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Abstract: Spectrum sensing is the necessary premise for implementing cognitive radio technology.
The conventional wideband spectrum sensing methods mainly work with sweeping frequency and
still face major challenges in performance and efficiency. This paper introduces a new wideband
spectrum sensing method based on channels clustering and prediction. This method counts on
the division of the wideband spectrum into uniform sub-channels, and employs a density-based
clustering algorithm called Ordering Points to Identify Clustering Structure (OPTICS) to cluster the
channels in view of the correlation between the channels. The detection channel (DC) is selected and
detected for each cluster, and states of other channels (estimated channels, ECs) in the cluster are then
predicted with Hidden Markov Model (HMM), so that all channels states of the wideband spectrum
are finally obtained. The simulation results show that the proposed method could effectively improve
the wideband spectrum sensing performance.

Keywords: channels clustering; cognitive radio; HMM prediction; OPTICS algorithm; wideband
spectrum sensing

1. Introduction

Due to the fixed allocation mechanism, a large amount of spectrum resources have been troubled
with a very low utilization. The coordination between the demand for high-rate wireless communication
technology and the shortage of spectrum resources can be hardly obtained and is getting more worsened.
Cognitive Radio (CR) [1] is targeted by researchers because it can detect and utilize the unoccupied
spectrum. In CR, the Secondary User (SU) could detect the unoccupied frequency band through
spectrum sensing technology. In the following, SUs would dynamically access the unoccupied licensed
band without interfering the Primary User (PU), thereby improving spectrum utilization.

With the rapid expansion of the spectrum resources demand for various wireless devices and
services, it is urgently necessary to quickly detect and utilize more spectrum opportunities efficiently.
For the allocation of the entire radio spectrum is from 6 kHz to 300 GHz [2], the sensing spectrum
band by CR will be extended to several GHz. For common wideband spectrum sensing, it demands
high-speed sampling and signal processing according to the Nyquist theorem. The conventional
wideband spectrum sensing methods are mainly multiband spectrum sensing techniques [3] including
serial sensing, parallel sensing and wideband spectrum sensing based on Sub-Nyquist [4], such as
compressive sensing [5]. In serial sensing, each channel is detected sequentially based on reconfigurable
bandpass filter or tunable oscillator or two-stage sensing [6], which may cause a long delay unsuitable
for fast processing. Parallel sensing is carried out mainly by filter banks [7], which may detect all the
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channels at a time, but it needs lots of radio frequency components and the hardware implementation
complexity is high. Compressive sensing is one of the popular wideband spectrum sensing methods
based on Sub-Nyquist, which could reduce sampling rate, but the reconstruction algorithm is of high
complexity and its prerequisite is that the signal is under sparseness. From what has been discussed
above, it motivates us to study effective wideband spectrum sensing methods.

Comparatively, the wideband spectrum sensing method based on estimation or prediction is able
to obtain the occupancy status of future channels instead of directly detecting multiple channels [8],
which has attracted more and more researchers’ attention. Previously, spectrum prediction is mainly
carried out in time domain, and the channel state of the next time slot is predicted. In frequency
domain, the adjacent or related channels states are inferred based on channels correlation. In order to
take best use of the spectrum data, more and more spectrum prediction methods are made in joint
time-frequency domain or even multi-dimension [9].

In time domain, one of the commonly used prediction methods is Hidden Markov Model (HMM).
When using the HMM model for prediction, the channel state cannot be directly observed. Rather,
it can be observed through the observation vector sequence obtained by spectrum sensing, and use
the observations to train the HMM model parameters, on which the channel state is predicted [10].
Its computational complexity is related to the number of states and the length of the sequence of
observation vectors. It is proved by the measured data in [11] that the spectrum occupancy state of PUs
obeys the Markov chain and the occupancy state is predicted with the HMM. Two HMMs are adopted
to detect honest and malicious users respectively in collaborative spectrum sensing, and they are jointly
estimated simultaneously with an effective inference algorithm [12]. While [13] makes a decision
fusion based on HMM by exploiting time-correlation of the unknown binary source. In [14], a hidden
bivariate Markov chain is applied to model the received signal in a Gaussian channel, and it can predict
the state in time domain. With regard to regression analysis, ARMA shows better performance in
predicting cyclostationary time series than non-stationary time series, while the ARIMA model has
better prediction performance for non-stationary time series [15]. In addition, the above prediction
methods are all directed to a narrowband spectrum.

In frequency domain, Li et al. [16] applied Bayesian networks to model joint multi-channel
spectrum prediction, but the application areas of the model are limited. Because of the highly spectrum
state correlations among channels, which is evaluated by real-world data [17], the spectrum prediction
methods referring to frequency domain are mostly extended to time-frequency domain. Yin et al. [18]
designed a two-dimensional frequent pattern mining. However, a lot of calculations are required
for determining the frequent pattern which may vary in different environments. Sun et al. [19]
converted the spectrum data to two-dimensional image space for time-frequency spectrum prediction.
This method is based on historical multi-day data to predict the use of spectrum in the next day, with
limited prediction accuracy.

For a wideband or multiband spectrum sensing method based on estimation or prediction in
time-frequency domain, channels with highly correlations are clustered and only one or some channels
are selected to be detected, while the states of other channels (ECs) in the same cluster are predicted or
estimated [20,21]. Gao. et al. [20] combined minimum entropy increment (MEI) algorithm or greedy
clustering (GC) algorithm and Markov process to predict, but the computational complexity of the
MEI algorithm is too high, while the GC algorithm has low accuracy. Huang. et al. [21] applied
HMM to estimate the states of other channels (ECs) in the same group clustered by a multi-centers
clustering (MCC) algorithm, while there are many detection channels (DCs) in one clustered group,
which would cost much time and energy to detect. So wideband spectrum sensing method based on
channels clustering and prediction would save time and energy consumption due to the reduction
of DCs, but the main difficulty is to find the proper clustering and prediction algorithm. Also based
on high correlation among the samples, [22] proposes the oversampling at the receiver, which would
introduce a lot of calculation. In spatial domain, the maximal ratio combining (MRC) and equal gain
combining (EGC) are employed to combine the spatial diversity for studying the statistical properties
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of the capacity of Nakagami-m channels [23], and a spatial correlation coefficient is proposed to express
the correlation characteristics of mobile cognitive radio users in different environments [24].

In view of the above discussion, this paper proposes a novel wideband spectrum sensing method
based on channels clustering algorithm of OPTICS and HMM prediction in time-frequency domain.
The approach goes first by dividing the wideband spectrum into uniform sub-channels, and then
applies the density-based OPTICS clustering algorithm to cluster the channels with highly correlation.
For each cluster, one DC is selected based on the minimum information entropy principle and the
DC should be detected directly. Subsequently, the ECs are predicted by HMM according to their
correlations with DCs and dependence on their past states. In the end, the performance is evaluated by
simulation and compared with the GC algorithm and the MEI algorithm.

The rest of this paper is organized as follows: problem description is introduced in Section 2.
In Section 3, the density-based clustering algorithm OPTICS is briefly discussed and applied to cluster
channels based on channels correlation. HMM-based channel prediction method presents in Section 4.
Simulation study demonstrates the performance of the proposed wideband spectrum sensing method
in Section 5. Section 6 is the conclusion of this paper.

In this paper, we will denote wideband channel set in upper-case letter (e.g., C) and the state of a
sub-channel in lower-case letter with the index notation (e.g., ci), while the state of a sub-channel in the
time slot m is represented by cm

i . In the following, the matrix is signified in upper-case letter (e.g., A)
and the element in matrix is denoted in lower-case letter with double index notations (e.g., ai j).

2. System Model

For the wideband spectrum, it can be evenly divided into N sub-channels. As shown in Figure 1,
the sub-channel numbers are 1, 2, 3, ..., N. The conventional sensing method needs to detect each of
these sub-channels serially or in parallel, which would lead to a large amount of time and energy cost.
The real-world measured data proved that there is a highly correlation between the channels [25].
The sub-channels of the same color in Figure 1 represent a kind of highly correlation with the relevant
channels being clustered. The clustered sub-channels are distributed as shown in Figure 2. Sub-channels
of the same color are defined as a cluster. A DC is selected for each channel cluster based on the
principle of minimum information entropy, and other channel states of the same cluster are predicted
by the HMM model to ultimately obtain the channel states of the wideband spectrum.
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3. Correlation-Based Channels Clustering

3.1. Channel Correlation Metrics

In cognitive radio, Channel State Information (CSI) is divided into two types: “unoccupied
(idle)” and “occupied (busy)”, which are represented by binary "0" and "1" in this paper. The channel
correlation indicates the probability of consistent states of two channels, i.e., the higher the correlation,
the greater the probability that the two channels will be in the same or opposite state (depending on
sign of correlation) [26]. In this work, Channel Correlation Factor (CCF) is used to represent channel
correlation, which is defined as:

ρi j =

M∑
m=1

I(csm
i = csm

j )

M∑
m=1

I(csm
i = csm

j ) +
M∑

m=1
I(csm

i , csm
j )

(1)

where M is the total number of time slots, ρi j indicates the CCF between the i-th channel and the j-th
channel, csm

i , csm
j respectively represent the state of the channel i and the channel j in the time slot m,

I(A) is a discriminant function, if the value of A is true, then I(A) = 1, otherwise I(A) = 0.
ρi j is given a value that ranges from 0 to 1. When ρi j approaches 0, it is a negative correlation

between two channels. That is, when one channel is in a certain state, the other channel is in the other
state for the channel state is either 0 or 1. When ρi j approaches 1, it represents a positive correlation
between two channels. That is, the state of the two channels is basically the same. When ρi j approaches
0.5, there is no obvious correlation between the two channels, that is, when one channel is in a certain
state, the state of the other channel may be the same or opposite, and the probability of both cases is
50% each.

3.2. Channel Correlation Verification

Using the real-world Power Spectral Density (PSD) dataset measured by RWTH Aachen University
in 2007, this spectral dataset covers the frequency range from 20 MHz to 6 GHz with the time of one
week [25]. According to the measured PSD values of the NE GSM1800 DownLink (1820.2–1875.4 MHz)
frequency band and the NE TV (614–698 MHz) frequency band, the channel occupancy and channel
correlation distribution maps are shown in Figure 3, where the spectrum resolution is 200 kHz, the
average sampling interval is about 1.8 s, and the power unit is dBm. Since the actual amount of
data is large, one sample value is taken for every 60 measured data, and the lowest threshold is
−107 dBm/200 kHz in an earlier requirements document of the IEEE 802.22 standardization committee.
When the PSD value is greater than the detection threshold, the CSI is “1”. Otherwise, the CSI is “0”
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As shown in Figure 3, I would rather say that a block-correlation pattern is evident, which confirms
the motivation for considering contiguous aggregation (clustering) of frequency bins.

3.3. OPTICS Algorithm for Channel Clustering

As anticipated in Section 1, GC, MEI and MCC have their limitations for channels clustering. While
sub-channels of wideband spectrum are regarded as the objects of the spectrum space, the density-based
OPTICS [27] clustering algorithm is applied for channels clustering in this paper, which is an extension
of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [28]. DBSCAN is a
density-based clustering algorithm to look for high-density areas separated by low-density areas, and
all the points are marked as core point, border point or noise point respectively depending on the
density of the area where this point is located. In this algorithm, an edge is assigned between all the
core points within the distance predefined, and each group of connected core points forms a cluster,
then each border point is assigned to a cluster of associated core points. The advantage of DBSCAN
algorithm is relatively noise-resistant and can deal with clusters of any shape and size, and one of the
disadvantage is high dependence on input parameters, which is improved in OPTICS algorithm.

The OPTICS algorithm starts from a randomly selected core object and preferentially expands
toward high-density data areas. At the same time, the neighborhood objects are output in an
ordered list according to the density, and clusters of different densities are displayed according to the
reachability-distance curve of the channel. However, the data clustering is not explicitly generated,
and the final clustering result can be obtained from the ordered list or the reachability-distance curve
according to the actual application. In this work, the clustering results of the channels are obtained
from the ordered list.

The wideband spectrum is evenly divided into N sub-channels that is C = {c1, c2, · · · , cN}, where C
is the channel set. The information entropy is used to represent the distance between the channels [29],
which is defined as:

r(c j, ci) = H(c j
∣∣∣ci)

= −ρi j logρi j − (1− ρi j) log(1− ρi j), i, j ∈ N
(2)

where ci is the DC, c j is the predicted channel, and H(c j
∣∣∣ci) is the entropy function, indicating the

uncertainty introduced by the DC for predicting other channels (ECs). From the entropy function, the
smaller the entropy means the smaller the predicted error. The basic definitions in OPTICS algorithm
are as follows.
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Definition 1. (ε-neighborhood) A set of channels with a radius of ε (ε > 0) centered on a selected channel object,
called the ε-neighborhood of the object, and ε is a preset parameter.

Definition 2. (MinPts) The ε-neighborhood of each object in a channel cluster need to contain at least a
minimum number of channels, and also called the neighborhood density threshold, where MinPts is another
preset parameter.

Definition 3. (core object) The object contains at least MinPts objects in the ε-neighborhood.

Definition 4. (core-distance) The distance makes an object to be core object, which is equal the distance from the
object to its MinPts’ neighbor. If the object is not core object, the core-distance of the object is undefined.

Definition 5. (reachability-distance) For objectc j and core object ci, if the distance r(c j, ci) is bigger than the
core-distance of ci, the reachability-distance is r(c j, ci). Otherwise, the reachability-distance is the core-distance
of ci. If ci is not core object, the reachability-distance is undefined.

In the channels clustering process based on the OPTICS algorithm, the seed queue Q is generated,
and the result queue R is the final output, while the elements in Q are arranged in ascending
order according to the reachability-distance. After each expansion of the OPTICS algorithm, it is
necessary to update the Q in ascending order of the reachability-distance, and then take the minimum
reachability-distance in Q. To simplify the algorithm, Q is no longer sorted in this work, only to use
the function to take the point with the smallest reachability-distance in Q. As a result, the average time
complexity of selecting the minimum distance of reachability-distance is reduced from O(N log N) to
O(N), and the time complexity of presented OPTICS is O(N2). The OPTICS algorithm is described as
follows (Algorithm 1).

Algorithm 1 Channels clustering algorithm of OPTICS

Input: specify channel set C to be clustered
Parameters: ε and MinPts
Output: result queue R
1: Create a result queue R and a seed queue Q.
2: Randomly select an unprocessed core object p from the channel set C and add p to R, then take the
ε-neighborhood channels of object p, which is showed as C1 ⊂ C. If the objects of C1 is not in R, add C1 to Q,
and then Q is arranged in ascending order according to the reachability-distance.
3: Select a core object q with the smallest reachability-distance in Q and add q to R, then take the
ε-neighborhood channels of object q, which is showed as C2 ⊂ C. If the objects of C2 is in R, repeat step 3.
Otherwise, go to step 4.
4: if the objects of C2 is already in Q, the objects of C2 in Q are arranged in ascending order according to the
reachability-distance, and then return to step 3. Otherwise, add C2 to Q and Q is arranged in ascending order
according to the reachability-distance, then return to step 3.
5: If Q is empty, return to step 2.
6: If the channel set C is empty, the algorithm ends, and the ordered sample objects in the result queue R are
output.

3.4. DC Selection and Clustering Results

It can be known from the OPTICS algorithm that only the core object may become the DC.
Therefore, the DC is selected from the core object of each cluster according to the principle of minimum
uncertainty introduced by the DC, and the definition is as:

dk = arg min
di,c j∈gk

J∑
j=1, j,i

H
(
c j
∣∣∣di

)
(3)
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where gk represents the k-th group channel after clustering, di and c j are the channels in gk, dk indicates
the detection channel selected from the k-th group, J is the number of channels in the cluster. The above
equation shows that the uncertainty of the prediction of other channel states by the selected DC is the
smallest, that is, the prediction accuracy is the highest. Once the DC is selected for each group, the
detected channel grouping Cd = {d1, d2, · · · , dn} is obtained.

As the OPTICS algorithm is a density-based greedy search, which may lead to sparse points that
cannot be effectively clustered, that is, sparse points close to the DC may be judged as “noise”. To solve
the above problem, after determining the Cd, it is determined again whether all ε-neighborhood points
of the DC are in the result queue, and if not, getting added to the result queue.

Set the threshold radius here to ε1, 0 < ε1 < ε, and the steps to obtain the clustering channels from
the updated result queue are as follows (Algorithm 2).

Algorithm 2 Obtaining the clustering channels

Input: result queue R
Output: clustered channels
1: Set the threshold radius ε1.
2: Take out the head element P of queue R. If the reachability-distance of P is greater than ε1, add P to the
current cluster; otherwise, if the core-distance of P is less than ε1, add P to a new cluster.
3: Repeat step 2 until R is empty.
4: The algorithm is end when R is empty.

4. HMM-Based Channel Prediction

4.1. Esimation Model

Based on the highly correlation between cluster channels, the states of other channels (ECs)
in cluster can be directly predicted by detecting channel states. However, due to the errors in the
clustering performance, the statistical similarity and the differences in some time of individual channels
will be caused, which will lead to false alarm or missed detection, especially the missed detection will
cause SU interference to PU. Therefore, it is necessary to improve the prediction methods of other
channels (ECs) in the cluster. In this work, the HMM is applied to predict the state of other channels
(ECs) in cluster, so that the state of the entire wideband spectrum could be quickly obtained.

The HMM may be viewed as a mixed model consisting of a hidden Markov process and an
observable stochastic process in a specific hidden state, represented by a triple λ = (π, A, B), where the
detected channel state and the predicted channel state are treated as observable stateθ = {θ1,θ2, · · · ,θK}

and hidden state S = {s1, s2, · · · , sD}, respectively. Elements in λ are defined as follows:

• π = {πi} represents the initial probability distribution of the state, where πi = P(q1 = si), 1 ≤ i ≤ D.

• The state transition probability matrix is AD×D =
{
ai j

}
, where ai j = P

(
qm+1 = s j

∣∣∣qm = si
)
, 1 ≤ i, j ≤

D, and
D
Σ

j=1
ai j = 1, qm indicates the state of the model in the time slot of m.

• The observation matrix is BD×K =
{
bi(k)

}
= {bik}, where bik = P

(
om = θk

∣∣∣qm = si
)
, 1 ≤ i ≤ D,

1 ≤ k ≤ K and
K
Σ

k=1
bik = 1, om indicates the observation state of the model in the time slot m.

In the channel state prediction herein, both the observable state and the hidden state are two
states, that is K = D = 2, then S = {s1, s2, · · · , sD} = {0, 1}, θ = {θ1,θ2, · · · ,θK} = {0, 1}. Figure 4 shows
a two state transition diagram of the HMM, and the ECS is predicted channel state, while the DCS is
detected channel state.
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4.2. HMM-Based Channel Prediction

Given observation data O = (o1, o2, · · · , oM) ∈ θ and predicted channel history data Q =

(q1, q2, · · · , qM) ∈ S, M is the data length, and the parameters of the HMM are directly predicted by the
maximum likelihood estimation method. With the discriminant function I(A) to predict the initial
state probability matrix π and the state transition probability matrix A and the formulas are as:

π̂i = I(q1 = si) (4)

âi j =

M−1∑
m=1

I(qm = si) × I(qm+1 = s j)

M−1∑
m=1

I(qm = si)

(5)

The observation matrix is obtained from the correlation coefficient matrix. When the two-channel
correlation coefficient ρi j ≥ 0.5 indicates the two-channel positive correlation, the observation matrix is
as:

bi(θ j) = p(om = θ j
∣∣∣qm = si ) =

{
ρi j si = θ j
1− ρi j si , θ j

(6)

The HMM model parameters λ = (π, A, B) are predicted by the above method, and other channel
states in the channel cluster are predicted by the Viterbi algorithm, thereby obtaining the occupancy of
the wideband spectrum after clustering. Time complexity of HMM mainly depends on the Viterbi
algorithm, whose complexity is O(D ∗ 2M), where D is the number of hidden states and M is the length
of observation series.

5. Simulation Results and Discussion

5.1. Simulation Results of Channels Clustering

Based on the OPTICS algorithm, the reachability-distance curves and the channel clustering
results of NE TV frequency band with different parameter values of ε and MinPts are shown in Figure 5.
ε is given the values of 0.11 and 0.21, and the corresponding channel correlation coefficients are 0.985
and 0.965. In the reachability-distance curve, the abscissa represents the order of processing points in
the result queue of the OPTICS algorithm, and the ordinate represents the reachability-distance; the
cluster appears as a recessed area in the figure, and the deeper the recess, the closer the cluster is; the
point where no recess is formed is a density sparse point treated as "noise".
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Figure 5. OPTICS algorithm clustering NE TV band channels. (a) Reachability-distance curve (ε = 
0.11, MinPts = 10;). (b) channels clustering result (ε = 0.11, MinPts = 10;). (c) Reachability-distance 
curve (ε = 0.21, MinPts = 10;). (d) channels clustering result (ε = 0.21, MinPts = 10;). (e) 
Reachability-distance curve (ε = 0.21, MinPts = 20;). (f) channels clustering result (ε = 0.21, MinPts = 
20;). 

It can be seen from the reachability-distance curve that the smaller the ε is, the more highly 
correlation of the clustering channels is required, that is, the denser the clustering channels, and the 
low-density channels cannot be clustered; the smaller the MinPts, the more jagged the graph is and 
vice versa, the smoother the graph. The empirical value of MinPts is 10 to 20, which is applied in this 
work. It can be seen from the channels clustering results that a different ε may lead to a different 
number of clusters of channels, and the smaller ε is, the fewer the number of channels per cluster. 
Some clusters in the figure have no channel display, because only clusters with cluster channel 
numbers greater than 3 are set. 
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MinPts = 10). (b) channels clustering result (ε = 0.11, MinPts = 10). (c) Reachability-distance curve
(ε = 0.21, MinPts = 10). (d) channels clustering result (ε = 0.21, MinPts = 10). (e) Reachability-distance
curve (ε = 0.21, MinPts = 20). (f) channels clustering result (ε = 0.21, MinPts = 20).

It can be seen from the reachability-distance curve that the smaller the ε is, the more highly
correlation of the clustering channels is required, that is, the denser the clustering channels, and the
low-density channels cannot be clustered; the smaller the MinPts, the more jagged the graph is and vice
versa, the smoother the graph. The empirical value of MinPts is 10 to 20, which is applied in this work.
It can be seen from the channels clustering results that a different εmay lead to a different number of
clusters of channels, and the smaller ε is, the fewer the number of channels per cluster. Some clusters
in the figure have no channel display, because only clusters with cluster channel numbers greater than
3 are set.

There are about 420 sub-channels in NE TV frequency band, but only no more than 180 sub-channels
are clustered, because the parameters in OPTICS algorithm are set strictly that means only sub-channels
with highly correlation are clustered. If more sub-channels would be clustered according to request,
change the parameters of ε and MinPts.

For a cluster, the DC determined by Equation 3 is declared as the center of the cluster for it makes
the least uncertainty for the other prediction channels in the cluster. As shown in Figure 5, NE TV
band channels are all clustered to two groups with different parameters and only two DCs need to be
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detected, which can save a lot of time compared to detect all channels one by one. Meanwhile, the DC
of each cluster is unchanged though the parameters of ε and MinPts are different, supposed the state
of DC is obtained.

OPTICS clustering algorithm is an unsupervised learning. This paper will evaluate the clustering
performance based on the prediction results of other channels (ECs) in the channel cluster.

5.2. Performance Analysis

The parameters that evaluate the wideband spectrum sensing performance are false alarm
probability (P f ) and missed detection probability (Pm), which are calculated as follows [20]: P f =

N(cŝ=1|cs=0 )
N(cs=0)

Pm =
N(cŝ=0|cs=1 )

N(cs=1)

(7)

where cŝ and cs are estimated channel state and actual one respectively, and N(·) is the number of
incidents happened. The P f represents the probability that the channel state is idle while estimated as
busy, which will reduce the spectrum efficiency, and the Pm represents the probability that the channel
state is busy while estimated as idle, which will increase the interference to PUs.

In this paper, the effects of different OPTICS parameters (ε and MinPts) on HMM prediction for
different frequency bands (NE GSM1800 DL band and NE TV band) are analyzed, which are shown as
Figures 6 and 7.
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Figure 6. Pm and P f predicted by HMM for NE GSM1800 DL band. (a) The relational graph between
Pm and CCF with different ε and MinPts. (b) The relational graph between P f and CCF with different ε
and MinPts.

The simulation results show that the Pm through HMM prediction is less than 0.035 and the P f is
less than 0.03 for channel clusters with the CCF greater than 0.95. In the OPTICS algorithm, the smaller
the neighborhood threshold, that is, the more highly correlation of the cluster channel, the lower the
sum of the false alarm probability and the missed detection probability of the HMM prediction. When
the neighborhood threshold became larger, that is, the channel correlation is weakened and the density
threshold remained unchanged, the probability of missed detection decreased, and the false alarm
probability increased. When the neighborhood threshold is constant and the density threshold became
larger, the probability of missed detection increased and the probability of false alarm decreased.
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Figure 7. Pm and P f predicted by HMM for NE TV (614-698MHz) frequency band. (a) The relational
graph between Pm and CCF with different ε and MinPts. (b) The relational graph between P f and CCF
with different ε and MinPts.

5.3. Performance Comparison

In order to compare with GC algorithm and MEI algorithm in [20], the data of NE TV band
channels are employed in our work. In OPTICS algorithm, some channels with sparse points regarded
as ”noise” are not clustered in any group, so the efficiency gain (EG) in this paper also presents the
detecting time saved compared with detecting all channels., which is calculated as follow:

EG =
Nc

N
(8)

where Nc is the number of channels clustered by OPTICS algorithm, and N is the total number of
potential channels being clustered. EG is the ratio of clustered channels to the total channels.

The EGs in our work are calculated from the clustering results by OPTICS algorithm with different
ε and MinPts parameters. The maximum Pm and P f obtained from the simulation of NE TV band
channels are compared to the Pm and P f proposed by [20] in Figure 8, while computational complexity
are compared in Table 1. As can be seen from Figure 8 and Table 1, the performance based on OPTICS
algorithm outperforms greatly than the GC algorithm even though the computational complexity of the
former is slightly more, which could be tolerated. Both the prediction performance and computational
complexity based on the OPTICS algorithm outperforms than the MEI algorithm.
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Table 1. Comparison of computational complexity.

OPTICS Algorithm MEI Algorithm GC Algorithm

Time Complexity O(N2) O(N5) O(ln N + 1)

6. Conclusions

In this paper, a wideband spectrum sensing method based on channels clustering and HMM
prediction is presented. The highly correlated channels are clustered by OPTICS algorithm. A DC
is selected in each channel cluster according to the principle of minimum information entropy, and
the states of the other channels (ECs) in the cluster are predicted by HMM. The simulation results
show that the proposed method could effectively improve the sensing performance, and the HMM
based prediction performs better than the direct estimation. If wider band spectrum needs to be
detected, the spectrum resolution could be reduced, which can reduce the amount of data processing
correspondingly. Meanwhile, only one channel needs to be detected in a cluster, so that the method
would be used for fast wideband spectrum sensing. However, the spectrum prediction accuracy
based on statistics cannot meet the needs of cognitive users, which means that it is also just a rough
sensing method in some applications with strict precision requirements. Next, channels will be selected
according to the rough spectrum sensing results and the communication requirements, and then more
accurate and faster spectrum sensing method will be implemented by equipment for the selected
channels. For shadow or fading channels, in order to improve the detection performance, cooperative
spectrum sensing method is essential [30], and decision fusion rules are our important research contents
in the future [31,32].
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