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Abstract: The ILAHS (inhomogeneous linear algebraic hybrid system) is a kind of classic hybrid
system. For the purpose of optimizing the design of ILAHS, one important strategy is to introduce
equivalence to reduce the states. Recent advances in the hybrid system indicate that approximate trace
equivalence can further simplify the design of ILAHS. To address this issue, the paper first introduces
the trajectory metric dtrj for measuring the deviation of two hybrid systems’ behaviors. Given a
deviation ε ≥ 0, the original ILAHS of H1 can be transformed to the approximate ILAHS of H2,
then in trace equivalence semantics,H2 is further reduced toH3 with the same functions, and hence
H1 is ε-approximate trace equivalent to H3. In particular, ε = 0 is a traditional trace equivalence.
We implement an approach based on RealRootClassification to determine the approximation between
the ILAHSs. The paper also shows that the existing approaches are only special cases of our method.
Finally, we illustrate the effectiveness and practicality of our method on an example.

Keywords: approximate equivalence; hybrid system; inhomogeneous linear algebraic hybrid systems;
RealRootClassification

1. Introduction

In the real world, there exist many systems exhibiting a hybrid discrete–continuous behavior,
and the notion of hybrid automaton [1] was introduced to model these hybrid systems. For example,
embedded systems are often modeled as hybrid systems due to their involvement of both digital
control software and analog plants, which physical process is often specified in the form of differential
equations. Infinite states (or state explosion) due to the continuous behavior of the system are
among the most challenging problems in verifying hybrid systems. In the traditional functional
analysis domain, an efficient classical technique to tackle state explosion is equivalence [2,3]. In brief,
the systems with the same functional behaviors are called equivalence. Functional equivalence
simplifies the system by removing the duplicate branches. The papers by Glabbeek [2,3] proposed
fourteen kinds of linear time-branching time equivalence relations, and the completed trace equivalence
is a basic state-space equivalence relation, which can be used to further reduce the states of hybrid
systems [4,5].

However, traditional equivalence techniques are based on absolute precision, which only gives
the answer “yes” or “no”, not how much simulation. There is an example that illustrates that it is
meaningful to introduce the deviation analysis to equivalence. Considering a microwave oven, if the
microwave oven is required to heat to 100 ◦C within 60 s but does so within 60.5 s (this is very common
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in life), and if a 0.5 s deviation is allowable, then the two systems are equivalent, or the two states can be
merged. Otherwise, the two systems are not equivalent, or the two states cannot be merged. Especially
in safety-critical cases, any deviation greater than zero seconds can be viewed as the presence of a
bug. In reality, the parameters of hybrid systems are obtained by all kinds of measurements, which
generally have a small number of errors. Since errors are inevitable, approximation analysis between
the original system and the approximate system is very significant for the given permission precision.

In order to achieve this goal, this paper proceeds by defining two types of metrics, state metric
dsta and trajectory metric dtrj, to check how much a hybrid system H1 conforms to another hybrid
system H2. The dsta measures the distance of the states, while the dtrj specifies the deviation of the
system behaviors. Given a deviation ε ≥ 0, the original ILAHS of H1 can be transformed to the
approximate ILAHS of H2. Then in trace equivalence semantics, H2 is further reduced to H3 with
the same functions, and hence H1 is ε-approximate trace equivalent to H3. In particular, ε = 0 is a
traditional trace equivalence. At last, the decision problem that H1 is ε-approximate to H2 can be
reduced to semi-algebraic system solving (SAS solving) [6–11].

There are several choices for metrics, such as bisimulation metrics [12,13], Lyapunov-like
functions [13], directed metrics [14], and pseudo-ultrametrics [15], most of which are required to
satisfy intricate properties of simulation or bisimulation relations. In contrast, state metric dsta and
trajectory metric dtrj in this paper are based on Euclidean distance, which is an intuitive metric.

In this paper, we focus on a specific class of hybrid systems, namely, inhomogeneous linear
algebraic hybrid systems (ILAHSs for short). It is well known that the most important analysis question
for hybrid systems is the problem of reachability, which is computationally hard and undecidable for
the general case and intractable even for the simplest subclasses [1]. So it is doomed to be impossible to
find a universal approach for this question without any simplifications or restrictions. ILAHSs, which
are ubiquitous in reality, are a kind of classical hybrid systems with some simplifications.

Note that our approximation technology differs from those proposed in the papers [16–20],
which aim to construct an approximately reachable set. Most of the differential equations of hybrid
systems, as we all know, cannot be solved analytically, and, therefore, the exact reachable set cannot
be computed symbolically, so many papers developed a variety of methods that over-approximate
or under-approximate the reachable set using varieties of set representations such as polyhedra [21],
zonotopes [22], level sets, or ellipsoids [23]. Our approximation technology is, however, to identify the
approximate behavior equivalence among the hybrid systems. So far, there exist few papers focused on
the approximation analysis of the ILAHS’ behavior equivalence [4,5,24]. Unfortunately, their methods
are based on Matrix Jordan Standard Type, which only apply to special cases and cannot deal with the
infinite trajectory condition, whereas our method can solve this problem.

The main contributions of this paper are as follows. First, we propose a new method for identifying
equivalence, which applies to more general ILAHS. Second, not only is the finite trajectory condition
defined, but the infinite trajectory condition is also defined. Third, compared to existing approaches,
our method is based on Euclidean distance, which is an intuitive metric.

The remainder of this paper is organized as follows. Section 2 recalls the preliminaries of our
method, including hybrid system, inhomogeneous linear algebraic hybrid systems, SAS, and so on.
We define the approximate completed trace equivalence of ILAHS in Section 3. Section 4 presents a
case study. Conclusions are given in Section 5.

2. Preliminaries

In this section, we recall some concepts used throughout the paper. We first clarify some notation
conventions. We use bold uppercase letters such as A to denote matrices and AT , Ã denote the
transpose and approximate matrix of A, respectively. We use ~b = (b1, . . . , bn) to denote vectors.
We denote (x̂1, x̂2, . . . , x̂n) as an assignment of variables ~x = (x1, . . . , xn).

Hybrid automata, first proposed by Rajeev Alur et al. [25], are a mathematical model to describe
a system containing continuous and discrete components. Many other models for hybrid systems can
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be found in [26–29]. In this paper, we adopt the model proposed in [1] as our modeling framework.
A hybrid system can then be defined as:

Definition 1 (Hybrid System). A hybrid systemH : 〈L, V, T , F, `0, Θ〉 consists of the following components:

• L: a finite set of locations (or modes).
• V: a set of real-valued system variables. The hybrid state space is denoted by Σ = L×R|V|, a state is

denoted by (`,~s) ∈ Σ, and~s ∈ R|V| is a continuous state of the variables over the real numbers.
• T ⊆ L× L× 2V × (V′ 7→ V): a set of discrete transitions. A discrete transition τ = 〈`1, `2, ρτ , ατ〉

consists of the pre- and post-locations of the transition `1, `2, a guard ρτ , which is a boolean function of
the variables V, and an action ατ , which is an assignment over the variables V and V′. V denotes the
current-state variables, and V′ denotes the next-state variables.

• F: L 7→ (V 7→ V): continuous evolution, a map that maps each location ` ∈ L to a differential rule F(`),
of the form v̇i = fi(~v). The differential rule F(`) specifies how the system variables evolve at the location `,
which is also known as a vector field or a flow field.

• I: L 7→ 2V : a map that maps each location ` ∈ L to a location condition (location invariant) that is an
assertion over V.

• `0 ∈ L: the initial location.
• Θ: an assertion specifying the initial condition.

The behaviors of hybrid systems are expressed as trajectories.

Definition 2 (Trajectory). A trajectory of a hybrid system H is an (in)finite sequence of states
〈
`, ~̂v
〉
∈

L×R|V| of the form 〈
`0, ~̂v0

〉
,
〈
`1, ~̂v1

〉
,
〈
`2, ~̂v2

〉
, . . . ,

such that,

Initiation: ~̂v0 |= Θ specifies an initial state. Furthermore, for each consecutive state pair〈
(`i, ~̂vi), (`i+1, ~̂vi+1)

〉
, one of the two evolution conditions below is satisfied:

Discrete evolution: There exists a transition τ : 〈`1, `2, ρτ , ατ〉 ∈ T such that τ is enabled, i.e.,
ρτ(~̂vi) = true and ~̂vi+1 = ατ(~̂vi).

Continuous evolution: `i = `i+1 = `, and there exists a time interval δ > 0, ~̂vi
δ−→ ~̂vi+1, along

with a smooth (continuous and differentiable to all orders) function g : [0, δ] 7→ R|V| such that g evolves from
~̂vi to ~̂vi+1 according to the differential rule at location `, while satisfying the location condition I(`). Formally,

1. g(0) = ~̂vi, g(δ) = ~̂vi+1 and ∀t ∈ [0, δ], g(t) |= I(`);
2. ∀t ∈ [0, δ], 〈g(t), ġ(t)〉 |= F(`).

A state
〈
`, ~̂v
〉

is reachable if it appears in some trajectory ofH. The set of all reachable states ofH
is denoted by Reach(H).

With some restrictions, a hybrid system can be specialized into an inhomogeneous linear algebraic
hybrid system, which is ubiquitous in reality [4,5,24].

Definition 3 (Inhomogeneous linear algebraic hybrid system, ILAHS). ILAHS is a kind of hybrid system

with simplifications: for continuous evolution, F(`) : ~v′ = A~v, where ~v′ δ−→ ~v.

Example 1 (A thermostat). Consider a room being heated by a radiator controlled by a thermostat, one of
the typical introductory examples of hybrid systems. This system has both a continuous state and two discrete
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states. The continuous state is the temperature in the room x ∈ R. The discrete states, L = {on, o f f }, reflect
whether the radiator is on or off. The evolution of x is governed by a differential equation, while the evolution of
L is through jumps. It is very convenient to compactly describe such hybrid systems by mixing the differential
equation with the directed graph notation (shown in Figure 1).

Computers are used as control systems for a wide variety of industrial and consumer devices. However,
the working principle of computers is fundamentally discrete rather than continuous. When the time x is
discretized, the general hybrid system (Figure 1) can be turned into an ILAHS(Figure 2), where





L = {on, o f f },
V = {x},
T = {〈on, α1, o f f 〉 , 〈o f f , α2, on〉}, α1,2 = {x′ = x},
F(on) = {x′ = (1 + K.h.∆t)x},
F(o f f ) = {x′ = (1− K.∆t)x}.

(1)

The ILAHS’ behaviors are expressed as trajectories. For instance, we assume that m = 15, mon = 20, M = 32,
Mo f f = 30, ∆t = 0.1, K = 0.2, and h = 5. If the initial temperature of the room is 25◦C, then one possible
trajectory is as follows (Figure 3):

〈off, 25〉 → 〈off, 24.5〉 → 〈off, 24.01〉 → . . .→ 〈on, 15.09〉 → 〈on, 16.60〉 → . . .

x ax= −

x m x M

onx m

offx M

off on

( 40)x a x= − −

Figure 1. Automaton of a thermostat.
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Fig. 1: A thermostat

The state of the thermostat is specified with the temperature x, and its behavior is expressed
as trajectories of Ttht. For instance, we assume that m = 15, mon = 20, M = 32, Moff = 30,
∆t = 0.1, K = 0.2 and h = 5. If the initial temperature of the room is 25 by the setting init,
then one possible trajectory is as follows:

〈off, 25〉 → 〈off, 24.5〉 → 〈off, 24.01〉 → · · · → 〈off, 15.09〉 →
〈on, 15.09〉 → 〈on, 16.60〉 → · · · .

The change of the temperature is shown by the curve in Fig. 1 (b).

In order to measure elemental distance of states, we extend the Euclidean metric over Rn to
states of semi-algebraic transition systems. The Euclidean metric de : Rn × Rn → [0, 1] over Rn

is defined as follows:

de(s, s
′) =

√
n∑

i=1

(xi − x′
i)
2

1 +

√
n∑

i=1

(xi − x′
i)
2

where s = (x1, . . . , xn) and s′ = (x′
1, . . . , x

′
n). For the set of states State(T) ⊆ Rn, the distance

of sl = 〈l, s〉 , s′l′ = 〈l′, s′〉 with s, s′ ∈ State(T) paired with locations l, l′ is measured by the state
metric dsta(sl, s

′
l′) : (L× Rn)× (L× Rn) → [0, 1] such that

dsta(sl, s
′
l′) =

{
1 if l 6= l′,

de(s, s
′) if l = l′.

(1)

For the sake of notational simplicity, we do not distinguish s and 〈l, s〉 any more, which both refer
to states. For states s1, s2 and ε ∈ [0, 1], if dsta(s1, s2) < ε, then s1 and s2 are ε-neighborhood.

We modify the Baire metric to measure the distance of behaviors of semi-algebraic transition
systems, which are specified as trajectories of systems. All trajectories of the semi-algebraic
transition system T are denoted by Trj(T). Since a trajectory is defined as a sequence of states,
the distance of ρ1, ρ2 ∈ Trj(T) is defined by the trajectory metric dtrj : Trj(T)× Trj(T) → [0, 1]

dtrj(ρ1, ρ2) =

{
0 if ρ1 = ρ2,

2−k otherwise,
(2)

Figure 2. Inhomogeneous linear algebraic hybrid system (ILAHS) of a thermostat.
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The state of the thermostat is specified with the temperature x, and its behavior is expressed
as trajectories of Ttht. For instance, we assume that m = 15, mon = 20, M = 32, Moff = 30,
∆t = 0.1, K = 0.2 and h = 5. If the initial temperature of the room is 25 by the setting init,
then one possible trajectory is as follows:

〈off, 25〉 → 〈off, 24.5〉 → 〈off, 24.01〉 → · · · → 〈off, 15.09〉 →
〈on, 15.09〉 → 〈on, 16.60〉 → · · · .

The change of the temperature is shown by the curve in Fig. 1 (b).

In order to measure elemental distance of states, we extend the Euclidean metric over Rn to
states of semi-algebraic transition systems. The Euclidean metric de : Rn × Rn → [0, 1] over Rn

is defined as follows:

de(s, s
′) =

√
n∑

i=1

(xi − x′
i)
2

1 +

√
n∑

i=1

(xi − x′
i)
2

where s = (x1, . . . , xn) and s′ = (x′
1, . . . , x

′
n). For the set of states State(T) ⊆ Rn, the distance

of sl = 〈l, s〉 , s′l′ = 〈l′, s′〉 with s, s′ ∈ State(T) paired with locations l, l′ is measured by the state
metric dsta(sl, s

′
l′) : (L× Rn)× (L× Rn) → [0, 1] such that

dsta(sl, s
′
l′) =

{
1 if l 6= l′,

de(s, s
′) if l = l′.

(1)

For the sake of notational simplicity, we do not distinguish s and 〈l, s〉 any more, which both refer
to states. For states s1, s2 and ε ∈ [0, 1], if dsta(s1, s2) < ε, then s1 and s2 are ε-neighborhood.

We modify the Baire metric to measure the distance of behaviors of semi-algebraic transition
systems, which are specified as trajectories of systems. All trajectories of the semi-algebraic
transition system T are denoted by Trj(T). Since a trajectory is defined as a sequence of states,
the distance of ρ1, ρ2 ∈ Trj(T) is defined by the trajectory metric dtrj : Trj(T)× Trj(T) → [0, 1]

dtrj(ρ1, ρ2) =

{
0 if ρ1 = ρ2,

2−k otherwise,
(2)

Figure 3. An ILAHS trajectory.

Definition 4 (Metric). For a set X, a metric on X is a function dX : X× X 7→ R+ such that

1. for all x, y ∈ X, dX(x, y) = 0 if and only if x = y;
2. dX(x, y) = dX(y, x), for all x, y ∈ X; and
3. dX(x, z) ≤ dX(x, y) + dX(y, z) for all x, y, z ∈ X.

Note that the condition (1) expresses that dX(x, y) = 0 implies x = y. If dX(x, y) = 0 does not
necessarily mean that x = y, the metric is called a pseudo-metric [12].

Definition 5 (Trace Equivalence). δ ∈ Act∗ is a trace of a process p, if there exists a process q, such that

p δ−→ q. Let T(p) denote the set of traces of p. Two processes p and q are trace equivalent if T(p) = T(q).
In trace semantics, two processes are identified iff they are trace equivalent.

Trace semantics is based on the idea that two processes are to be identified if they allow the same
set of observations, where an observation simply consists of a sequence of actions performed by the
process in succession (Figure 4). More details can be found in the paper [2].

b

o o k

b a l l

b
o o t s

b

a

l l

o o k

t s

Automata in language processing and 
behavioral equivalence

book

ball

boots

ball

book

boots

Figure 4. A trace equivalence example.
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However, Act consists of abstract actions, which are unable to express the exchange details
of the data stream. In 2008, Sankaranarayanan et al. [30] defined a hybrid system program
model with polynomial equations that took the place of abstract actions and opened up a new
method of hybrid system design and verification based on polynomial algebra. For example,
the transition `0

α−→ `1 with α ≡ (x − 1)2 + (x′ − 2)2 + (y′ − 3)2 = 0 indicates the relation
{〈(`0, s0), (`1, s1)〉 |s0 = (1, y) ∧ s1 = (2, 3), y ∈ R}, the variable x refers to the current state, and x′

to the next state of a transition.

Definition 6 (Completed Trace Equivalence). δ ∈ Act∗ is a completed trace of a process p, if there exists a

process q, such that p δ−→ q and I(q) = ∅. Let CT(p) denote the set of completed traces of p. Two processes p
and q are completed trace equivalent if T(p) = T(q) and CT(p) = CT(q). In completed trace semantics, two
processes are identified iff they are completed trace equivalent (Figure 5).

Obviously, the trace equivalence can be regarded as a simpler version of the completed
trace equivalence.

0S

3S 5S

4S

1S

2S

2c

2a

2b
2c

2a

* *

2 2 2 2 2 2 2( ) ( )a b c a b c a+ +

2a

2b

0S

3S 5S

4S

2a

*

2 2 2 2( )a b c a+

2a

2b

CT=
2c

Figure 5. A completed trace equivalence example.

Definition 7 (Semi-Algebraic System). A semi-algebraic system (SAS for short) is a conjunctive polynomial
formula of the following form:





p1(~u,~x) = 0, . . . , pr(~u,~x) = 0,
g1(~u,~x) ≤ 0, . . . , gk(~u,~x) ≤ 0,
gk+1(~u,~x) > 0, . . . , gl(~u,~x) > 0,
h1(~u,~x) 6= 0, . . . , hm(~u,~x) 6= 0,

(2)

where r ≥ 1, l ≥ k ≥ 0, m ≥ 0,~u = (u1, . . . , ut),~x = (x1, . . . , xr), and pi, gi, hi are all in Q[~u,~x] \Q.
An SAS is usually denoted by a quadruple [P,G1,G2,H], where P = [p1, . . . , pr],G1 = [g1, . . . , gk],G2 =

[gk+1, . . . , gl ] and H = [h1, . . . , hm]. An SAS is called parametric if t 6= 0, otherwise it is constant.

For SAS, what we are concerned about is the real solutions of the equations(P) under the
constraints (G1,G2,H). More specifically, assuming S is a constant SAS, the interesting questions are
how to compute the number of real solutions of S, and if the number is finite, how to compute these
real solutions. Assuming S is parametric SAS, the interesting problem is the so-called real solution
classification, which is to determine the condition on the parameters such that the system has the
prescribed number of distinct real solutions, which is possibly infinite.



Information 2019, 10, 340 7 of 15

To address this issue, Yang et al. [6] first defined the key concept of border polynomial(BP), based
on which an algorithm is proposed. For more details, please refer to [7–11]. This algorithm has been
improved and implemented by Xia as the Maple package DISCOVERER [31]. Since 2009, the main
functions of DISCOVERER have been integrated into the RegularChains library of Maple. Since then,
the implementation has been improved by Chen et al. [32–34]. Thus, the experiment in this paper
requires a version of Maple higher than Maple 13.

Example 2. Prove that f ≥ 0 under the constraints a ≥ 0, b ≥ 0, c ≥ 0, abc− 1 = 0, i.e.,

a ≥ 0
b ≥ 0
c ≥ 0
abc− 1 = 0




|= f ≥ 0. (3)

In other words, 



a ≥ 0
b ≥ 0
c ≥ 0 has no solution
abc− 1 = 0
f < 0

(4)

where f = 2b4c4 + 2b3c4a + 2b4c3a + 2a3c3b2 + 2a4c3b + 2a3c4b + 2a4c4 + 2a3b4c + 2a4b4 + 2a3b3c2 +

2a4b3c− 3b5c4a3
6b4c4a4 − 3b5c3a4 − 3b4c3a5 − 3b4c5a3 − 3b3c5a4 − 3b3c4a5.

In order to prove (4) with Maple, we first start Maple and load two relative packages of
RegularChains as follows.

> with(RegularChains):
> with(ParametricSystemTools):
> with(SemiAlgebraicSetTools):

Then we define an order of the unknowns:
> R := PolynomialRing([a, b, c]):

Then, by calling
>RealRootClassification([abc-1],[a,b,c], [-f], [ ], 2, 0, R):

we will know at once that the inequality holds.

3. ε-Approximate Completed Trace Equivalence of ILAHS

In this section, we define ε-approximate completed trace equivalence of ILAHS and propose the
discriminant conditions based on SAS. AssumingH is an ILAHS and T is a trajectory ofH,

〈
`0, ~̂v00

〉 A0−→
〈
`0, ~̂v01

〉 A0−→ . . .
〈
`0, ~̂v0m0

〉 lab01−→
〈
`1, ~̂v10

〉
, . . . , An−→

〈
`n, ~̂vn0

〉
, . . . .

Ai is an original (or theoretical) transition matrix, lab01 is discrete evolution, for simplicity, lab01 : v′i =
vi, and so on. Ãi is an approximate (or actual) matrix with respect to Ai, so we have another trajectory,

〈
`0, ˜̂~v00

〉 Ã0−→
〈
`0, ˜̂~v01

〉 Ã0−→ . . .
〈
`0, ˜̂~v0m0

〉 lab01−→
〈
`1, ˜̂~v10

〉
, . . . , Ãn−→

〈
`n, ˜̂~vn0

〉
, . . . .

If a given derivation ε is allowable, we aim to check whether two trajectories are identical; if every
trajectory of two ILAHSs is identical, the two hybrid systems are identical with respect to derivation ε.

To measure the behavior of the hybrid system, this paper defines two types of metrics based on
the Euclidean metric: the state metric dsta and the trajectory metric dtrj. dsta measures the distance of
states, while dtrj specifies the similarity of two systems’ behaviors.
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Definition 8 (State Metric). State metric dsta is Euclidean metric : Rn ×Rn → [0, 1] such that

dsta

(〈
l, ~̂v
〉

,
〈

l′, ˜̂~v
〉)

=

{
1 i f l 6= l′,

de

(
~̂v, ˜̂~v
)

i f l = l′,

where de

(
~̂v, ˜̂~v
)
=

√
n
∑

i=1
(v̂i − ˜̂vi)2

1 +

√
n
∑

i=1
(v̂i − ˜̂vi)2

.

(5)

If l = l′, dsta

(〈
l, ~̂v
〉

,
〈

l′, ˜̂~v
〉)

can be abbreviated as dsta

(
~̂v, ˜̂~v
)

.

Definition 9 (Trajectory Metric). Trajectory metric dtrj is defined as the minimum distance of relevant
states, i.e.,

dtrj(T1,T2) = min
(

dsta

(〈
l, ~̂vi

〉
,
〈

l, ˜̂~vi

〉))
. (6)

Definition 10 (ε-Approximate States). Given a deviation ε,
〈

l, ~̂v
〉

is ε-approximate to
〈

l′, ˜̂~v
〉

iff

dsta

(〈
l, ~̂v
〉

,
〈

l′, ˜̂~v
〉)
≤ ε.

Definition 11 (ε-Approximate Trajectories). Given a deviation ε and two trajectories T1 and T2, T1 is
ε-approximate to T2 iff dtrj(T1,T2) ≤ ε.

Definition 12 (ε-Approximate Completed Trace Equivalence of ILAHS). Given a deviation ε, if all
completed traces of two ILAHSs are ε-approximate trajectories, then the two ILAHSs are ε-approximate completed
trace equivalence.

In Figure 6, H1 is an original ILAHS, given a deviation ε, H1 and H3 are completed trace
equivalence, in the semantics of completed trace equivalence,H3 is identical toH1.

0S

3S 5S

4S

1S

2S

1c

1a

1b 2c

2a

* *

2 2 2 2 2 2 2( ) ( )a b c a b c a+ +

2a

2b

0S

3S 5S

4S

2a

*

2 2 2 2( )a b c a+

2a

2b

2c

31

CT

Figure 6. An approximate completed trace equivalence example.

Obviously, H3 involves fewer states than H1; in other words, by approximate completed trace
equivalence, the research on hybrid systems can be simplified.

Since there exist two categories of trajectories in completed trace equivalence (Figure 6), the infinite
trajectory (a2b2c2)

∗ and the finite trajectory a2, there are two corresponding decision conditions,
the finite trajectory condition and the infinite trajectory condition. For simplicity, assume discrete
evolution such as lab01 : v′i = vi.
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Definition 13 (Finite Trajectory Condition). For a finite trajectory T1

〈
`0, ~̂v00

〉 A0−→
〈
`0, ~̂v01

〉 A0−→ . . .
〈
`0, ~̂v0m0

〉 lab01−→
〈
`1, ~̂v10

〉
, . . . , An−→

〈
`n, ~̂vnmn

〉
.

such that




~̂v00 ∈ Θ
~v = ~̂v00

~̃v = ~̂v00

~v′ = (Am0
0 Am1

1 . . . Ami
i )~v have no solution for every 0 ≤ i ≤ n.

~̃v
′

= (Ãm0
0 Ãm1

1 . . . Ãmi
i )~̃v

dsta(~v′, ~̃v
′
) > ε

(7)

The infinite trajectory condition is defined by the inductive method.

Definition 14 (Infinite Trajectory Condition). For an infinite trajectory T2

〈
`0, ~̂v00

〉 A0−→
〈
`0, ~̂v01

〉 A0−→ . . .
〈
`0, ~̂v0m0

〉 lab01−→
〈
`1, ~̂v10

〉
, . . . , An−→

〈
`n, ~̂vnmn

〉 labn0−→
〈
`0, ~̂v00′

〉 A0−→ . . . ,

such that

Initiation :

{
~v, ~̃v ∈ Θ
dsta(~v, ~̃v) > ε

(8)

Consecution :





~v′ = (Am0
0 Am1

1 . . . Ami
i )~v

~̃v
′

= (Ãm0
0 Ãm1

1 . . . Ãmi
i )~̃v

dsta(~v′, ~̃v
′
) > ε

(9)

for every 0 ≤ i ≤ n, (8) and (9) have no solution.

The condition Initiation shows that the deviation of two states is initially less than ε; the condition
Consecution shows that deviation less than ε is preserved by the loop.

Complexity Analysis: Take (9) for example. Assuming ~v = {v1, v2, . . . vn}, deg(vi) ≤ 2, 1 ≤ i ≤ n,
our method consists of three main steps. In the first step, we transform the equations of (9) into
triangular sets (i.e., equations in the triangular form) by Ritt–Wu’s method. By [35], the complexity of

this step is O((2n)(2n)O(1)(2 + 1)O
(2n)3

). The second step is to compute a border polynomial (BP) from
the triangularized systems through resultant computation. By [35], the complexity of computing the
BP is at most (2n + 2)O((2n)6n+2n2

(2 + 1)2n3
). Finally, we use the PCAD(partial cylindrical algebraic

decomposition) algorithm with the BP to obtain the real solution classification; the complexity of this
step is at most O(2D24n+8

), where D = O((2n)4n2+8n3
(2 + 1)4n3

), the highest degree of BP.

A Special Case: The approaches proposed in papers [4,5,24] use the Frobenius norm to study
approximate equivalence of real-time linear algebraic hybrid automaton. Their approaches can
only apply to a class of special matrices. We now prove that their approaches are a special case of
our approach.

We first introduce the conclusions in their papers [4,5,24].
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For Aj and its approximate matrix Ãj = A + δAj , which are n × n nonsingular matrices,
the eigenvalues of matrix A are λi(i = 1, . . . , n) ∈ R, and there exists an orthogonal matrix U:

Ak = UT




λk1 ∗
. . .

λkn


U,

Ak + δAk = UT




λk1 + δλk1
∗

. . .
λkn + δλkn


U,

Ak Ak−1 . . . A1 = UT




λ11 . . . λk1 ∗
. . .

λ1n . . . λkn


U,

(Ak + δAk )(Ak−1 + δAk−1
) . . . (A1 + δA1 ) = UT




(λ11 + δλ11 ) . . . (λk1 + δλk1
) ∗

. . .
(λ1n + δλ1n ) . . . (λkn + δλkn

)


U,

δAj = Ãj − Aj, ‖δAj‖2
= rj‖Aj‖2,

δk = (Ak + δAk )(Ak−1 + δAk−1
) . . . (A1 + δA1 )− Ak Ak−1 . . . A1

≤ ((1 + r1) . . . (1 + rk)− 1)‖A1‖2 . . . ‖Ak‖2

≤ (er1+r2 ...+rk − 1)‖A1‖2‖A2‖2 . . . ‖Ak‖2 = Wk.

Then, for a deviation ω and Wk
‖Ak Ak−1 ...A1‖2

≤ ω, if Ak Ak−1 . . . A1 are ω-approximate to (Ak +

δAk )(Ak−1 + δAk−1) . . . (A1 + δA1), ∀h ∈ N+ and 1 ≤ h < k , Ah Ah−1 . . . A1 are ω-approximate to
(Ah + δAh)(Ah−1 + δAh−1) . . . (A1 + δA1).

This conclusion is equivalent to (11) |= (13) for an existing constant ε.

Proof.

∵ d(k)sta (~v
′, ~̃v
′
) = ‖(Ã1 Ã2 . . . Ãk − A1 A2 . . . Ak)~̂v0‖2

= ‖δk~̂v0‖2 ≤ ‖δk‖2‖~̂v0‖2 ≤Wk‖~̂v0‖2

≤ ω‖Ak Ak−1 . . . A1‖2‖~̂v0‖2 = ε,

(10)

∴ 



~̂v0 ∈ Θ
~v = ~̂v0

~̃v = ~̂v0 has no solution,
~v′ = (A1 A2 . . . Ak)~v
~̃v
′

= (Ã1 Ã2 . . . Ãk)~̃v
d(k)sta (~v

′, ~̃v
′
) > ε

(11)

and ∵ d(h)sta (~v
′, ~̃v
′
) = ‖(Ã1 Ã2 . . . Ãh − A1 A2 . . . Ah)~̂v0‖2

= ‖δh~̂v0‖2 ≤ ‖δh‖2‖~̂v0‖2

≤ ((1 + r1)(1 + r2) . . . (1 + rh)− 1)‖A1‖2‖A2‖2 . . . ‖Ah‖2‖~̂v0‖2

≤ ((1 + r1)(1 + r2) . . . (1 + rh) . . . (1 + rk)− 1)‖A1‖2‖A2‖2 . . . ‖Ak‖2‖~̂v0‖2

≤Wk‖~̂v0‖2 ≤ ω‖Ak Ak−1 . . . A1‖2‖~̂v0‖2 = ε,

(12)
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i.e., for every 1 ≤ h < k,





~̂v0 ∈ Θ
~v = ~̂v0

~̃v = ~̂v0 has no solution,
~v′ = (A1 A2 . . . Ah)~v
~̃v
′

= (Ã1 Ã2 . . . Ãh)~̃v
d(h)sta (~v

′, ~̃v
′
) > ε

(13)

in other words, (11) |= (13).

4. Experiments

In this section, we present an example to demonstrate the application of our method to simplify
the ILAHS in approximate completed trace equivalence semantics. Figure 7 is a boiler feed-water
control system, which has both continuous and discrete states and can be modeled as a hybrid system.
For simplicity, we assume that there exist nine discrete locations that are divided according to the
combination of fuel supply (low, high) and outdoor temperature (low, medium, high). rs0 is the
initial location of the system, which does not involve continuous evolution and directly jumps to a
different location by τi. The continuous variables X = (x1, x2)

T ; x1 and x2 stand for water level and
water supply, respectively. The fuel supply and outdoor temperature have an effect on x1 and x2,
and the regulation rules of x1 and x2 conform to their respective differential equations at different
locations rs′i(i = 1, . . . , 8). The initial state of the system X0 = (100, 10)T , and for τi, the discrete
transition program αi : x′1 = x1 ∧ x′2 = x2, labeled by lab. Assuming the duration time at every
location rs′i(i = 1, . . . , 8) is 10 s and the discrete time of continuous evolution is 5 s, Figure 8 is the
corresponding ILAHS.

rs0

rs'1

rs'2

rs'3

rs'4 rs'5

rs'7

rs'6

rs'8

 

5

1

10

6

2

3

4

7

8

9

Figure 7. Automaton of feed-water control system.



Information 2019, 10, 340 12 of 15

H1

s0

s1

s7 s6

s5

s4

s3

s2

lab

f1

f1

lab

lab

f2

f2

s9

s8

f3

f3

s10

labs12

s11

f1

f1

s13

s15

s14

s16

s17

s18 s19

s21

s20

lab

lab

lab

lab

lab

f5

f5

f6

f6

f7

f7

s22

s24

s23

f5

f5

lab

H1

s0

s1

s7 s6

s5

s4

s3

s2

lab

f1

f1

lab

lab

f2

f2

s9

s8

f3

f3

s10

labs12

s11

f1

f1

s13

s15

s14

s16

s17

s18 s19

s21

s20

lab

lab

lab

lab

lab

f5

f5

f6

f6

f7

f7

s22

s24

s23

f5

f5

lab

Figure 8. ILAHS of feed-water control system.

f1, f4 : X′ =

[
111
100

2
5

0 151
100

]
X f8, f5 : X′ =

[
109
100

2
5

0 149
100

]
X

f2 : X′ =

[
111
100

11
111

0 1

]
X f3 : X′ =

[
1 − 51

151
0 100

151

]
X

f6 : X′ =

[
100
109

9
109

0 1

]
X f7 : X′ =

[
1 − 49

149
0 100

149

]
X

The original invariant set is

Inv(rs′1) : {(100 ≤ x1 ≤ 133.69) ∧ (10 ≤ x2 ≤ 22.801)},
Inv(rs′2) : {(112.801 ≤ x1 ≤ 133.69) ∧ (x2 = 22.801)},
Inv(rs′3) : {(100 ≤ x1 ≤ 112.801) ∧ (10 ≤ x2 ≤ 22.801)},
Inv(rs′4) : {(100 ≤ x1 ≤ 133.69) ∧ (10 ≤ x2 ≤ 22.801)},
Inv(rs′5) : {(100 ≤ x1 ≤ 129.13) ∧ (10 ≤ x2 ≤ 22.201)},
Inv(rs′6) : {(112.801 ≤ x1 ≤ 129.13) ∧ (x2 = 22.201)},
Inv(rs′7) : {(100 ≤ x1 ≤ 112.201) ∧ (10 ≤ x2 ≤ 22.201)},
Inv(rs′8) : {(100 ≤ x1 ≤ 129.13) ∧ (10 ≤ x2 ≤ 22.201)}.

Assume Figure 9 is the approximate ILAHS, where

f̃1, f̃4, f̃5, f̃8 : X̃′ =

[
11
10

2
5

0 3
2

]
X,

f̃2, f̃6 : X̃′ =

[
10
11

1
11

0 1

]
X,

f̃3, f̃7 : X̃′ =

[
1 − 1

3
0 2

3

]
X.



Information 2019, 10, 340 13 of 15

H3

s0

s1

s7

s6 s5

s4

s3

s2

lab

lab

lab

s9

s8

s10

lab

s12

s11

lab

1f

1f 3f

3f

2f

2f

1f

1f

H3

s0

s1

s7

s6 s5

s4

s3

s2

lab

lab

lab

s9

s8

s10

lab

s12

s11

lab

1f

1f 3f

3f

2f

2f

1f

1f

Figure 9. Approximate ILAHS.

The approximate invariant set is

˜Inv(rs′1),
˜Inv(rs′4) : {(100 ≤ x1 ≤ 131.4) ∧ (10 ≤ x2 ≤ 22.5)},

˜Inv(rs′5),
˜Inv(rs′8) : {(100 ≤ x1 ≤ 131.4) ∧ (10 ≤ x2 ≤ 22.5)},

˜Inv(rs′2),
˜Inv(rs′6) : {(112.5 ≤ x1 ≤ 131.4) ∧ (x2 = 22.5)},

˜Inv(rs′3),
˜Inv(rs′7) : {(100 ≤ x1 ≤ 112.5) ∧ (10 ≤ x2 ≤ 22.5)}.

The approximate discrete transition program is α̃i : x′1 = x1 ∧ x′2 = x2, labeled by lab.
Given an error derivation ε = 0.1,H1 is ε-approximate completed trace equivalent toH3 (Figure 9),

i.e., in the semantics of completed trace equivalence,H1 is identical toH3, which involves fewer states.
Therefore, the original hybrid automaton (Figure 7) can be reduced to an equivalent but simpler
hybrid automaton (Figure 10), and the design of the hybrid system is optimized with the theory of
approximate completed trace equivalence.

rs0

rs1rs4

rs2

rs3

5
1

2

4

3

Figure 10. Reduced automaton.
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5. Conclusions

With some restrictions, a general hybrid system can be specialized into an inhomogeneous
linear algebraic hybrid system (ILAHS), which is ubiquitous in reality. Since errors are inevitable in
engineering technology, it is meaningful to introduce deviation to the analysis of hybrid systems. Given
an error derivation, this paper first proposes the theory of approximate completed trace equivalence.
Then we come up with a new approach (based on SAS solving) to approximate completed trace
equivalence, and the computation complexity is also analyzed. Finally, a case study is presented
to illustrate the practicality of our method. Compared to the well-established approaches in this
field, our method applies to more general ILAHS. Moreover, this technology is promising for solving
parametric approximate completed trace equivalence. We will address this issue in future work.
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