representations,
which offer a significant performance boost in comparison to conventional character embeddings,
without resorting to external data sources. We used their implementation in the experiments described
later in this paper, in order to verify how a character-based neural model performs under extremely
low-resource conditions, such as those of the Ainu language, and how it compares with segmenters
utilizing lexical n-grams, including ours.

To address the problem of word segmentation in the Ainu language, Ptaszynski and
Momouchi [44] proposed a segmenter based on the longest match method. Later, Ptaszynski et al. [45]
investigated the possibility of improving its performance by expanding the dictionary base used in
the process. Nowakowski et al. [46] developed a lexicon-based segmentation algorithm maximizing
mean token length. Finally, Nowakowski et al. [47] proposed a segmenter searching for the minimal
sequence of n-grams matching the input string, an early and less efficient version of the MiNgMatch
algorithm presented in this paper.

4. Description of the Proposed Approach

In the proposed method, we reduce the problem of word segmentation to that of finding the
shortest sequence of lexical n-grams matching the input string. For each space-delimited segment in
the input text, our algorithm finds a single n-gram or the shortest sequence of n-grams, such that after
concatenation and removing all whitespaces is equal to that input segment. In cases where multiple
segmentation paths with the same number of n-grams are possible, the sequence with the highest
score is selected. Scoring function, given a candidate sequence S, can be defined as below:

Score(S) = ∏
s∈S

Count(s)
N

(1)

where Count(·) denotes the frequency of a particular n-gram in the training corpus and N is the total
number of n-grams in that corpus not exceeding the maximum n-gram order specified for the model.

If the model is unable to match any n-gram to the given string or its part, it is treated as an
out-of-vocabulary item and returned without modification. Furthermore, the user may specify the
maximum number of n-grams to be used in the segmentation of a single input segment. Strings for
which the algorithm could not match a sequence of n-grams equal to or shorter than the limit, are
retained without modification. The only exception to that rule are punctuation marks—they are
separated from alpha-numeric strings in a post-processing step.

4.1. N-gram Data

Listing 1 shows a sample from the data used by our model. The first column contains unsegmented
strings used by the matching algorithm, each of them corresponding to a lexical n-gram. In the
rightmost column, we store precomputed scores, represented as logarithms.

Once the best sequence of n-grams has been selected, the indices of word boundaries for each
n-gram (stored in the second column) are used to produce the final segmentation. For cases where
multiple n-gram patterns recorded in the training corpus resulted in the same string after removing
whitespaces from between the tokens, we only included the most frequent segmentation in the
model. For instance, the 3-gram aynu mosir ka (“the land of Ainu also”)—which appeared in the data



Information 2019, 10, 317 5 of 19

6 times—was pruned, as the bigram variant aynumosir ka was more frequent, with 63 occurrences.
An alternative segmentation can still be returned by the segmenter if it is more frequent in a longer
context. For example, although the preferred segmentation of the string ciki is ciki (“if”; 594 instances),
rather than ci ki (first person pronominal marker ci attached to auxiliary verb ki) with 32 occurrences,
in the case of a longer segment: cikisiri, the only segmentation attested in our data is ci ki siri (ci ki
followed by the nominalizing evidential particle siri), appearing 3 times in the training corpus.

Listing 1: Sample from the n-gram data used by MiNgMatch Segmenter.

N-gram (unsegmented): Indices of word Score:

boundaries:

koranan 5,3 -3.34220648264453
penekusu 4,2 -3.3427874786936
korwa 3 -3.3439518077607
patek -3.34628987252967

4.2. Computational Cost

The maximum number of candidate segmentations to be generated by our algorithm, given a
string composed of n characters, can be calculated as follows:

min{m,l}

∑
k=0

(
n− 1

k

)
(2)

where m stands for the smallest number of n-grams existing in the model needed to create a sequence
matching the input string, and l represents the limit of n-grams per input string (specified by
the user), such that l ≤ n. In practice it means that, apart from rare situations where only a
sequence of single-character unigrams can be matched to the given string, our algorithm has a lower
computational cost than a model which considers all the 2n−1 possible segmentations (obviously, a
word segmentation algorithm evaluating each unique segmentation path would be highly impractical;
a typical approach, also taken by us, is to reduce that number by applying dynamic programming and
memoization techniques).

5. Data and Experiments

5.1. Training Data

Language models applied in this research were trained on Ainu language textual data from eight
different sources:

(A) Ainu Shin’yōshu [48] (SYOStrain)

A collection of 13 mythic epics (kamuy yukar) compiled by Yukie Chiri. In the training of our
models we used a version with modernized transcription, published by Hideo Kirikae [49].
We only included 11 epics in the training set, while the remaining 2 texts were used as test data
(see the next section).

(B) A Talking Dictionary of Ainu: A New Version of Kanazawa’s Ainu Conversational dictionary [50]
(TDOA)

An online dictionary based on the Ainugo kaiwa jiten [51], a dictionary compiled by Shōzaburō
Kanazawa and Kotora Jinbō, and published in 1898. It contains 3,847 entries, each of them
consisting of a single word, multiple related words, a phrase or a sentence. For training we used
the modernized transcription produced by Bugaeva et al. [50]. The last 285 entries (roughly 10%
of the dictionary, character-wise) were excluded from the training data, in order to use them as
test data in evaluation experiments (see the next section).
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(C) Glossed Audio Corpus of Ainu Folklore [52] (GACF)

A digital collection of 10 Ainu folktales with glosses (morphological annotation) and translations
into Japanese and English.

(D) Dictionary of Ainu place names [53] (MOPL)

A dictionary of Ainu place names in the form of a database. It includes a total of 3,152 topological
names, along with the analysis of their components and Japanese translations.

(E) Dictionary of the Mukawa dialect of Ainu [54] (MUKA)

An online resource developed on the basis of 150 hours of speech in the Ainu language (Mukawa
dialect), recorded by Tatsumine Katayama between 1996 and 2002 with two native speakers:
Seino Araida and Fuyuko Yoshimura. It contains 6,284 entries.

(F) Collection of Ainu Oral Literature [55] (NIBU)

A digital collection of 98 texts in Ainu: 53 prose tales (uwepeker), 29 mythic epics (kamuy yukar),
11 heroic epics (yukar) and 5 texts of other types. For detailed description (in Japanese) see:
http://www.town.biratori.hokkaido.jp/biratori/nibutani/pdf/ainu_gaiyou.pdf (accessed on
26 September 2019).

(G) Ainu Language Archive – Materials [56] (AASI)

An online archive of texts in Ainu, based upon voice and video recordings taken from three
native speakers: Matsuko Kawakami, Toshi Ueda and Tatsujirō Kuzuno.

(H) Ainu Language Archive – Dictionary [56] (AAJIhw)

An online lexicon consisting of digitized versions of three Ainu-Japanese dictionaries [2,57,58],
comprising a total of 33,126 entries. We used only the headwords included in the dictionary.
After removing duplicates (homographic entries), a total of 16,107 entries remained.

The following post-processing steps were applied to the training corpus:

(1) The data was cleaned, resulting in files containing only raw Ainu text in Latin alphabet.
(2) Accented vowels (〈á〉, 〈é〉, 〈í〉, 〈ó〉, 〈ú〉) used in some materials were replaced with their

unaccented counterparts (〈a〉, 〈e〉, 〈i〉, 〈o〉, 〈u〉).
(3) Underscores (〈_〉) used in some materials to indicate phonological alternations were removed.
(4) Equality signs (〈=〉) used to denote personal markers were either removed, or replaced with

whitespaces (if there was no whitespace in the original text). While their presence is an
unambiguous indicator of a boundary between two tokens (although they are traditionally
referred to as “affixes”, we treat those morphemes as separate units, which is a common practice
among present-day experts; for a detailed analysis of their morphological status, please refer to
Bugaeva [59]), they were not used in older texts, which are going be the main target of a word
segmentation system, therefore we decided to exclude them from the data. This resulted in a
corpus of text comprising a total of 481,291 segments (space-delimited units of text). The statistics
of all eight datasets after this step are shown in Table 1.

(5) Finally, punctuation marks were separated from words. However, non-alphanumeric characters
used word-internally (e.g., hyphens indicating boundaries between the constituents of compound
words and apostrophes representing glottal stop) were not modified.

Table 1. Statistics of Ainu text collections and dictionaries used as the training data.

Text Collection: SYOStrain TDOA GACF MOPL MUKA NIBU AASI AAJIhw Overall

Characters
(excluding spaces): 36,780 54,545 82,436 26,872 317,099 459,253 803,945 131,449 1,912,379

Segments: 8786 12,978 22,559 9246 71,232 122,314 218,069 16,107 481,291
Avg. segment

length: 4.186 4.203 3.654 2.906 4.452 3.755 3.687 8.161 3.973

http://www.town.biratori.hokkaido.jp/biratori/nibutani/pdf/ainu_gaiyou.pdf
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5.2. Test Data

Two different sets of held-out data were used in our evaluation experiments:

(A) Ainu Shin’yōshu [48] (SYOS)

This dataset consists of the two yukar epics from Ainu Shin’yōshu which were excluded from the
training data:

• “Esaman yaieyukar, ‘Kappa reureu kappa’ ” (“‘Kappa reureu kappa’, the song sung by the
otter”);

• “Pipa yaieyukar, ‘Tonupeka ranran’ ” (“‘Tonupeka ranran’, the song sung by the marsh
shellfish”).

(B) Ainugo Kaiwa Jiten [51] (AKJ)

The portion of the original dictionary corresponding to the entries from A Talking Dictionary of
Ainu which we removed from the training data, was applied as the second evaluation dataset.

In the test data we retained the word segmentation of the original transcriptions (by Chiri [48]
and Jinbō and Kanazawa [51]). However, in order to prevent differences in spelling from affecting the
word segmentation algorithm’s performance, the text was preprocessed by unifying its spelling with
modern versions transcribed by Kirikae [49] and Bugaeva et al. [50] (the task of spelling modernization
is out of the scope of this paper and will be addressed separately.). In the case of the Ainugo kaiwa
jiten and TDOA, there were also some differences in the usage of punctuation marks as well as several
words which appeared in the original text, but the authors of the modernized transcription decided to
remove them – in such cases the text was unified with the modern transcription, with the exception of
equality signs attached to personal markers, which were omitted. A sample sentence from the Ainugo
kaiwa jiten before and after this preprocessing step is shown in Table 2. Table 3 presents the statistics of
both evaluation datasets, in comparison with the portions of modernized texts corresponding to them.

Table 2. A fragment from the Talking Dictionary of Ainu (TDOA)/Ainugo kaiwa jiten (AKJ) dataset.

Ainugo kaiwa jiten [51]: Nepka ayep an shiri he an?

TDOA [50]: nep ka a= ye p an siri an?

AKJ: nepka ayep an siri an?

Translation [50]: Is there something you (wanted) to say?

Table 3. Statistics of the samples used for evaluation and their modern transcription equivalents.

Data
Characters

(Excluding Spaces) Segments
Avg. Segment

Length OoV* Rate

SYOS: 2667 441 6.070 0.259

Kirikae [49]: 643 4.163 0.034

AKJ: 4840 1143 4.234 0.044

Bugaeva et al. [50]: 1259 3.844 0.005

* OoV—out-of-vocabulary words.

5.3. Experiment Setup

In our experiments we tested the following word segmentation systems:

(1) a corpus-based word segmentation algorithm minimizing the number of n-grams needed to
match the input string (MiNgMatch Segmenter);

(2) a segmentation algorithm with Stupid Backoff language model (WordSegment with
modifications);
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(3) a segmentation algorithm with a language model applying modified Kneser-Ney smoothing
(later referred to as “mKN”);

(4) a segmentation system based on character sequence labelling using a neural model [43] (later we
will refer to it as “Universal Segmenter”).

5.4. MiNgMatch Segmenter

Our algorithm was tested in two variants:

• with the limit of n-grams per input segment equal to the number of characters in the input string;
• with the limit of n-grams per input segment set to 2 (based on the observation that in most cases

where a single input segment is divided into 3 or more n-grams, that segmentation is incorrect).

In experiments conducted by Nowakowski et al. [47] with an early version of the segmenter, the
best results were in most cases yielded with the order of n-grams not exceeding 5-grams. Thus, for the
n-gram models examined in the present paper we set the limit of n to 5.

5.5. WordSegment (Stupid Backoff Model)

WordSegment is an open source Python module for word segmentation developed by Grant
Jenks, based on the work of Peter Norvig [60]. In our evaluation experiments we applied the system
with two modifications:

(A) We added the option of using n-gram models with the order of n-grams higher than 2 (in original
WordSegment, only unigrams and bigrams were used, whereas we wanted to test models with
the order of up to 5).

(B) We added the possibility of manipulating the backoff factor. Although it was a part of the
original formulation by Brants et al. [37], Peter Norvig and Grant Jenks omitted it from their
implementations.

We examined three different values of the backoff factor:

• 1 (i.e. no backoff factor, as in original WordSegment);
• 0.4 (as suggested by Brants et al. [37]; later we will refer to this model as “SB-0.4”);
• 0.09, only applied to 1-grams (this configuration achieved the best F-score in our preliminary

experiments, at the cost of lower Precision). Let wi denote a candidate word to be evaluated in
the context of k previous words (wi−1

i−k). The recursive scoring function employed in this variant
(later referred to as “SB-0.09”) can be defined as follows:

Score(wi, k) =


Count(wi

i−k)

Count(wi−1
i−k)

if Count(wi
i−k) > 0Score(wi, k− 1) if k ≥ 2

α
Count(wi)

N1
otherwise.

otherwise.
(3)

with α representing the backoff factor specified for unigrams, and N1 being the total number of
unigrams in the training corpus.

5.6. Segmenter with Language Model Applying Modified Kneser-Ney Smoothing

In the next experiment, we tested a word segmentation system similar to WordSegment (the
same dynamic programming algorithm is used to generate candidate segmentations), but employing a
language model with modified Kneser-Ney smoothing for choosing the most probable segmentation
path. The model was generated using the KenLM Language Model Toolkit (https://kheafield.com/
code/kenlm/; accessed on 26 September 2019).

Analogically to the experiments with our system and WordSegment, we used language models
with the maximum order of n-grams set to 5.

https://kheafield.com/code/kenlm/
https://kheafield.com/code/kenlm/
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5.7. Universal Segmenter

Apart from segmenters utilizing language models based on lexical n-grams, we carried out a series
of experiments using the character-level sequence labelling model developed by Yan Shao et al. [43].
We trained the model in three different variants:

5.7.1. Default Model (henceforth, “US-Default”)

In this experiment, we applied the default training settings, designed to work with space-delimited
languages. The same training data as in previous experiments was used, which means that tokens in
the training set correspond to those in gold standard data.

5.7.2. With Spaces Ignored (henceforth, “US-ISP”)

Here, we trained the model with the -isp argument. It results in the removal of space
delimiters from the training data, which means it is effectively treated in a similar way to Chinese or
Japanese script.

5.7.3. With Multi-Word Tokens (later referred to as “US-MWTs_rnd” and “US-MWTs”)

When processing older Ainu texts, many space-delimited segments need to be split in multiple
tokens. Consequently, the default model relying on whitespaces and trained on the data with modern
segmentation is ineffective. Unlike in Chinese or Japanese, however, a large portion of word boundaries
is already correctly indicated by whitespaces in the input text, so ignoring them altogether (as in US-ISP
models) is not the optimal method, as well. In order to create a model better suited to our task, we
used the concept of multi-word tokens (https://universaldependencies.org/u/overview/tokenization.
html; accessed on 26 September 2019) existing in Universal Dependencies and also reflected in the
Universal Segmenter.

Firstly, we converted the two datasets (SYOStrain and TDOA) for which both old and modernized
transcriptions exist, to a format where boundaries between words grouped together as a single
space-delimited string in the original transcription are treated as boundaries between components
of a multi-word token. For the remaining six datasets, however, only a single transcription by
contemporary experts is available. We therefore applied the following two methods to simulate sparser
word segmentation of old texts by generating multi-word tokens artificially:

(A) As a baseline method, we created multi-word tokens in a random manner. Namely, we assigned
each whitespace in the data with a 50% chance of being removed and thus becoming a
boundary between components of a multi-word token. This resulted in the generation of
105,663 multi-word tokens. Later we will refer to the models learned from this version of the
training data as “US-MWTs_rnd”.

(B) In the second approach, multi-word tokens were generated in a semi-supervised manner using
the Universal Segmenter itself. To achieve that, we converted multi-word tokens previously
identified in SYOStrain and TDOA to multi-token words (defined in the UD scheme as words
consisting of multiple tokens, but treated as a single syntactic unit) and trained a word
segmentation model on these two datasets. The resulting model was then used to process
the rest of the training corpus. As a result, some tokens were grouped in multi-token words
(a total of 70,373 such words were generated). In the final step, we converted the multi-token
words to multi-word tokens. This variant of the data was used to train the group of models later
referred to as “US-MWTs”.

We illustrate the operations described above in Table 4, using a sample from the SYOStrain dataset.

https://universaldependencies.org/u/overview/tokenization.html
https://universaldependencies.org/u/overview/tokenization.html
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Table 4. Operations on training data for the Universal Segmenter.

Original text [48]:

Shineanto ta shirpirka kusu [...]
(“One day, since the weather was nice [...]”)

Modernized transcription [49]:

Sine an to ta sir pirka kusu [...]

Training data (in CoNLL-U format *) with multi-word tokens:

1-3 sineanto _ _ _ _ _ _ _ _
1 sine _ _ _ _ _ _ _ _
2 an _ _ _ _ _ _ _ _
3 to _ _ _ _ _ _ _ _
4 ta _ _ _ _ _ _ _ _

5-6 sirpirka _ _ _ _ _ _ _ _
5 sir _ _ _ _ _ _ _ _

6 pirka _ _ _ _ _ _ _ _
7 kusu _ _ _ _ _ _ _ _

Training data (in CoNLL-U format *) with multi-token words:

1 sine an to _ _ _ _ _ _ _ _
2 ta _ _ _ _ _ _ _ _

3 sir pirka _ _ _ _ _ _ _ _
4 kusu _ _ _ _ _ _ _ _

* See: https://universaldependencies.org/format.html (accessed on 26 September 2019).

Apart from simple character embeddings, the Universal Segmenter allows the usage of
concatenated n-gram vectors encoding rich local information. We investigated the performance
with 3-, 5-, 7-, 9- and 11-grams. Any parameters of the training process not mentioned above were set
to default values.

5.8. Evaluation Method

In order to evaluate word segmentation performance, we employed three metrics: Precision (P),
Recall (R) and balanced F-score (F1). Precision is defined as the proportion of correct word boundaries
(whitespaces) within all word boundaries returned by the system (Bs), whereas Recall is the portion
of word boundaries present in expert-annotated data (Be) which were also correctly predicted by the
segmenter. The balanced F-score is the harmonic mean of Precision and Recall.

P =
|Bs ∩ Be|
|Bs|

(4)

R =
|Bs ∩ Be|
|Be|

(5)

F1 = 2
PR

P + R
(6)

In addition, we evaluated word-level Accuracy for OoV words, defined as the proportion of
unseen tokens in expert-annotated data (Ue), correctly segmented by the system (Us):

Accuracy =
|Us|
|Ue|

(7)

https://universaldependencies.org/format.html
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6. Results and Discussion

The results of the evaluation experiments with our algorithm are presented in Table 5. The variant
without the limit of n-grams per input segment produces unbalanced results (especially on SYOS),
with relatively low Precision. After setting the limit to 2, Precision improves at the cost of a drop in
Recall. The F-score is better for SYOS, while on AKJ there is a very slight drop.

Table 6 shows the results of experiments with the Stupid Backoff model. When no backoff factor
is applied, results for both test sets are similar to those from the MiNgMatch Segmenter without
the limit of n-grams per input segment. Setting the backoff factor to an appropriate value allows
for significant improvement in Precision and F-score (and in some cases also small improvements
in Recall). For the F-score, it is better to set a low backoff factor (e.g., 0.09) for 1-grams only, than to
set it to a fixed value for all backoff steps (e.g., 0.4, as Brants et al. [37] did). A backoff factor of 0.4
gives significant improvement in Precision with higher order n-gram models, but at the same time
Recall drops drastically and overall performance deteriorates. For models with an n-gram order of
3 or higher, the backoff factor has a bigger impact on the results than further increasing the order of
n-grams included in the model. A comparison with the results yielded by MiNgMatch shows that
setting the limit of n-grams per input segment is more effective than Stupid Backoff as a method for
improving precision of the segmentation process—it leads to a much smaller drop in Recall.

The results of the experiment with models employing modified Kneser-Ney smoothing are shown
in Table 7. They achieve higher Precision than both the other types of n-gram models. Nevertheless,
due to very low Recall, the overall results are low.

The results obtained by the Universal Segmenter are presented in Table 8. The default model
(regardless of what kind of character representations are used—conventional character embeddings
or concatenated n-gram vectors) learns from the training data that the first and the last character of a
word (corresponding to B, E and S tags) are always adjacent either to the boundary of a space-delimited
segment or to a punctuation mark. As a result, the model separates punctuation from alpha-numeric
strings found in the input, but never applies further segmentation to them.

Table 5. Evaluation results—MiNgMatch Segmenter (best results in bold).

Max. N-gram Order: 2 3 4 5

Test Data: SYOS AKJ SYOS AKJ SYOS AKJ SYOS AKJ

Max. n-grams
per segment

Max. *
Precision 0.918 0.968 0.923 0.969 0.925 0.969 0.923 0.969

Recall 0.918 0.986 0.943 0.989 0.952 0.989 0.952 0.990
F-score 0.918 0.977 0.933 0.979 0.938 0.979 0.938 0.980

2
Precision 0.952 0.972 0.955 0.972 0.957 0.972 0.956 0.973

Recall 0.899 0.981 0.924 0.985 0.933 0.985 0.933 0.986
F-score 0.925 0.976 0.939 0.978 0.945 0.979 0.944 0.979

* Max.—number of characters in the input segment.

Table 6. Evaluation results—Stupid Backoff model (best results in bold).

Max. N-gram Order: 2 3 4 5

Test Data: SYOS AKJ SYOS AKJ SYOS AKJ SYOS AKJ

Backoff factor

1
Precision 0.915 0.965 0.923 0.965 0.923 0.965 0.923 0.965

Recall 0.916 0.986 0.958 0.989 0.961 0.988 0.961 0.988
F-score 0.915 0.975 0.940 0.977 0.942 0.976 0.942 0.976

0.4
Precision 0.924 0.967 0.934 0.968 0.952 0.972 0.958 0.974

Recall 0.921 0.988 0.944 0.986 0.913 0.979 0.875 0.966
F-score 0.922 0.977 0.939 0.977 0.932 0.975 0.915 0.970

n = 1: 0.09
n > 1: 1

Precision 0.934 0.968 0.937 0.968 0.937 0.965 0.937 0.965
Recall 0.927 0.986 0.961 0.987 0.963 0.986 0.963 0.986
F-score 0.930 0.977 0.949 0.977 0.950 0.975 0.950 0.975
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Table 7. Evaluation results—model with Kneser-Ney smoothing (best results in bold).

Max. N-gram Order: 2 3 4 5

Test Data: SYOS AKJ SYOS AKJ SYOS AKJ SYOS AKJ

Precision 0.970 0.979 0.975 0.978 0.975 0.979 0.975 0.979
Recall 0.693 0.946 0.724 0.944 0.726 0.943 0.726 0.943
F-score 0.808 0.962 0.831 0.961 0.832 0.961 0.832 0.961

Table 8. Evaluation results—Universal Segmenter (best results in bold).

Model Version: Default ISP MWTs_rnd MWTs

Test Data: SYOS AKJ SYOS AKJ SYOS AKJ SYOS AKJ

Order of concatenated
n-gram vectors

– F-score 0.809 0.931 0.874 0.950 - - - -
3 F-score 0.813 0.931 0.894 0.946 0.939 0.971 0.938 0.974
5 F-score 0.812 0.931 0.888 0.958 0.945 0.973 0.948 0.978
7 F-score 0.812 0.931 0.897 0.955 0.944 0.973 0.948 0.977

9
Precision 0.998 0.981 0.910 0.952 0.950 0.972 0.976 0.980

Recall 0.686 0.885 0.910 0.962 0.947 0.976 0.927 0.979
F-score 0.813 0.931 0.910 0.957 0.948 0.974 0.951 0.979

11 F-score 0.812 0.931 0.914 0.954 0.946 0.974 0.950 0.975

US-ISP models are better but still notably worse than lexical n-gram models (especially on SYOS).
Unlike with default settings, the model trained on data without whitespaces learns to predict word
boundaries within strings of alpha-numeric characters. However, when presented with test data
including spaces, they impede the segmentation process rather than supporting it. As shown in Table 9,
if we only take into account the word boundaries not already indicated in the raw test set, the model
makes more correct predictions in data where the whitespaces have all been removed.

Table 9. US-ISP model (with 9-gram vectors): F-score for word boundaries not indicated in
original transcription.

Spaces in Test
Data Retained

Test Data
SYOS AKJ

YES 0.811 0.880
NO 0.844 0.930

Models with multi-word tokens achieve significantly higher results. Precision of the US-MWTs
model is on par with the segmenter applying Kneser-Ney smoothing, while maintaining relatively
high Recall. It yields lower Recall than the model with randomly generated multi-word tokens, but
the F-score is higher due to better Precision.

With the exception of the US-ISP model on SYOS, all variants of the neural segmenter achieved
the best performance with concatenated 9-gram vectors. This contrasts with the results reported by
Shao et al. [30] for Chinese, where in most cases there was no further improvement beyond 3-grams.
This behavior is a consequence of differences between writing systems: words in Chinese are on
average composed of less characters than in languages using alphabetic scripts. Due to a much bigger
character set size, hanzi characters are also more informative to word segmentation [43], hence better
performance with models using shorter context.

6.1. General Observations

Due to data sparsity, n-gram coverage in the test set (the fraction of n-grams in the test data
that can be found in the training set) is low (see Table 10). It means that many multi-word tokens
from the test set are known to n-gram models as separate unigrams, but not in the form of a single
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n-gram. The Stupid Backoff model with a backoff factor for unigrams set to a moderate value (such
as 0.09) is able to segment such strings correctly. However, it also erroneously segments some OoV
single-word tokens whose surface forms happen to be interpretable as a sequence of concatenated
in-vocabulary unigrams, resulting in lower Precision. On the other hand, models assigning low scores
to unigrams (such as a 4- or 5-gram model with the Stupid Backoff and backoff factor set as suggested
by Brants et al. [37], and in particular the model applying modified Kneser-Ney smoothing) are better
at handling OoV words (see Table 11), but as a result of probability multiplication, in many cases they
score unseen multi-word segments higher than a sequence of unigrams into which the given segment
should be divided, hence yielding lower Recall.

Table 10. N-gram coverage.

N-gram Order: 1 2 3 4 5

Test data: N-gram coverage:

SYOS 0.966 0.627 0.338 0.188 0.128

AKJ 0.995 0.792 0.487 0.236 0.099

Table 11. Word-level Accuracy for OoV words (best models only).

Model: MiNgMatch SB-0.4 SB-0.09 mKN US-MWTs

Test data: Accuracy:

SYOS 0.320 0.120 0.000 0.320 0.560

AKJ 0.000 0.000 0.000 0.125 0.625

Universal Segmenter operates at the level of characters rather than words, which makes it more
robust against unseen words. This, along with the ability of neural models to transform discrete, sparse
inputs into continuous representations capturing similarities between them, such as morphological
features [35], explains the fact that it is able to achieve high Precision while maintaining relatively
high Recall.

In line with these observations, we found Universal Segmenter to be the only segmenter in
our experiments whose output includes tokens seen neither in the training data nor in the test set.
For instance, it correctly segmented the input token ekampaktehi into ekampakte hi (“a promise”), whereas
other systems either did not divide it at all, or segmented it into a sequence of in-vocabulary unigrams
(e.g., ekampak te hi).

6.2. Error Comparison

Using the outputs of the best performing models, we measured how similar the errors made by
different segmenters were. In particular, we calculated the Jaccard index between lists of errors found
in each pair of outputs.

Results are presented in Table 12. Output of the model with modified Kneser-Ney smoothing is
the least similar to most other models’ outputs, which can be explained simply by the fact that it made
the highest number of errors on both datasets (statistics are shown in Table 13). On the other hand, the
Universal Segmenter’s output, while containing numbers of errors comparable to those produced by
the best performing n-gram models, also exhibits a low level of similarity to them.
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Table 12. Error comparison (Jaccard index).

Test set: SYOS MiNgMatch SB-0.09 mKN

US-MWTs 0.220 0.153 0.195

mKN 0.176 0.159

SB-0.09 0.505

Test set: AKJ MiNgMatch SB-0.09 mKN

US-MWTs 0.414 0.390 0.474

mKN 0.369 0.355

SB-0.09 0.714

Table 13. Statistics of word segmentation errors.

Model: MiNgMatch SB-0.09 mKN US-MWTs

Test data: Errors:

SYOS 71 66 189 62

AKJ 50 58 91 49

Indeed, qualitative analysis of segmentations generated by the neural model confirms that in
some parts they are quite different from the predictions made by other models. For instance, the two
segments wenpuri enantuykasi were correctly divided into wen puri enan tuykasi (“[her] face [took]
the color of anger”) only by the Universal Segmenter. All other models incorrectly split the word
tuykasi (possessive form of the locative noun tuyka, meaning “on [the face]”) into tuyka si, the reason
being the fact that the n-gram wen puri enan tuyka is attested (with 4 instances) in the training set.
Conversely, there are also some errors only made by the Universal Segmenter. For instance, it was
the only system to divide the in-vocabulary word ayapo (exclamation of pain) into two tokens: a and
yapo, out of which yapo does not appear in the training data. Another example is the phrase ki aineno
(“eventually”), transcribed by Kirikae as ki a ine no (3 instances in the training set) and segmented in
the same way by n-gram models, whereas the neural model treated the last two words as a single unit,
ineno. This prediction, however, might be arguably considered correct, as there exists one instance
of ineno in Kirikae’s transcription, used in the same context (iki a ineno). Based on the observations
described above, we believe that implementing an ensemble of an n-gram model and a character
sequence labelling neural model shall be an interesting avenue for future work.

6.3. Results on SYOS with Two Gold Standard Transcriptions

As mentioned in Section 2, there is a certain amount of inconsistencies in word segmentation
even between contemporary scholars of Ainu, which means they are also present in our data.
With that in mind, we decided to cross-check the results of our experiments against an additional gold
standard transcription. For that purpose we used an alternative modernized transcription of SYOS by
Katayama [61].

Firstly, we compared Katayama’s transcription with the version edited by Kirikae [49], using the
same evaluation metrics as in previous experiments with segmentation algorithms. The results are
presented in Table 14.

Table 14. Katayama’s transcription evaluated against Kirikae’s transcription.

Precision Recall F-score

0.979 0.941 0.960
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Our assumption is that—in spite of making different decisions as to whether to group certain
morphemes together or to treat them as separate units—both experts produced correct transcriptions.
In order to investigate the effect of this phenomenon on our experiments, we re-evaluated the outputs
of the best performing segmentation models using a combination of both experts’ transcriptions as the
gold standard data. This time, Precision was defined as the proportion of word boundaries predicted
by the model that can be also found in either of the gold standard transcriptions:

P =
|Bs ∩ (Be1 ∪ Be2)|

|Bs|
(8)

Analogically, Recall was defined as the proportion of word boundaries found in both variants of
the gold standard which were also correctly predicted by the model:

R =
|Bs ∩ Be1 ∩ Be2 |
|Be1 ∩ Be2 |

(9)

Results are shown in Table 15. Apart from the model with Kneser-Ney smoothing, the results
achieved by all models improved substantially. The highest gain was obtained for our algorithm—the
result improved to such an extent that it ranked first in terms of F-score. A large share of that difference
can be attributed to a single token, awa (a conjunction created by combining the perfective aspect
marker a and a coordinative conjunctive particle wa), appearing a total of 17 times in the test set.
The MiNgMatch algorithm, operating at the level of input segments, followed Katayama in not
splitting awa, as it is more frequent in the training data, with 289 occurrences, than the 2-gram variant
a wa (181 instances). Nevertheless, models considering a wider context preferred the latter option,
which conforms with how Kirikae transcribed it.

Table 15. SYOS: outputs of the best models re-evaluated against combined gold standard data
(Kirikae [49] + Katayama [61]). Best results in bold.

Model: MiNgMatch SB-0.4 SB-0.09 mKN US-MWTs

Precision 0.965 0.969 0.949 0.981 0.980
Recall 0.954 0.880 0.964 0.718 0.933
F-score 0.959 0.922 0.956 0.829 0.956

6.4. Execution Speed

Table 16 compares the total time taken by each of the best performing models to process
the two test sets. In the case of segmenters based on lexical n-grams, we used 5-gram models.
The Universal Segmenter’s speed was evaluated on the model trained with concatenated 9-gram
vector representations. Experiments with n-gram models were carried out on a Windows machine
with Intel Core i7 running at 1.90 GHz and 16 GB of RAM. The Universal Segmenter was tested on an
Ubuntu machine with four GPUs (NVIDIA GeForce GTX 1080 Ti) and 128 GB of RAM. Each value
represents an average of five consecutive runs. The results indicate that our algorithm is unrivalled in
terms of speed.

Table 16. Execution times in seconds.

Model: MiNgMatch SB-0.09 mKN US-MWTs

Time (s) 0.812 5.837 4.785 7.717

7. Conclusions and Future Work

In this paper, we introduced the MiNgMatch Segmenter: a data-driven word segmentation
algorithm finding the minimal sequence of n-grams needed to match the input text. We compared
our algorithm with segmenters utilizing two state-of-the-art n-gram language modelling techniques
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(namely, the Stupid Backoff model and a model with modified Kneser-Ney smoothing), as well as a
neural model performing word segmentation as character sequence labelling.

The evaluation experiments revealed that the proposed approach is capable of achieving overall
results comparable with the other best-performing models, especially when we take into account
the variance in notation of certain lexical items by different contemporary experts. Given its low
computational cost and competitive results, we believe that MiNgMatch could be applied to other
languages, and possibly to other Natural Language Processing problems, such as speech recognition.

In terms of precision of the segmentation process and accuracy for out-of-vocabulary words, the
sequence labelling neural model turned out to be the best option. In order to achieve that, however, it
needs to be presented with training data tailored to the task, closely mimicking the intended target data.
To this end, we demonstrated that such data can be bootstrapped from a small amount of manually
annotated text, using the Universal Segmenter itself.

Important tasks for the future include performing experiments with the proposed algorithm on
other languages and implementing an ensemble segmenter combining an n-gram model (such as
MiNgMatch) with a neural model performing word segmentation as character sequence labelling.
Another area that requires improvement is the handling of OoV words. All lexical n-gram-based
models applied in our experiments performed poorly in this aspect and our algorithm was not an
exception. One possible way to increase the MiNgMatch Segmenter’s robustness against unseen forms
might be to utilize character n-grams instead of word n-grams.
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4. Hokkaidō Utari Kyōkai [Hokkaido Ainu Association]. Akor Itak; [our language]; Hokkaidō Utari Kyōkai:
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