
 information

Article

Fuzzy Reinforcement Learning and Curriculum
Transfer Learning for Micromanagement in
Multi-Robot Confrontation

Chunyang Hu 1 and Meng Xu 2,*
1 School of Computer Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;

huchunyang@hbuas.edu.cn
2 School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
* Correspondence: menghsu@mail.nwpu.edu.cn

Received: 12 October 2019; Accepted: 30 October 2019; Published: 2 November 2019
����������
�������

Abstract: Multi-Robot Confrontation on physics-based simulators is a complex and time-consuming
task, but simulators are required to evaluate the performance of the advanced algorithms. Recently,
a few advanced algorithms have been able to produce considerably complex levels in the context of the
robot confrontation system when the agents are facing multiple opponents. Meanwhile, the current
confrontation decision-making system suffers from difficulties in optimization and generalization.
In this paper, a fuzzy reinforcement learning (RL) and the curriculum transfer learning are applied
to the micromanagement for robot confrontation system. Firstly, an improved Q-learning in the
semi-Markov decision-making process is designed to train the agent and an efficient RL model is
defined to avoid the curse of dimensionality. Secondly, a multi-agent RL algorithm with parameter
sharing is proposed to train the agents. We use a neural network with adaptive momentum acceleration
as a function approximator to estimate the state-action function. Then, a method of fuzzy logic is used
to regulate the learning rate of RL. Thirdly, a curriculum transfer learning method is used to extend
the RL model to more difficult scenarios, which ensures the generalization of the decision-making
system. The experimental results show that the proposed method is effective.

Keywords: multi-robot confrontation; fuzzy reinforcement learning; curriculum transfer learning;
neural network

1. Introduction

1.1. The Robot Confrontation System

The aim of Artificial Intelligence (AI) is to develop a computer program that can realize human-level
intelligence, self-consciousness, and knowledge application. Multi-Agent Systems (MAS) have recently
become popular as an important means for the study of confrontational decision-making, strategic
behavior in electricity markets [1], and so on. As an effective tool for AI research, the simulation
platform allows the agent to rely on the predefined algorithm to perform various kinds of actions in a
certain scenario, which plays a role in replacing the real physical environment [2]. These simulations
can not only be used as substitutes for the physical environment that can touch but can also be set to
some scenarios that cannot exist in real-life depending on our imagination [3]. Recently, computer
games have been used for AI research, which helps the agent to grow since its birth, including the Atari
video games [4], the imperfect information game and so on [5]. The Multi-Robot Confrontation [6], as a
platform to imitate real battlefields, provides convenience for military command, situation assessment,
and intelligent decision-making, and is also an effective platform to develop AI applications.

Information 2019, 10, 341; doi:10.3390/info10110341 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info10110341
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/11/341?type=check_update&version=2

Information 2019, 10, 341 2 of 22

In this paper, we focus on the robot confrontation system to explore an effective learning method
for agent control. In the robot confrontation system, the condition for the agent is similar to a
decision-making (RTS) game [7]. Real-time strategic games are different from taking turns to play in
board games because it runs in real-time and requires continuous decision-making for agents. RTS
game provides a physical-based simulation environment to study the control of agents with different
learning levels, such as StarCraft [8], Dota 2, and Namco. Reinforcement learning (RL) [9] is an
effective machine learning method and the goal of reinforcement learning for an agent is to learn an
optimal action strategy and obtain optimal rewards. This year, it has attracted extensive attention from
scholars [10–12].

1.2. Machine Learning Algorithms

Machine learning algorithms have been applied in many fields, such as electricity price
forecasting [13]. Generally, machine learning algorithms can be divided into three categories:
supervised learning, unsupervised learning and reinforcement learning. Reinforcement learning
includes value-based RL method [14], policy-based RL method [15], and the hybrid method named
actor-critic [16]. Generally, the RL method is very suitable for sequential real-time scenarios when
these scenarios are modeled as the Markov decision-making sequences or semi-Markov decision
sequences. [17] uses a Q-learning method for evolving a few basic behaviors and learning to flight for
bots in the FPS game of Counter-Strike. The author has carried out experiments on how bots can evolve
its behavior in a more detailed model of the world using the knowledge learned from abstract models.
For the RL method, the learning rate is important, because it affects the performance and convergence
speed of the RL system. However, the performance of the fixed learning rate for RL methods often
encounters bottlenecks. Reference [18] uses a neural network as a function approximator to estimate
the action-value function for a group of units in StarCraft micromanagement. As an effective state
representation, the neural network breaks down the dilemma caused by the large state-action space in
the game scenarios. However, for the neural network, the overcorrection of the weights at one time
may lead to the dilemma of learning instability, which will lead to low learning efficiency. The adaptive
momentum [19] breaks down the dilemma between stability and efficiency.

Recently, deep learning has achieved record-breaking performance in a variety of complex
scenarios, and which provides an opportunity of scaling to problems with infinite state spaces for the
RL algorithms [20]. For StarCraft micromanagement, reference [21] uses the actor-critic algorithm and
Multi-agent Bidirectionally-Coordinated Network (BiCNet) to control bot’s behavior. They model the
dependency of units by the BiCNet, which can handle different types of combats with arbitrary numbers
of AI agents for both sides. However, deep learning requires relatively high computational power
and cannot work on all platforms. As a powerful technology, transfer learning is very effective for
expanding the Machine Learning model to another domain and avoiding many expensive data-labeling
efforts. The relationship between transfer learning and other related machine learning techniques is
discussed in [22].

1.3. Research Motivation in This Work

The main research contents of Multi-Robot Confrontation include situation assessment and
strategy selection. This study focuses on strategy selection. The scenes of Multi-Robot Confrontation
are usually modeled as a semi-Markov decision-making process, and there are some strategy selection
models that are based on classical reinforcement learning. However, these existing models often
have the following four dilemmas. Firstly, most of the reinforcement learning models that are used
for the strategy selection are tabular reinforcement learning methods, and the performance of these
methods becomes worse with the expansion of the state-action space of the learning agent. Secondly,
the learning rate of classical reinforcement learning methods is a fixed value. The process of turning
the learning rate is quite empirical and often costs a lot of time. Thirdly, for the learning model of the
Multi-Robot Confrontation based on RL, most models will use the ε-greedy strategy. This strategy

Information 2019, 10, 341 3 of 22

chooses each action with the same probability, whether good or bad. Finally, the existing works suffer
from generalization dilemma, which causes a learning gap between a known environment and the
unknown environment.

In this work, we investigate the Multi-Robot Confrontation in the semi-Markov decision-making
process. An improved Q-learning algorithm with softmax function is introduced to train an agent in
the semi-Markov decision-making process. A defined state-action space will not be expanded to avoid
the curse of dimensionality due to the scale of the scenario. A reward function of this RL model helps
agents balance losses of our agents and opponents.

1.4. Contributions in This Work

The main contributions of this paper include four parts. Firstly, in order to address the first
dilemma mentioned above, this study introduces a Multi-agent RL algorithm with parameter sharing
to train agents. A neural network (NN) with adaptive momentum is used as a function approximator
to estimate the state-action value function. This NN model not only accelerates the efficiency of
decision-making as an effective state representation but also guarantees the stability of neural network
learning. Secondly, this study introduces an adaptive method with the fuzzy method to adjust the
learning rate for the RL model to tackle the second dilemma. This method has been proved to be effective
in improving the performance of micromanagement in the experiments. Thirdly, in order to address
the third dilemma, we use a Boltzmann distribution to describe a statistical probability that decides
the selection of each action. Fourthly, this study introduces a curriculum transfer learning method to
address the generalization dilemma. This method improves the performance of micromanagement in
different scenarios instead of learning from scratch. Meanwhile, we set the decay function according
to Newton’s cooling law. The decay function can reduce the influence of interference information in
prior experience on a new micromanagement scenario for curriculum transfer learning. As far as the
method itself is concerned, the developed method can be applied not only to the robot confrontation
system but also to other application scenarios, such as Starcraft II.

1.5. Paper Structure

The remainder of the paper is organized as follows: Section 2 is devoted to the background for the
proposed technique, such as reinforcement learning, softmax function. Section 3 presents a learning
model for a single agent and this model uses an improved Q-learning with the fuzzy method. A neural
network with adaptive momentum and the proposed multi-agent RL algorithm with parameter sharing
for Multi-Robot Confrontation are introduced in Section 4. Section 5 introduces a curriculum transfer
learning to address the generalization issue. This method transfers the prior learning experience to
different scenarios without starting from scratch. Experiments are detailed in Section 6, to illustrate the
performance of the proposed learning model. Conclusions are drawn in the last section.

2. Background

2.1. Reinforcement Learning

The goal of reinforcement learning is to obtain an optimal strategy π in which the agent selects
action A under state S, which is given by π(S) = A. The architecture for reinforcement learning is
shown in Figure 1. st is the current state of the agent and st+1 is the next state. at is the current action
that the agent takes. rt is the current reward for the process of st → st+1 . γ is the discount factor. V(s)
is the state value function for the state s. Ta

ss′ is the transition probability from the state s to the next
state s′. Ra

ss′ is the current reward that is obtained from the environment from the state s to the next
state s′. α is the learning rate and its value range is (0, 1).

The agent which is in state st selects action at until the final state is reached, and the cumulative
reward obtained in this process is shown in Equation (1).

Information 2019, 10, 341 4 of 22

R(St) = rt + γrt+1 + γ2rt+2 + . . . = rt + γR(St+1) =
∑
∞

i=0
γirt+i (1)

Information 2019, 11, 341 4 of 22

Figure 1. Reinforcement learning architecture.

The agent which is in state ts selects action ta until the final state is reached, and the
cumulative reward obtained in this process is shown in Equation (1).

2
1 2 1 0

() ... () i
t t t t t t t ii

R S r r r r R S rγ γ γ γ∞
+ + + +=

= + + + = + = (1)

For the reinforcement learning algorithm that uses the future P-step average rewards, the
mathematical expression for the value function ()tV sπ is shown in Equation (2).

() 0

1lim t p
t ttp

V s r
p

π =

=→∞

 
=  

 
 (2)

When an agent takes ta a strategy π , the value function represents the expectation of the
cumulative reward obtained by the agent.

The value function ()V sπ of an agent which is in the state s is given by:

() { } { }
()

2
1 2 3| ... |

(,)
t t t t t t

a a
ss ssa s

V s R s s r r r s s

s a T R V s

π π π

π

γ γ

π γ
+ + +

′ ′′

= Ε = = Ε + + + =

′ = +  
 (3)

Q-Learning is a model-free reinforcement learning algorithm, and it is an off-policy
reinforcement learning algorithm. The Q value (,)Q s a is estimated via the Time Difference Method
(TD Method) [21]:

() []1 1(,) 1 (,) max (,)t t t t t t tQ s a Q s a r Q s aα α γ+ + ′= − + + (4)

where the learning rate reflects the efficiency of an RL algorithm.

2.2. Softmax Function Based on Simulated Annealing

In order to control the randomness of action selection, a simulated annealing (SA) algorithm [23,24]
is used to optimize softmax function. The softmax function is a method for balancing Exploration and
exploitation [25] in the RL method, which chooses the action according to the average reward of each
action, and the probability of the action ta being chosen is higher if the average reward produced by the

action is higher than the average reward produced by the other action.
The probability distribution of the action in the softmax algorithm is based on the Boltzmann

distribution. The probability iP of action ia selected is given by,

()

()
0

i

k

a

iK a
k

e P
e

=

→


 (5)

where iP represents the probability of choosing action ia , and the total number of actions is K .
The action selection policy based on Boltzmann distribution is used to ensure the randomness of the
action selection, and the simulated annealing algorithm is added.

Learning Agent

Envrionment

tS

+1tS

state

reward action

tatr

Figure 1. Reinforcement learning architecture.

For the reinforcement learning algorithm that uses the future P-step average rewards,
the mathematical expression for the value function Vπ(st) is shown in Equation (2).

Vπ(st) = lim
p→∞

(
1
p

∑t=p

t=0
rt

)
(2)

When an agent takes at a strategyπ, the value function represents the expectation of the cumulative
reward obtained by the agent.

The value function Vπ(s) of an agent which is in the state s is given by:

Vπ(s) = Eπ{Rt|st = s} = Eπ
{
rt+1 + γrt+2 + γ2rt+3 + . . .

∣∣∣st = s
}

=
∑

a π(s, a)
∑

s′ Ta
ss′

[
Ra

ss′ + γVπ(s′)
] (3)

Q-Learning is a model-free reinforcement learning algorithm, and it is an off-policy reinforcement
learning algorithm. The Q value Q(s, a) is estimated via the Time Difference Method (TD Method) [21]:

Qt+1(st, a) = (1− α)Qt(st, a) + α[rt + γmaxQt(st+1, a′)] (4)

where the learning rate reflects the efficiency of an RL algorithm.

2.2. Softmax Function Based on Simulated Annealing

In order to control the randomness of action selection, a simulated annealing (SA) algorithm [23,24]
is used to optimize softmax function. The softmax function is a method for balancing Exploration and
exploitation [25] in the RL method, which chooses the action according to the average reward of each
action, and the probability of the action at being chosen is higher if the average reward produced by
the action is higher than the average reward produced by the other action.

The probability distribution of the action in the softmax algorithm is based on the Boltzmann
distribution. The probability Pi of action ai selected is given by,

e(ai)∑K
k=0 e(ak)

→ Pi (5)

where Pi represents the probability of choosing action ai, and the total number of actions is K. The action
selection policy based on Boltzmann distribution is used to ensure the randomness of the action
selection, and the simulated annealing algorithm is added.

In this method, the probability of the action ai being selected is given by,

Information 2019, 10, 341 5 of 22

e(Q(st,ai)/Tt)∑K
k=1 e(Q(st,ak)/Tt)

→ P(ai|st) (6)

where Tt is the temperature parameter. The smaller the temperature parameter is Tmin, the bigger the
probability of action with the high average reward being chosen is Tmax. The temperature value turned
by the simulated annealing is given by,{

Tt+1 = η(Tt − Tmin) + Tmin

T0 = Tmax
(7)

where η is the annealing factor, and the value range is 0 ≤ η ≤ 1.

3. An RL Model for a Single Agent

3.1. An Improved Q-Learning Method in Semi-Markov Decision Processes

For Markov dynamic systems, the stochastic control problems are modeled as Semi-Markov
decision processes (SMDPs) [26,27]. The time cost for the RL system to transit from one state to the
next state is defined as the sojourn time. The robot confrontation process is regarded as an SMDP,
and the agent may take a serial of the same actions before transiting into the next state. The RL
method can diminish the uncertainty resulting from modeling purposely, compared with the dynamic
modeling method.

If our agent defeats the opponents with a better probability, the output of the agent is required
to be more stable in the robot confrontation system for micromanagement. The classical Q-learning
method solves the dilemma of exploration and exploitation using the ε-greedy algorithm, which makes
the agent have a certain probability to explore new actions [28]. However, the probability of each action
being selected is the same when the ε-greedy algorithm is used, so the action that can produce better
rewards is not easy to choose. To tackle the problem of the greedy algorithm for micromanagement
in the robot confrontation system, we design an improved Q-learning with the softmax function,
which can make our agent explore more actions in the early stage of the learning process and exploit
previous experience in the later stage of the learning process. For the learning process of SMDP, in each
epoch, the next state is transited from the current state using the same actions after T learning cycles.{
rt+i

∣∣∣i = 0, 1, 2, . . . , T − 1
}

is the real-time reward. Equations (8)–(10) gives the updating method of the
state-action function.

γQt+1+i(st, at+1+i) + rt+i → Qt+i(st, at+ j), 1 ≤ i < T − 1 (8)

γ
∑

aπ(a
∣∣∣st+1)Q(st+1 , a) + rt+T−1 → Qt+T−1(st, at+T−1)

⇒ γ
∑

a
exp{Q(st+1,a)/Tt}∑
a exp{Q(st+1,a)/Tt}

Q(st+1, a) + rt+T−1 → Qt+T−1(st, at+T−1)
(9)

Qt(st, at) + α(
∑T−1

k=1
Qt+k + rt)/T→ Qt+T(st, at) (10)

where Tt is the temperature parameter.
The detailed step of this algorithm (SSAQ algorithm) is shown in Algorithm 1. The SSAQ

algorithm is a way to solve the dilemma of exploration and exploitation, and this method can output
more stable actions for micromanagement scenarios.

Information 2019, 10, 341 6 of 22

Algorithm 1: SSAQ algorithm for micromanagement

Definition
Tt: = Current temperature parameters
Tt+1: = Next temperature parameters
rt: = Current reward
Tmin: = Minimum temperature parameter
Tmax: = Maximum temperature parameter
α: = Learning rate
γ: = Discount factor
Kt: = The number of actions in t time
f un(): = Updating state-action function in SMDP
Initialization

Initialize st, at, st+1, at+1, rt

each value of Q matrix← arbitrarily value;
Repeat (for each step)

Choose an initial state s0

t← 0 ; i← 0 ;
Repeat (for each step of the episode)

P(at|st) = max
ps:1→Kt

P(aps
k |st) = max

ps:1→Kt

exp[Q(st,a
ps
k)/Tt]

Kt∑
k=1

exp[Q(st,ak)/Tt]

→ at

Observe st+1, after T learning cycles by the same actions at

Obtain reward rt, rt+1, . . . , rt+T−1

P(at+1|st+1) = max
ps:1→Kt

P(aps
k |st+1) = max

ps:1→Kt

exp[Q(st+1,aps
k)/Tt]

Kt∑
k=1

exp[Q(st+1,ak)/Tt]

→ at+1

st ← st+1
t ++

Q(st, at)← f (Q(st+1, at+1), rt, . . . , rt+T−1,α,γ)
until s is terminal.
Until Q matrix is convergence.

3.2. A Reinforcement Learning Method using a Fuzzy System

In order to reduce the learning cost, a learning method using a dynamic learning rate is a good
solution [29]. For the reward function in the RL system, when the reward is positive after using the
RL method, the influence of the positive feedback and a faster learning rate can be ensured by a high
learning rate; on the contrary, a low learning rate can guide the RL method to a faster convergence.
Therefore, there will be a relationship between the obtained reward and the value of the learning
rate. Meanwhile, the reward is a fuzzy concept. For instance, a fixed value does not divide the “large
positive number” and “large negative number”. So, a fuzzy system is used to develop a dynamic
learning rate to improve the performance of this learning system. The reward r is taken as the input of
the fuzzy system and the learning rate αF is taken as the output. We set the fuzzy description of r as
“little negative number, the large negative number, zero, large positive number, little positive number”,
and their abbreviations are shown as “TN, LN, ZO, LP, TP”. We set the fuzzy description of αF as “little
small, very small, medium, very large, little large”, and their abbreviations are shown as “LS, VS, M,
VL, LL”. Figure 2 gives the corresponding fuzzy membership functions. Previous work has shown
that the performance of the fuzzy system is affected by the shape of the membership functions [30].
In the fuzzy system, triangular membership function and trapezoidal membership function are simple
and effective, so we choose these two membership functions.

In Figure 2, {ri|i = 1, 2, . . . , 6} and
{
αF

i

∣∣∣i = 1, 2, . . . , 5
}

are the division points that correspond to
the input and output membership functions respectively. Five different input descriptions, “LP,
TP, ZO, TN, LN” are

{
µr

i (r)
∣∣∣i = 1, . . . , 5

}
, which correspond to each of these membership functions.

Similarly, five fuzzy output descriptions, “VL, LL, M, LS, VS”, correspond to the output membership

Information 2019, 10, 341 7 of 22

functions, expressed as
{
µαF

i (α)
∣∣∣i = 1, . . . , 5

}
. Figure 2 shows the curve for these membership functions.

The degree of trust for the input shows a general mathematical symmetry. We take “LP” as an example,
and its membership function is shown in Equation (11).

Information 2019, 11, 341 7 of 22

Previous work has shown that the performance of the fuzzy system is affected by the shape of the
membership functions [30]. In the fuzzy system, triangular membership function and trapezoidal
membership function are simple and effective, so we choose these two membership functions.

(a) (b)

Figure 2. Curves for the Membership functions. (a) Reward/Input membership function. (b) Learning
rate/Output membership function.

In Figure 2, { }| 1, 2,...,6ir i = and { }| 1, 2,...,5F
i iα = are the division points that correspond

to the input and output membership functions respectively. Five different input descriptions, “LP,
TP, ZO, TN, LN” are { () | 1,...,5}r

i r iμ = , which correspond to each of these membership functions.
Similarly, five fuzzy output descriptions, “VL, LL, M, LS, VS”, correspond to the output membership
functions, expressed as { () | 1,...,5}F

i iαμ α = . Figure 2 shows the curve for these membership
functions. The degree of trust for the input shows a general mathematical symmetry. We take “LP”
as an example, and its membership function is shown in Equation (11).

2

1 3 3 2 2 3

3

1,
() () () ,

0,

r

r r
r r r r r r r r

r r
μ

<
= − − < <
 <

 (11)

The number of discrete points for the input domain is represented by rN . We select five
independent discrete points from the input domain, which are represented by

{ | 1,..., }r r r
jI j N= =I . These five points have their own degrees of truth corresponding to five

fuzzy input descriptions. Equation (12) gives the input degree for the truth discrete matrix

5
[] r

r r
ij N

ID
×

=ID .

()r r r
ij i jID Iμ= (12)

The number of discrete points for the output domain is FM α . We select five independent
discrete points { | 1,..., }F F F

jO j Mα α α= =O from the output domain. Equation (13) shows the

corresponding output degree for the truth discrete matrix
5

[]F F
Fij M

OD α
α α

×
=OD .

()F F F
ij i jOD Oα α αμ= (13)

Then, we design the fuzzy rules, as follows. “If reward is “LP” then the learning rate is “VL”, If
reward is “TP” then learning rate is “LL”, if reward if “ZO” then learning rate is “M”, if reward is
“TN” then learning rate is “LS”, if reward is “LN” then learning rate is “VS””. The fuzzy inference is
represented by []F F

r F

r r
ij N M

r α
α α

×
=RS and Equation (14) gives its mathematical expression.

5

1
()Fr r r

ij ki kjk
r ID ODα

=
= ∨ ∧ (14)

Figure 2. Curves for the Membership functions. (a) Reward/Input membership function. (b) Learning
rate/Output membership function.

µr
1(r) =


1, r < r2

(r3 − r)/(r3 − r2), r2 < r < r3

0, r3 < r
(11)

The number of discrete points for the input domain is represented by Nr. We select five independent

discrete points from the input domain, which are represented by Ir =
{
Ir

j

∣∣∣∣ j = 1, . . . , Nr
}
. These five

points have their own degrees of truth corresponding to five fuzzy input descriptions. Equation (12)
gives the input degree for the truth discrete matrix IDr = [IDr

i j]5×Nr
.

IDr
i j = µr

i (I
r
j) (12)

The number of discrete points for the output domain is MαF . We select five independent discrete

points OαF =
{
OαF

j

∣∣∣∣ j = 1, . . . , MαF

}
from the output domain. Equation (13) shows the corresponding

output degree for the truth discrete matrix ODαF = [ODαF
i j]5×MαF

.

ODαF
i j = µαF

i (OαF
j) (13)

Then, we design the fuzzy rules, as follows. “If reward is “LP” then the learning rate is “VL”,
If reward is “TP” then learning rate is “LL”, if reward if “ZO” then learning rate is “M”, if reward is
“TN” then learning rate is “LS”, if reward is “LN” then learning rate is “VS””. The fuzzy inference is
represented by RSrαF = [rrαF

i j]
Nr×MαF

and Equation (14) gives its mathematical expression.

rrαF
i j =

5
∨

k=1
(IDr

ki ∧ODr
k j) (14)

where “∨” represents the operation of choosing the maximum value. “∧” represents the operation of
choosing the minimum value. The operation of fuzzification transforms the reward r0 into a fuzzy
input vector FIr0 = [FIr0

j]1×Nr
if r0 is measured. The degrees of the truth for r0 corresponding to the

five inputs are
{
µr0

i

∣∣∣µr0
i = µr

i (r0); i = 1, . . . , 5
}
. Equation (15) uses the weighted-average method to

calculate FIr0 .

FIr0
j =

{∑5

i=1
(IDr

i j × µ
r0
i)

}/∑5

k=1
µr0

i (15)

Information 2019, 10, 341 8 of 22

We use the “min-max compose” operation to calculate the fuzzy output vector FOr0 = [FOr0
j]1×MαF

using Equations (14) and (15).

FOαFS
j =

Nr

∨
k=1

(rskj ∧ FIk) (16)

The de-fuzzifying operation uses a weighted average method to transform the fuzzy output into
an output value and the weighted average method is shown in Equation (17).

αFS =
{∑Mα

F

j=1
(FOαFS

j ×Oα
j)

}/∑Mα
F

k=1
FOαFS

j (17)

where the learning rate αFS is the final result of the fuzzy system relative to r0.

4. A Proposed Learning Model for Multi-Robot Confrontation

The classical Q-learning algorithm chooses actions by the look-up table method. However, with
the increase in action space and state space, the look-up table method is obviously no longer suitable,
and which results in low learning efficiency. In order to solve this problem, the RL method based on
the neural network approximating the value function of Q learning is proposed [31]. In the random
task scenarios, the state variable st is used as the input of the neural network and the Q value is used
as the output of the neural network, which is also the estimation of the Q value of the neural network
based on previous experience. This Q value is Qcurrent, and the action that was taken by the agent is the
action corresponding to the maximum Qcurrent. After the agent takes action, the environment will give
agent reward, and the state of the agent will be transferred to st+1. Similarly, the state st+1 is input
into the neural network, and the Q value of the corresponding state st+1 is obtained, which is Qnext.
Finally, Qnext and Qcurrent is used to update the Q value using (4). The gradient descent method is used
to update the gradient of the neural network. The loss function Lt of the neural network is shown in
Equation (18).

Lt = (Q_current∗ −Q_current)
=

{
(1− α)Q_current + α[rt + γmaxQ_next] −Q_current

} (18)

where Q_current∗ is the Q value after the state st is updated by (4), and Q_next is the Q value before the
state st is updated.

4.1. Neural Network Model with Adaptive Momentum

Since the efficient action selection strategy should be considered for micromanagement scenarios,
and our agent’s experience usually has a limited subset of the large state space, it will be difficult to
apply the conventional reinforcement learning to learn an optimal policy. To address this problem,
a BP neural network is used to approximate the state-action values to improve the generalization of
our RL model. An acceleration algorithm using adaptive momentum is considered to be used in the
BP neural network to ensure the efficiency of action selection.

In addition to the output layer and the input layer, the input signal of any neuron j in a layer is
represented by net j. y j is the output signal. y j represents the output signal for the neuron i in the lower
layer. Equation (19) gives the computing method for this output.

net j =
∑

i yiω ji

f (x) = (1−e−bx)a
1+e−bx

y j = f (θ j +
∑

i yiω ji)

(19)

Information 2019, 10, 341 9 of 22

where the constant a = 1.725, b = 0.566, the threshold for a neuron k is represented by θk. In the
output layer, yk is the label output signal for the k− th neuron. netk is the input signal. yk and netk are
computed by Equation (20), if y j is the output signal of the neuron j− th in the hidden layer next to the
output layer. {

netk =
∑

j y jωkj

yk = f (
∑

j y jωkj + θk)
(20)

In the t− th iteration for updating weight, an input value is xp(t). Opk(t), is the label output signal
for the k− th neuron. ypk(t) is the actual output signal. Equation (21) gives the mean square error.

Ep(t) =

∑
k (Opk(t) − ypk(t))2

2
(21)

The weight of this neural network is updated by the back-propagation method. The mean square
error of this neural network is given by Equation (22) if there are Mn input values.

Ep(t) =

∑
p
∑

k (Opk(t) − ypk(t))
2

2Mn
(22)

The weights ωkj(t) is updated according to the gradient direction of Ep(t) to minimize the square
error. The correction of ωkj(t) is ∆pωkj(t), which is given by:

∂Ep(t)
∂ωkj(t)

=
(
∂Ep(t)
∂netk(t)

)
·

(
∂netu(t)
∂ωkj(t)

)
∂netu(t)
∂ωkj(t)

=
∂
∑

j ypj(t)ωkj(t)
∂ωkj(t)

∆pωkj(t) = β∆pωkj(t) − λ
∂Ep(t)

∂ωkj(t+1)

(23)

where the learning rate is λ and the momentum constant is β that is 0.95.
If the learning rate of the neural network is too large, the weight correction ∆pωkj(t) will be too

large, so the stability of the learning process will be affected. Therefore, we use an adaptive learning
rate. α(p) represents the adaptive learning rate, and mean square error is Ep(t). The adaptive learning
rate satisfies Equation (24).

α(p) = 1− exp(−Ep(t)) (24)

If the mean square error increases, the learning rate increases, and the convergence rate of the
neural network accelerate; on the contrary, the neural network tends to be stable.

We set δpk(t) = −
∂Ep(t)
∂netk(t)

, and (25) can be obtained.
f (θk(t) + netk(t))
= ∂

∂netk(t)
(2a

1+exp(−F(θk(t)+netk(t)))
) = (1− ypk(t))ypk(t)

δpk(t) = −
(
∂Ep(t)
∂netk(t)

)
·

(
∂ypk(t)
∂netk(t)

)
= f (θk(t) + netk(t)) · (Opk(t) − ypk(t))

(25)

Therefore, Equation (26) can be obtained. ∆pωkj(t) = β∆pωkj(t) − δpk(t)ypk(t)
δpk(t) = (Opk(t) − ypk(t)) ∂

∂netk(t)
(2a

1+exp(−F(θk(t)+netk(t)))
)

(26)

The updating for the weights is given by Equation (27).

Information 2019, 10, 341 10 of 22


δpj =

∂Ep
∂net j

=
(
∂Ep
∂ypj

)
·

(
∂ypj
∂net j

)
= ypj(ypj − 1)

(
∂Ep
∂ypj

)
∆pω ji = −λ

(
∂Ep
∂net j

)
·

(
∂net j
∂ω ji

)
= λypjδpj

(27)

where,

−
∂Ep
∂ypj

=
∑

k ωkjδpk = −
∑

k

(
∂Ep
∂netk

)
·

(
∂netk
∂ypj

)
=

∑
k (

∂
∑

m ypmωkm
∂ypj

)ypj(1− ypj)
(
∂Ep
∂ypj

)
(28)

Then,
δpj = −ypj(ypj − 1) ·

(∑
δpkωkj

)
(29)

Finally, ∆pω ji = λypiδpj is the correction of the weights for the hidden layer.

4.2. Multi-Agent RL Algorithm Based on Decision-Making Neural Network with Parameter Sharing

In this paper, an accelerated BP neural network with adaptive momentum is used as an
approximator of the state-action value function. In this study, we extend the SSAQ algorithm
to multi-agent by sharing the parameters of the neural network. Agents behave differently because
each one receives different states and actions in the environment. Therefore, it is feasible for multi-agent
to use the same neural network via parameter sharing. The input of the neural network is the agent
state set in this paper, and the output is the state-action value function of the corresponding state.
In order to ensure the continuous actions of the agent, a softmax layer is added after the output layer
of the neural network, and the softmax layer uses the softmax function to select the action for the
agent. Meanwhile, the simulated annealing algorithm is added to the softmax function to adjust the
temperature parameters. This kind of neural network is called a decision-making neural network
(DMNN) in this paper. The neural network is used as the approximator for the SSAQ algorithm
mentioned above, and the learning model for our agents is shown in Figure 3.

As shown in Figure 4, the decision-making neural network includes an input layer, a multilayer
hidden layer, an output layer, and a softmax layer. The state st of the agent is inputted to the input
layer of the decision-making neural network, and the Q value corresponding to the state st is outputted
to the output layer of the decision-making neural network, which is recorded as{

Q(st, at;θ)
∣∣∣i = 1, 2, . . . , Kt

}
.

where θ is the weight vector of the decision-making neural network. The Q values of all actions
are entered into the softmax layer with a non-linear transformation function which is shown in
Equation (30), and the action at is selected and outputted using the Max operation as shown in
Equation (31).

φ(x) = exp(x)/Ti (30)

max
{
φ(x1)/

∑m

i=1
φ(xi),φ(x2)/

∑m

i=1
φ(xi), . . . ,φ(xm)/

∑m

i=1
φ(xi)

}
(31)

Information 2019, 10, 341 11 of 22

Information 2019, 11, 341 11 of 22

state set in this paper, and the output is the state-action value function of the corresponding state. In
order to ensure the continuous actions of the agent, a softmax layer is added after the output layer of
the neural network, and the softmax layer uses the softmax function to select the action for the agent.
Meanwhile, the simulated annealing algorithm is added to the softmax function to adjust the
temperature parameters. This kind of neural network is called a decision-making neural network
(DMNN) in this paper. The neural network is used as the approximator for the SSAQ algorithm
mentioned above, and the learning model for our agents is shown in Figure 3.

As shown in Figure 4, the decision-making neural network includes an input layer, a multilayer
hidden layer, an output layer, and a softmax layer. The state ts of the agent is inputted to the input

layer of the decision-making neural network, and the Q value corresponding to the state ts is
outputted to the output layer of the decision-making neural network, which is recorded as

(){ }, ; | 1, 2,..., t
t tQ s a i Kθ = .

Figure 3. The learning model of agent architecture. The decision-making neural network is used as
the approximator for the state-action function.

Figure 4. Decision-making neural network architecture.

where θ is the weight vector of the decision-making neural network. The Q values of all actions are
entered into the softmax layer with a non-linear transformation function which is shown in Equation (30),
and the action ta is selected and outputted using the Max operation as shown in Equation (31).

() ()exp / ix x Tφ = (30)

() () () () () (){ }1 21 1 1
max / , / ,..., /m m m

i i m ii i i
x x x x x xφ φ φ φ φ φ

= = =   (31)

The agent takes action ta and the environment gives instant rewards ()R t . The RL based on
state-action function stores the state-action function in the form of a table, but this method cannot
solve the large-scale continuous state-space problem, and the powerful generalization ability of the

Figure 3. The learning model of agent architecture. The decision-making neural network is used as the
approximator for the state-action function.

Information 2019, 11, 341 11 of 22

state set in this paper, and the output is the state-action value function of the corresponding state. In
order to ensure the continuous actions of the agent, a softmax layer is added after the output layer of
the neural network, and the softmax layer uses the softmax function to select the action for the agent.
Meanwhile, the simulated annealing algorithm is added to the softmax function to adjust the
temperature parameters. This kind of neural network is called a decision-making neural network
(DMNN) in this paper. The neural network is used as the approximator for the SSAQ algorithm
mentioned above, and the learning model for our agents is shown in Figure 3.

As shown in Figure 4, the decision-making neural network includes an input layer, a multilayer
hidden layer, an output layer, and a softmax layer. The state ts of the agent is inputted to the input

layer of the decision-making neural network, and the Q value corresponding to the state ts is
outputted to the output layer of the decision-making neural network, which is recorded as

(){ }, ; | 1, 2,..., t
t tQ s a i Kθ = .

Figure 3. The learning model of agent architecture. The decision-making neural network is used as
the approximator for the state-action function.

Figure 4. Decision-making neural network architecture.

where θ is the weight vector of the decision-making neural network. The Q values of all actions are
entered into the softmax layer with a non-linear transformation function which is shown in Equation (30),
and the action ta is selected and outputted using the Max operation as shown in Equation (31).

() ()exp / ix x Tφ = (30)

() () () () () (){ }1 21 1 1
max / , / ,..., /m m m

i i m ii i i
x x x x x xφ φ φ φ φ φ

= = =   (31)

The agent takes action ta and the environment gives instant rewards ()R t . The RL based on
state-action function stores the state-action function in the form of a table, but this method cannot
solve the large-scale continuous state-space problem, and the powerful generalization ability of the

Figure 4. Decision-making neural network architecture.

The agent takes action at and the environment gives instant rewards R(t). The RL based on
state-action function stores the state-action function in the form of a table, but this method cannot solve
the large-scale continuous state-space problem, and the powerful generalization ability of the neural
network is used to approximate the value function Q(st, at;θ) for RL, which solves the problem of high
dimensional continuous state space. The proposed method has a good generalization and can be used
in other combat games, such as Starcraft II [18].

To update the weights of the neural network efficiently, the TD error of the RL method is used for
the Loss function for the decision-making neural network. The TD error is shown in Equation (32).
The back propagation algorithm is used to update the weights of neural networks. The Multi-agent
SSAQ algorithm with network parameter sharing is given by Algorithm 2.

Qnext(st, at,θt) = Q(st, at,θt)cur+

α[R(t) + γQ(st+1, at+1,θt) −Q(st, at,θt)cur]

φt = Qnext(st, at,θt) −Q(st, at,θt)cur

(32)

Information 2019, 10, 341 12 of 22

Algorithm 2: Multi-agent SSAQ algorithm

Definition
Tt: = Current temperature parameters
Tt+1: = Next temperature parameters
Tmin: = Minimum temperature parameter
Tmax: = Maximum temperature parameter
αt: = Adaptive learning rate of the neural network
γ: = Discount factor
Kt: = The number of actions in t time
f un(): = Updating state-action function in SMDP
Initialization

Initialize st, at, st+1, at+1, rt

Repeat (for each step)
Choose an initial state s0

t← 0 ; i← 0 ;
Repeat (for each step of the episode)

P(at|st) = max
ps:1→Kt

P(aps
k |st) = max

ps:1→Kt

exp[Q(st,a
ps
k)/Tt]

Kt∑
k=1

exp[Q(st,ak)/Tt]

→ at

Observe st+1, after T learning cycles by the same actions at

Obtain reward rt, rt+1, . . . , rt+T−1

P(at+1|st+1) = max
ps:1→Kt

P(aps
k |st+1) = max

ps:1→Kt

exp[Q(st+1,aps
k)/Tt]

Kt∑
k=1

exp[Q(st+1,ak)/Tt]

→ at+1

Update TD error and weights:
φt ← α[f (Q(st+1, at+1), rt, . . . , rt+T−1,α,γ) −Q(st, at,θt)]

Et ←
1
2φ

2
t ;αt ← 1− exp(−Et)

θt+1 ← θt + αtφt

t ++

until s is terminal.

5. Curriculum Transfer Learning

Curriculum Transfer Learning for Different Micromanagement Scenarios

It will cost a lot of time if the agent starts learning from scratch in a new environment. Many
researchers focus on improving the learning performance by exploiting domain knowledge between
some related tasks. The prior learning experience is exploited from the source task to the target task by
the transfer learning to accelerate the learning rate. Therefore, we use the transfer learning method to
take the well-trained model of source task as the prior experience to build the learning model to the
target task.

In the curriculum transfer learning for micromanagement scenarios in the confrontation
decision-making system, the mapping ρ : π∗pasttime → π∗currenttime represents the process that transfers
the learning policy of the source task to the learning policy of the target task. In this paper, the state
space and action space remain unchanged, as shown in Equation (33).{

ρA : Alast time → Acurrent time
ρS : Slast time → Scurrent time

(33)

Many interference information exists in the learning process. Therefore, we set up a decay function
using the Newton law of cooling. The decay function enables agents to exploit the domain knowledge
with a decreasing probability. A steady-state is achieved eventually. The threshold is ε. Equation (34)
shows the mathematical relationship between the threshold ε and time t. The agent uses the domain

Information 2019, 10, 341 13 of 22

knowledge from the source task if the random number ε < random. Otherwise, the agent uses the
conventional maximum Q value strategy to select an action.

ε(t) = ε(t0) · exp
{
−pt + pt0

}
(34)

where the decay coefficient is p and the initial time is t0. The probability of using the prior experience
from the source task gradually decreases until a stable value is achieved.

If the target task is too difficult compared with the source task, an intermediate task is usually set
up in curriculum transfer learning, and the agent can gain more experience by the learning model for
the intermediate task. The curriculum transfer learning with an intermediate task and decay function
for micromanagement scenarios is shown in Figure 5.

Information 2019, 11, 341 13 of 22

5.1. Curriculum Transfer Learning for Different Micromanagement Scenarios

It will cost a lot of time if the agent starts learning from scratch in a new environment. Many
researchers focus on improving the learning performance by exploiting domain knowledge between
some related tasks. The prior learning experience is exploited from the source task to the target task
by the transfer learning to accelerate the learning rate. Therefore, we use the transfer learning method
to take the well-trained model of source task as the prior experience to build the learning model to
the target task.

In the curriculum transfer learning for micromanagement scenarios in the confrontation
decision-making system, the mapping * *: pasttime currenttimeρ π π→ represents the process that transfers

the learning policy of the source task to the learning policy of the target task. In this paper, the state
space and action space remain unchanged, as shown in Equation (33).

:
:

last time current time

last time current time

A A A
S S S

ρ
ρ

→
 →

 (33)

Many interference information exists in the learning process. Therefore, we set up a decay function
using the Newton law of cooling. The decay function enables agents to exploit the domain knowledge
with a decreasing probability. A steady-state is achieved eventually. The threshold is ε . Equation (34)
shows the mathematical relationship between the threshold ε and time t . The agent uses the
domain knowledge from the source task if the random number randomε < . Otherwise, the agent
uses the conventional maximum Q value strategy to select an action.

0 0() () exp{ }t t pt ptε ε= ⋅ − + (34)

where the decay coefficient is p and the initial time is 0t . The probability of using the prior
experience from the source task gradually decreases until a stable value is achieved.

If the target task is too difficult compared with the source task, an intermediate task is usually
set up in curriculum transfer learning, and the agent can gain more experience by the learning model
for the intermediate task. The curriculum transfer learning with an intermediate task and decay
function for micromanagement scenarios is shown in Figure 5.

Figure 5. Curriculum transfer learning with an intermediate task and decay function.

The integral framework for the proposed learning model for micromanagement is shown in
Figure 6. The proposed method has three parts: the decision-making neural network, the loss function
that uses the TD error for the neural network and a fuzzy method. The state ts of the agent is input

into the neural network, and the neural network outputs the action ta . So is the next state 1ts + . The
reward ()R t is obtained. The TD error is calculated as a loss function and a fuzzy method is used
to adjust the learning rate of the RL method.

Figure 5. Curriculum transfer learning with an intermediate task and decay function.

The integral framework for the proposed learning model for micromanagement is shown in
Figure 6. The proposed method has three parts: the decision-making neural network, the loss function
that uses the TD error for the neural network and a fuzzy method. The state st of the agent is input into
the neural network, and the neural network outputs the action at. So is the next state st+1. The reward
R(t) is obtained. The TD error is calculated as a loss function and a fuzzy method is used to adjust the
learning rate of the RL method.Information 2019, 11, 341 14 of 22

Figure 6. Framework for the proposed method for micromanagement.

6. Experiment and Analysis

Generally, in the robotic systems that are based on reinforcement learning, higher learning rates
enable robots to utilize the previous learning experience. The larger discount rate makes learning
agents think more about long-term returns in the future. For the exploration and exploitation, the ε-
greedy algorithm with a larger threshold allows the learning agent to more utilize prior experience.
In this work, the initial value for the threshold of the decay function is the same as that of the classical
ε-greedy algorithm. In these experiments, the values for the learning rate, the discount factor, the
Exploring rate, the Annealing factor, the Maximum temperature parameter, and the Minimum
temperature parameter are given manually and empirically.

6.1. RL Model for a Confrontation Decision-Making System

Robocode [32,33] is an open-source platform, where the goal is to develop a robot to battle
against other robots. The platform is shown in Figure 7. In this paper, the experiments are conducted
in this platform and we consider several scenarios with the different enemies to test the generalization
of the proposed method.

(a) (b)

Figure 7. Robot confrontation platform. (a) a platform for the tank battle system, (b) diagram of
absolute and relative angles.

Effective state-action space definition of the RL model is still an open problem with no universal
solution. An RL model for robot confrontation with inputs from the game engine is constructed, which
ensures the size of the state-action space remaining unchanged to avoid the curse of dimensionality.

State-space: The combination of the relative direction angle, the absolute orientation angle, and
the distance between the robots form the state space. The absolute direction angle and the relative

Figure 6. Framework for the proposed method for micromanagement.

6. Experiment and Analysis

Generally, in the robotic systems that are based on reinforcement learning, higher learning rates
enable robots to utilize the previous learning experience. The larger discount rate makes learning agents
think more about long-term returns in the future. For the exploration and exploitation, the ε-greedy
algorithm with a larger threshold allows the learning agent to more utilize prior experience. In this

Information 2019, 10, 341 14 of 22

work, the initial value for the threshold of the decay function is the same as that of the classical ε-greedy
algorithm. In these experiments, the values for the learning rate, the discount factor, the Exploring rate,
the Annealing factor, the Maximum temperature parameter, and the Minimum temperature parameter
are given manually and empirically.

6.1. RL Model for a Confrontation Decision-Making System

Robocode [32,33] is an open-source platform, where the goal is to develop a robot to battle against
other robots. The platform is shown in Figure 7. In this paper, the experiments are conducted in this
platform and we consider several scenarios with the different enemies to test the generalization of the
proposed method.

Information 2019, 11, 341 14 of 22

Figure 6. Framework for the proposed method for micromanagement.

6. Experiment and Analysis

Generally, in the robotic systems that are based on reinforcement learning, higher learning rates
enable robots to utilize the previous learning experience. The larger discount rate makes learning
agents think more about long-term returns in the future. For the exploration and exploitation, the ε-
greedy algorithm with a larger threshold allows the learning agent to more utilize prior experience.
In this work, the initial value for the threshold of the decay function is the same as that of the classical
ε-greedy algorithm. In these experiments, the values for the learning rate, the discount factor, the
Exploring rate, the Annealing factor, the Maximum temperature parameter, and the Minimum
temperature parameter are given manually and empirically.

6.1. RL Model for a Confrontation Decision-Making System

Robocode [32,33] is an open-source platform, where the goal is to develop a robot to battle
against other robots. The platform is shown in Figure 7. In this paper, the experiments are conducted
in this platform and we consider several scenarios with the different enemies to test the generalization
of the proposed method.

(a) (b)

Figure 7. Robot confrontation platform. (a) a platform for the tank battle system, (b) diagram of
absolute and relative angles.

Effective state-action space definition of the RL model is still an open problem with no universal
solution. An RL model for robot confrontation with inputs from the game engine is constructed, which
ensures the size of the state-action space remaining unchanged to avoid the curse of dimensionality.

State-space: The combination of the relative direction angle, the absolute orientation angle, and
the distance between the robots form the state space. The absolute direction angle and the relative

Figure 7. Robot confrontation platform. (a) a platform for the tank battle system, (b) diagram of
absolute and relative angles.

Effective state-action space definition of the RL model is still an open problem with no universal
solution. An RL model for robot confrontation with inputs from the game engine is constructed, which
ensures the size of the state-action space remaining unchanged to avoid the curse of dimensionality.

State-space: The combination of the relative direction angle, the absolute orientation angle, and
the distance between the robots form the state space. The absolute direction angle and the relative
direction angle are discretized into four kinds of states and the range of absolute direction angle is
0 ∼ 360◦. We divide the distance between the robots into 20 discrete parts.

Action space: Movement and rotation are two movements for the robot in this platform. At each
time step, each robot can move to arbitrary directions with arbitrary distances in the ground. Similar
to other types of combat games, our robot can choose to attack their opponents with bullets of different
energies. Forward, backward, clockwise rotation and anticlockwise rotation four kinds of different
movements form the action space.

Reward function: If a robot fires bullets hit the enemy or is hit by bullets, the health point of this
robot will change. We propose a reward function to help agent balance losses of our and opponents,
as shown in:

reward(t) =

((Em
t − Em

t−1) − (E
e
t − Ee

t−1)) ∗

∣∣∣Ee
t−1−Ee

t

∣∣∣∣∣∣Em
t −Em

t−1

∣∣∣ (35)

In this reward function, Em
t represents the health point of our agent at t time, Em

t−1 represents the
health point of our agent at the t−1 time, Ee

t represents the health point of the opponent at the t time and
Ee

t−1 represents the health point of the opponent at the t−1 time. If we lose fewer health points than the
opponent loses, we will get a positive reward. The ratio of absolute health point changes between the
two sides will encourage our agent to hurt the opponent more in battle. According to the experimental
results, the RL model is effective at controlling our agent in the micromanagement scenarios.

Information 2019, 10, 341 15 of 22

6.2. Proposed RL Algorithm Test

In order to verify the effectiveness of the proposed SSAQ algorithm, a comparative experiment of
robot migration is designed. The map for robot migration satisfies the binary tree structure. As shown
in Figure 8, there are N layers on the map, and the number of endpoints is 2N

− 1.

Information 2019, 11, 341 15 of 22

direction angle are discretized into four kinds of states and the range of absolute direction angle is
0 ~ 360 . We divide the distance between the robots into 20 discrete parts.

Action space: Movement and rotation are two movements for the robot in this platform. At each
time step, each robot can move to arbitrary directions with arbitrary distances in the ground. Similar
to other types of combat games, our robot can choose to attack their opponents with bullets of
different energies. Forward, backward, clockwise rotation and anticlockwise rotation four kinds of
different movements form the action space.

Reward function: If a robot fires bullets hit the enemy or is hit by bullets, the health point of this
robot will change. We propose a reward function to help agent balance losses of our and opponents,
as shown in:

-1
-1 -1

-1

()
| |(() ())*
| |

e e
m m e e t t
t t t t m m

t t

reward t
E EE E E E
E E

=
−− − −
−

 (35)

In this reward function, m
tE represents the health point of our agent at t time, 1

m
tE − represents

the health point of our agent at the t−1 time, e
tE represents the health point of the opponent at the t

time and 1
e
tE − represents the health point of the opponent at the t−1 time. If we lose fewer health

points than the opponent loses, we will get a positive reward. The ratio of absolute health point
changes between the two sides will encourage our agent to hurt the opponent more in battle.
According to the experimental results, the RL model is effective at controlling our agent in the
micromanagement scenarios.

6.2. Proposed RL Algorithm Test

In order to verify the effectiveness of the proposed SSAQ algorithm, a comparative experiment
of robot migration is designed. The map for robot migration satisfies the binary tree structure. As
shown in Figure 8, there are N layers on the map, and the number of endpoints is 2 1N − .

Figure 8. The experiment for robot migration.

The robot can get the reward corresponding to each endpoint by starting from the beginning
and repeating the branch to the bottom endpoint. A total of 2 1N − actions can be selected by the
robot. The corresponding Q values of each endpoint are expressed as 1 2 1

~ NQ Q
−

. When the robot

reaches the endpoint 2 1N − , it gets a reward of +1000, and it does not get a reward reaching the rest
of the endpoints. Q values can be obtained through experiments. This paper uses the SSAQ method
to compare with the ε-greedy policy (Greedy-policy) and ε-greedy policy using the decay threshold
(Dgreedy-policy) [34]. The settings of parameters for this experiment are listed in Table 1.

…
…
…

…
…
…

…
…
…

begining position

desired position

…
…
…

…
…
…

…
…
…

Reward +1000

Figure 8. The experiment for robot migration.

The robot can get the reward corresponding to each endpoint by starting from the beginning
and repeating the branch to the bottom endpoint. A total of 2N

− 1 actions can be selected by the
robot. The corresponding Q values of each endpoint are expressed as Q1 ∼ Q2N−1. When the robot
reaches the endpoint 2N

− 1, it gets a reward of +1000, and it does not get a reward reaching the rest of
the endpoints. Q values can be obtained through experiments. This paper uses the SSAQ method
to compare with the ε-greedy policy (Greedy-policy) and ε-greedy policy using the decay threshold
(Dgreedy-policy) [34]. The settings of parameters for this experiment are listed in Table 1.

Table 1. Experimental parameters.

Parameter Value

Learning rate α 0.3
Discount rate γ 0.9
Exploring rate ε 0.9

Annealing factor η 0.9
Maximum temperature parameter Tmax 0.1
Minimum temperature parameter Tmin 0.01

Layers of the map N 10

Through the observation during the experiments, it shows that Q3, Q7 and Q15 will change in the
experiment, and we record these Q values. Therefore, the changes in three kinds of Q values of Q3,
Q7 and Q15 are used in the experiment to compare three different strategies. As shown in Figure 9,
the convergence time of the proposed method (SSAQ algorithm) is 214, 168 and 122 for Q3, Q7 and
Q15, respectively. The convergence time of the proposed method is the shortest and the convergence
rate of it is the fastest compared with the other two methods. In addition, the Q-value curve of the
proposed strategy is relatively smooth, which also proves that the proposed strategy is more stable
and can achieve the target state quickly while ensuring the stability of learning performance.

Information 2019, 10, 341 16 of 22

Information 2019, 11, 341 16 of 22

Table 1. Experimental parameters.

Parameter Value
Learning rate α 0.3
Discount rate γ 0.9
Exploring rate ε 0.9

Annealing factor η 0.9
Maximum temperature parameter maxT 0.1

Minimum temperature parameter minT 0.01
Layers of the map N 10

Through the observation during the experiments, it shows that 3Q , 7Q and 15Q will change in

the experiment, and we record these Q values. Therefore, the changes in three kinds of Q values of 3Q ,

7Q and 15Q are used in the experiment to compare three different strategies. As shown in Figure 9,

the convergence time of the proposed method (SSAQ algorithm) is 214, 168 and 122 for 3Q , 7Q and

15Q , respectively. The convergence time of the proposed method is the shortest and the convergence
rate of it is the fastest compared with the other two methods. In addition, the Q-value curve of the
proposed strategy is relatively smooth, which also proves that the proposed strategy is more stable
and can achieve the target state quickly while ensuring the stability of learning performance.

Figure 9. The comparison curve of Q value: (a) The change curve of 3Q ; (b) The change curve of 7Q ;

(c) The change curve of 15Q .

6.3. Effect Test for Multi-Agent RL Based on DMNN and Fuzzy Method

The convergence and stability of the neural network are important factors affecting the
performance of micromanagement for an agent. Hence, this paper proposes a decision-making neural
network with adaptive momentum. In order to verify the effectiveness of the proposed Multi-agent
RL algorithm based on DMNN, a team of agents trained by the neural network with adaptive
momentum (NN with AWM) and another team of tank agents trained by the neural network without

10 80 150 220 290 360 430 500 570 640 710 780 850 920 990 1060 1130 1200 1270 1340 1410 1480
10 80 150 220 290 360 430 500 570 640 710 780 850 920 990 1060 1130 1200 1270 1340 1410 1480

10 80 150 220 290 360 430 500 570 640 710 780 850 920 990 1060 11301200 1270 1340 1410 1480

0
100
200
300

400
500
600
700
800
900

0
100
200
300
400
500
600
700

800
900

1000

0

200

400

600

800

1000

1200

(a) (b)

(c)

Figure 9. The comparison curve of Q value: (a) The change curve of Q3; (b) The change curve of Q7;
(c) The change curve of Q15.

6.3. Effect Test for Multi-Agent RL Based on DMNN and Fuzzy Method

The convergence and stability of the neural network are important factors affecting the performance
of micromanagement for an agent. Hence, this paper proposes a decision-making neural network with
adaptive momentum. In order to verify the effectiveness of the proposed Multi-agent RL algorithm
based on DMNN, a team of agents trained by the neural network with adaptive momentum (NN with
AWM) and another team of tank agents trained by the neural network without adaptive momentum
(NN without AWM) are used to fight the team of tank agents trained by TD method separately. Each
team has four tank agents. The settings of parameters for this experiment are listed in Table 2.

Table 2. Experimental parameters.

Parameter Value

Learning rate of RL α 0.1
Discount rate γ 0.9
Exploring rate ε 0.95

Annealing factor η 0.9
Maximum temperature parameter Tmax 0.1
Minimum temperature parameter Tmin 0.01

Learning rate of Neural network α 0.9
Momentum constant β 0.95

We compare “NN with AWM” and “NN without AWM” from three different perspectives: total
score ratio, defensive score and fluctuation value of score ratio. The number of rounds is 500, and the
score is recorded every 10 rounds. Every 10 rounds are called a session. Figures 10–12 represent the
resulting curve of this experiment, in which the horizontal axis represents the number of sessions and
the vertical axis represents the score ratio or fluctuation value or defensive score. This paper calculates
the first-order difference of the total score ratio, that is, Score ratiot+1 − Score ratiot, and obtains the
fluctuation value curve of the total score ratio, as shown in Figure 11. From the experimental results,
it can be seen that these score ratios of the tank agents trained by the NN with the AWM method

Information 2019, 10, 341 17 of 22

are obviously higher than the NN without AWM method, and the fluctuation value is relatively
small. Figure 12 shows the curve of the defensive score. Similar to Figure 10, the defensive score of
the NN with the AWM method is more stable and higher than the NN without the AWM method.
The experimental results show that the proposed Multi-agent RL algorithm can not only make the tank
agent get higher scores in combat, but also get more stable scores. Hence, we can see that the proposed
method has outstanding performances for micromanagement.

Information 2019, 11, 341 17 of 22

adaptive momentum (NN without AWM) are used to fight the team of tank agents trained by TD
method separately. Each team has four tank agents. The settings of parameters for this experiment
are listed in Table 2.

Table 2. Experimental parameters.

Parameter Value
Learning rate of RLα 0.1

Discount rateγ 0.9
Exploring rateε 0.95

Annealing factor η 0.9
Maximum temperature parameter maxT 0.1

Minimum temperature parameter minT 0.01
Learning rate of Neural networkα 0.9

Momentum constant β 0.95

We compare “NN with AWM” and “NN without AWM” from three different perspectives: total
score ratio, defensive score and fluctuation value of score ratio. The number of rounds is 500, and the
score is recorded every 10 rounds. Every 10 rounds are called a session. Figures 10–12 represent the
resulting curve of this experiment, in which the horizontal axis represents the number of sessions and
the vertical axis represents the score ratio or fluctuation value or defensive score. This paper
calculates the first-order difference of the total score ratio, that is, 1S S t tcore ratio core ratio+ − , and
obtains the fluctuation value curve of the total score ratio, as shown in Figure 11. From the
experimental results, it can be seen that these score ratios of the tank agents trained by the NN with
the AWM method are obviously higher than the NN without AWM method, and the fluctuation
value is relatively small. Figure 12 shows the curve of the defensive score. Similar to Figure 10, the
defensive score of the NN with the AWM method is more stable and higher than the NN without the
AWM method. The experimental results show that the proposed Multi-agent RL algorithm can not
only make the tank agent get higher scores in combat, but also get more stable scores. Hence, we can
see that the proposed method has outstanding performances for micromanagement.

Figure 10. The comparison curve of the total score ratio. Figure 10. The comparison curve of the total score ratio.Information 2019, 11, 341 18 of 22

Figure 11. The curve of the fluctuation value of the total score ratio.

(a) (b)

Figure 12. The curve of the Defensive score. (a) The defensive score of neural network (NN) without
adaptive momentum (AWM); (b) The defensive score of NN with AWM.

A fuzzy method is used to tuning the learning rate for the RL model. The input domain of the
fuzzy method is set as { } { }| 1, 2,...,7 30, 20, 10,0,10, 20,30ir i = = − − − , and the output domain of

the fuzzy method is set as { }| 1, 2,...,7 {0.95,0.80,0.65,0.50,0.35,0.20,0.05}i iα = = . The

number of discrete points is 7. According to the fuzzy method used in this paper, the results of the
fuzzy system are shown in Figure 13. As shown in Figure 13, the fuzzy method converts the linear
input into the smooth output, which is appropriate for micromanagement in the Multi-Robot
Confrontation system. Then, the experimental results of the fuzzy-inspired learning model (FLM),
learning model (LM) with learning rate being 0.2 (LM-0.2) [12] and learning model with learning rate
being 0.95 (LM-0.95) are tested in the Robocode platform, as shown in Figure 14.

Figure 13. Results of the fuzzy method.

Figure 11. The curve of the fluctuation value of the total score ratio.

Information 2019, 11, 341 18 of 22

Figure 11. The curve of the fluctuation value of the total score ratio.

(a) (b)

Figure 12. The curve of the Defensive score. (a) The defensive score of neural network (NN) without
adaptive momentum (AWM); (b) The defensive score of NN with AWM.

A fuzzy method is used to tuning the learning rate for the RL model. The input domain of the
fuzzy method is set as { } { }| 1, 2,...,7 30, 20, 10,0,10, 20,30ir i = = − − − , and the output domain of

the fuzzy method is set as { }| 1, 2,...,7 {0.95,0.80,0.65,0.50,0.35,0.20,0.05}i iα = = . The

number of discrete points is 7. According to the fuzzy method used in this paper, the results of the
fuzzy system are shown in Figure 13. As shown in Figure 13, the fuzzy method converts the linear
input into the smooth output, which is appropriate for micromanagement in the Multi-Robot
Confrontation system. Then, the experimental results of the fuzzy-inspired learning model (FLM),
learning model (LM) with learning rate being 0.2 (LM-0.2) [12] and learning model with learning rate
being 0.95 (LM-0.95) are tested in the Robocode platform, as shown in Figure 14.

Figure 13. Results of the fuzzy method.

Figure 12. The curve of the Defensive score. (a) The defensive score of neural network (NN) without
adaptive momentum (AWM); (b) The defensive score of NN with AWM.

A fuzzy method is used to tuning the learning rate for the RL model. The input domain of
the fuzzy method is set as {ri|i = 1, 2, . . . , 7} = {−30,−20,−10, 0, 10, 20, 30}, and the output domain of
the fuzzy method is set as {αi|i = 1, 2, . . . , 7} = {0.95, 0.80, 0.65, 0.50, 0.35, 0.20, 0.05}. The number of
discrete points is 7. According to the fuzzy method used in this paper, the results of the fuzzy system

Information 2019, 10, 341 18 of 22

are shown in Figure 13. As shown in Figure 13, the fuzzy method converts the linear input into the
smooth output, which is appropriate for micromanagement in the Multi-Robot Confrontation system.
Then, the experimental results of the fuzzy-inspired learning model (FLM), learning model (LM) with
learning rate being 0.2 (LM-0.2) [12] and learning model with learning rate being 0.95 (LM-0.95) are
tested in the Robocode platform, as shown in Figure 14.

Information 2019, 11, 341 18 of 22

Figure 11. The curve of the fluctuation value of the total score ratio.

(a) (b)

Figure 12. The curve of the Defensive score. (a) The defensive score of neural network (NN) without
adaptive momentum (AWM); (b) The defensive score of NN with AWM.

A fuzzy method is used to tuning the learning rate for the RL model. The input domain of the
fuzzy method is set as { } { }| 1, 2,...,7 30, 20, 10,0,10, 20,30ir i = = − − − , and the output domain of

the fuzzy method is set as { }| 1, 2,...,7 {0.95,0.80,0.65,0.50,0.35,0.20,0.05}i iα = = . The

number of discrete points is 7. According to the fuzzy method used in this paper, the results of the
fuzzy system are shown in Figure 13. As shown in Figure 13, the fuzzy method converts the linear
input into the smooth output, which is appropriate for micromanagement in the Multi-Robot
Confrontation system. Then, the experimental results of the fuzzy-inspired learning model (FLM),
learning model (LM) with learning rate being 0.2 (LM-0.2) [12] and learning model with learning rate
being 0.95 (LM-0.95) are tested in the Robocode platform, as shown in Figure 14.

Figure 13. Results of the fuzzy method. Figure 13. Results of the fuzzy method.Information 2019, 11, 341 19 of 22

Figure 14. Comparison of learning results for different learning rates.

The three methods of FLM, LM-0.2, and LM-0.95 were respectively fought with the TD method.
The solid line represents the score of three methods respectively, while the dotted lines represent the
scores of TD methods fighting against three methods. From Figure 14, in FLM, the score ratio remains
at around 0.8. In LM-0.2 and LM-0.95, the score ratio remains at around 0.7. According to the above
results, it can be obtained that the fuzzy method can get a higher score in combat than the method of
the fixed learning rate for micromanagement.

6.4. Effect Test for Curriculum Transfer Learning (TF)

Six tank agents trained by the TD method are formed, which is called “TD_team”, and the
multiple robots in formation will not attack each other. Then, the learning model proposed in this
paper is used to fight the TD_team. Compared to the above experiments, our tank agents will face six
opponents at the same time, as shown in Figure 15. In Figure 15, The agent in the red box is the enemy
team, while the agent in the yellow box is our team.

Figure 15. Simulation experiments for the TF method.

In order to prove the efficiency and practicality of the learning model with curriculum transfer
learning (LM with TF), it is compared with the learning model without curriculum transfer learning
(LM without TF) for 500 rounds.

The tank agent using curriculum transfer learning will use the prior experience gained in the
above experiments. From Figure 16, transfer learning accelerates the learning speed of tank agents in
the new micromanagement scenario and achieves higher scores than the method without transfer
learning. From Figure 17, it is obvious that the defensive score of the LM with the TF method is higher,
which means that the agent can defend the opponent's attack well when attacking opponents. Ten
tank agents trained by the TD method were formed, and then the LM with the TF method and the

Figure 14. Comparison of learning results for different learning rates.

The three methods of FLM, LM-0.2, and LM-0.95 were respectively fought with the TD method.
The solid line represents the score of three methods respectively, while the dotted lines represent the
scores of TD methods fighting against three methods. From Figure 14, in FLM, the score ratio remains
at around 0.8. In LM-0.2 and LM-0.95, the score ratio remains at around 0.7. According to the above
results, it can be obtained that the fuzzy method can get a higher score in combat than the method of
the fixed learning rate for micromanagement.

6.4. Effect Test for Curriculum Transfer Learning (TF)

Six tank agents trained by the TD method are formed, which is called “TD_team”, and the multiple
robots in formation will not attack each other. Then, the learning model proposed in this paper is used
to fight the TD_team. Compared to the above experiments, our tank agents will face six opponents at
the same time, as shown in Figure 15. In Figure 15, The agent in the red box is the enemy team, while
the agent in the yellow box is our team.

Information 2019, 10, 341 19 of 22

Information 2019, 11, 341 19 of 22

Figure 14. Comparison of learning results for different learning rates.

The three methods of FLM, LM-0.2, and LM-0.95 were respectively fought with the TD method.
The solid line represents the score of three methods respectively, while the dotted lines represent the
scores of TD methods fighting against three methods. From Figure 14, in FLM, the score ratio remains
at around 0.8. In LM-0.2 and LM-0.95, the score ratio remains at around 0.7. According to the above
results, it can be obtained that the fuzzy method can get a higher score in combat than the method of
the fixed learning rate for micromanagement.

6.4. Effect Test for Curriculum Transfer Learning (TF)

Six tank agents trained by the TD method are formed, which is called “TD_team”, and the
multiple robots in formation will not attack each other. Then, the learning model proposed in this
paper is used to fight the TD_team. Compared to the above experiments, our tank agents will face six
opponents at the same time, as shown in Figure 15. In Figure 15, The agent in the red box is the enemy
team, while the agent in the yellow box is our team.

Figure 15. Simulation experiments for the TF method.

In order to prove the efficiency and practicality of the learning model with curriculum transfer
learning (LM with TF), it is compared with the learning model without curriculum transfer learning
(LM without TF) for 500 rounds.

The tank agent using curriculum transfer learning will use the prior experience gained in the
above experiments. From Figure 16, transfer learning accelerates the learning speed of tank agents in
the new micromanagement scenario and achieves higher scores than the method without transfer
learning. From Figure 17, it is obvious that the defensive score of the LM with the TF method is higher,
which means that the agent can defend the opponent's attack well when attacking opponents. Ten
tank agents trained by the TD method were formed, and then the LM with the TF method and the

Figure 15. Simulation experiments for the TF method.

In order to prove the efficiency and practicality of the learning model with curriculum transfer
learning (LM with TF), it is compared with the learning model without curriculum transfer learning
(LM without TF) for 500 rounds.

The tank agent using curriculum transfer learning will use the prior experience gained in the
above experiments. From Figure 16, transfer learning accelerates the learning speed of tank agents
in the new micromanagement scenario and achieves higher scores than the method without transfer
learning. From Figure 17, it is obvious that the defensive score of the LM with the TF method is higher,
which means that the agent can defend the opponent’s attack well when attacking opponents. Ten tank
agents trained by the TD method were formed, and then the LM with the TF method and the LM
without TF method were used to fight against them respectively. The task of fighting TD_team is
regarded as the intermediate task of this task because it is more difficult than the original task. From
Figure 18, the score ratio of the LM with the TF method is still higher than that of the LM without the
TF method, which means the learning model with curriculum transfer learning has a strong and stable
property for micromanagement scenarios in confrontation decision-making system.

Information 2019, 11, 341 20 of 22

LM without TF method were used to fight against them respectively. The task of fighting TD_team
is regarded as the intermediate task of this task because it is more difficult than the original task.
From Figure 18, the score ratio of the LM with the TF method is still higher than that of the LM
without the TF method, which means the learning model with curriculum transfer learning has a
strong and stable property for micromanagement scenarios in confrontation decision-making system.

Figure 16. Comparisons of learning models in score ratio. One model uses transfer learning, the other
does not use transfer learning.

(a) (b)

Figure 17. Comparisons of learning models in the defensive score. (a) The defensive score for LM with
TF and TD_team; (b) Defensive score for LM without TF and TD_team.

Figure 18. Comparisons of learning models in score ratio.

7. Conclusions

In this paper, the confrontation decision-making for micromanagement scenarios in SMDP is
studied. This paper makes several contributions, including an improved Q-learning in SMDP (SSAQ
algorithm) for confrontation decision-making, the fuzzy method for adjusting learning rate of the RL

Figure 16. Comparisons of learning models in score ratio. One model uses transfer learning, the other
does not use transfer learning.

Information 2019, 10, 341 20 of 22

Information 2019, 11, 341 20 of 22

LM without TF method were used to fight against them respectively. The task of fighting TD_team
is regarded as the intermediate task of this task because it is more difficult than the original task.
From Figure 18, the score ratio of the LM with the TF method is still higher than that of the LM
without the TF method, which means the learning model with curriculum transfer learning has a
strong and stable property for micromanagement scenarios in confrontation decision-making system.

Figure 16. Comparisons of learning models in score ratio. One model uses transfer learning, the other
does not use transfer learning.

(a) (b)

Figure 17. Comparisons of learning models in the defensive score. (a) The defensive score for LM with
TF and TD_team; (b) Defensive score for LM without TF and TD_team.

Figure 18. Comparisons of learning models in score ratio.

7. Conclusions

In this paper, the confrontation decision-making for micromanagement scenarios in SMDP is
studied. This paper makes several contributions, including an improved Q-learning in SMDP (SSAQ
algorithm) for confrontation decision-making, the fuzzy method for adjusting learning rate of the RL

Figure 17. Comparisons of learning models in the defensive score. (a) The defensive score for LM with
TF and TD_team; (b) Defensive score for LM without TF and TD_team.

Information 2019, 11, 341 20 of 22

LM without TF method were used to fight against them respectively. The task of fighting TD_team
is regarded as the intermediate task of this task because it is more difficult than the original task.
From Figure 18, the score ratio of the LM with the TF method is still higher than that of the LM
without the TF method, which means the learning model with curriculum transfer learning has a
strong and stable property for micromanagement scenarios in confrontation decision-making system.

Figure 16. Comparisons of learning models in score ratio. One model uses transfer learning, the other
does not use transfer learning.

(a) (b)

Figure 17. Comparisons of learning models in the defensive score. (a) The defensive score for LM with
TF and TD_team; (b) Defensive score for LM without TF and TD_team.

Figure 18. Comparisons of learning models in score ratio.

7. Conclusions

In this paper, the confrontation decision-making for micromanagement scenarios in SMDP is
studied. This paper makes several contributions, including an improved Q-learning in SMDP (SSAQ
algorithm) for confrontation decision-making, the fuzzy method for adjusting learning rate of the RL

Figure 18. Comparisons of learning models in score ratio.

7. Conclusions

In this paper, the confrontation decision-making for micromanagement scenarios in SMDP is
studied. This paper makes several contributions, including an improved Q-learning in SMDP (SSAQ
algorithm) for confrontation decision-making, the fuzzy method for adjusting learning rate of the
RL method, Multi-agent RL algorithm with parameter sharing, accelerated neural network for the
representation of state (DMNN) and a curriculum transfer learning method with decay function.
The RL model designed ensures the size of the state-action space remaining unchanged to avoid
the curse of dimensionality and the reward function to help agent balance losses of our agents
and opponents. The decision-making neural network uses adaptive momentum, which is used as
an approximator to estimate the state-action function. The accelerated algorithm using adaptive
momentum allows the decision-making neural network to react quickly in micromanagement scenarios.
Finally, the curriculum transfer learning method with the decay function extends our model to other
different scenarios. The proposed transfer learning method can still achieve better experimental
results in more complex confrontation scenarios. The results of experiments demonstrate proposed
methods can achieve an excellent and stable control for micromanagement in robot confrontation
system. In the future, we will extend this model to the game scenario of Starcraft II. In addition,
the behavior decomposition methods [35–38] will be studied to achieve more advanced Multi-agent
confrontation strategies.

Author Contributions: C.H. and M.X. conceived the idea of the paper. C.H. and M.X. designed and performed
the experiments; C.H. and M.X. analyzed the data; C.H. contributed reagents/materials/analysis tools; C.H. wrote
and revised the paper.

Information 2019, 10, 341 21 of 22

Funding: This work is supported in part by the Natural Science Foundation of Hubei Province under Grant
2013CFC026, the Shaanxi Province Key Research and Development Program of China under Grant 2018GY-187.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J.
Forecast. 2014, 4, 1030–1081. [CrossRef]

2. Ferreira, L.N.; Toledo, C.; Tanager, A. Generator of Feasible and Engaging Levels for Angry Birds. IEEE Trans.
Games 2017, 10, 304–316. [CrossRef]

3. Hiller, J.; Reindl, L.M. A computer simulation platform for the estimation of measurement uncertainties in
dimensional X-ray computed tomography. Measurement 2012, 45, 2166–2182. [CrossRef]

4. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518,
529–533. [CrossRef] [PubMed]

5. Moravik, M.; Schmid, M.; Burch, N.; Lisy, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.;
Bowling, M. Deepstack: Expert level artificial intelligence in heads-up no-limit poker. Science 2017, 356,
508–513. [CrossRef]

6. Yao, W.; Lu, H.; Zeng, Z.; Xiao, J.; Zheng, Z. Distributed Static and Dynamic Circumnavigation Control with
Arbitrary Spacings for a Heterogeneous Multi-robot System. J. Intell. Robot. Syst. 2018, 4, 1–23. [CrossRef]

7. Ontanon, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.; Churchill, D.; Preuss, M.A. Survey of Real-Time Strategy
Game AI Research and Competition in StarCraft. IEEE Trans. Comput. Intell. AI Games 2013, 5, 293–311.
[CrossRef]

8. Synnaeve, G.; Bessiere, P. Multiscale Bayesian Modeling for RTS Games: An Application to StarCraft AI.
IEEE Trans. Comput. Intell. AI Games 2016, 8, 338–350. [CrossRef]

9. Thrun, S.; Littman, M.L. Reinforcement Learning: An Introduction. IEEE Trans. Neural Netw. 2005, 16,
285–286.

10. Shi, H.; Li, X.; Hwang, K.S.; Pan, W.; Xu, G. Decoupled Visual Servoing With Fuzzy Q-Learning. IEEE Trans.
Ind. Inform. 2018, 14, 241–252. [CrossRef]

11. Shi, H.; Lin, Z.; Zhang, S.; Li, X.; Hwang, K.S. An adaptive Decision-making Method with Fuzzy Bayesian
Reinforcement Learning for Robot Soccer. Inform. Sci. 2018, 436, 268–281. [CrossRef]

12. Xu, M.; Shi, H.; Wang, Y. Play games using Reinforcement Learning and Artificial Neural Networks with
Experience Replay. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and
Information Science (ICIS), Singapore, 6–8 June 2018; pp. 855–859.

13. Cincotti, S.; Gallo, G.; Ponta, L.; Raberto, M. Modeling and forecasting of electricity spot-prices: Computational
intelligence vs. classical econometrics. AI Commun. 2014, 3, 301–314.

14. Geramifard, A.; Dann, C.; Klein, R.H.; Dabney, W.; How, J.P. RLPy. A value-function-based reinforcement
learning framework for education and research. J. Mach. Learn. Res. 2015, 16, 1573–1578.

15. Modares, H.; Lewis, F.L.; Jiang, Z.P. Optimal Output-Feedback Control of Unknown Continuous-Time Linear
Systems Using Off-policy Reinforcement Learning. IEEE Trans. Cybern. 2016, 46, 2401–2410. [CrossRef]
[PubMed]

16. Konda, V. Actor-critic algorithms. Siam J. Control Optim. 2003, 42, 1143–1166. [CrossRef]
17. Patel, P.G.; Carver, N.; Rahimi, S. Tuning computer gaming agents using Q-learning. In Proceedings of the

Computer Science and Information Systems (FedCSIS), Szczecin, Poland, 18–21 September 2011; pp. 581–588.
18. Shao, K.; Zhu, Y.; Zhao, D. StarCraft Micromanagement with Reinforcement Learning and Curriculum

Transfer Learning. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 3, 73–84. [CrossRef]
19. Xu, D.; Shao, H.; Zhang, H.A. New adaptive momentum algorithm for split-complex recurrent neural

networks. Neurocomputing 2012, 93, 133–136. [CrossRef]
20. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
21. Peng, P.; Yuan, Q.; Wen, Y.; Yang, Y.; Tang, Z.; Long, H.; Wang, J. Multi-agent bidirectionally-coordinated nets

for learning to play StarCraft combat games. arXiv 2017, arXiv:1703.10069.
22. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.

[CrossRef]

http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
http://dx.doi.org/10.1109/TCIAIG.2017.2766218
http://dx.doi.org/10.1016/j.measurement.2012.05.030
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1126/science.aam6960
http://dx.doi.org/10.1007/s10846-018-0906-5
http://dx.doi.org/10.1109/TCIAIG.2013.2286295
http://dx.doi.org/10.1109/TCIAIG.2015.2487743
http://dx.doi.org/10.1109/TII.2016.2617464
http://dx.doi.org/10.1016/j.ins.2018.01.032
http://dx.doi.org/10.1109/TCYB.2015.2477810
http://www.ncbi.nlm.nih.gov/pubmed/28113995
http://dx.doi.org/10.1137/S0363012901385691
http://dx.doi.org/10.1109/TETCI.2018.2823329
http://dx.doi.org/10.1016/j.neucom.2012.03.013
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TKDE.2009.191

Information 2019, 10, 341 22 of 22

23. Gil, P.; Rez, M.; Mez, M.; Gómez, A.F.S. Building a reputation-based bootstrapping mechanism for newcomers
in collaborative alert systems. J. Comput. Syst. Sci. 2014, 80, 571–590.

24. Bertsimas, D.; Tsitsiklis, J. Simulated Annealing. Stat. Sci. 1993, 8, 10–15. [CrossRef]
25. Shi, H.; Yang, S.; Hwang, K.; Chen, J.; Hu, M.; Zhang, H. A Sample Aggregation Approach to Experiences

Replay of Dyna-Q Learning. IEEE Access 2018, 6, 37173–37184. [CrossRef]
26. Shi, H.; Xu, M.; Hwang, K. A Fuzzy Adaptive Approach to Decoupled Visual Servoing for a Wheeled Mobile

Robot. IEEE Trans. Fuzzy Syst. 2019. [CrossRef]
27. Shi, H.; Lin, Z.; Hwang, K.S.; Yang, S.; Chen, J. An Adaptive Strategy Selection Method with Reinforcement

Learning for Robotic Soccer Games. IEEE Access 2018, 6, 8376–8386. [CrossRef]
28. Choi, S.Y.; Le, T.; Nguyen, Q.; Layek, M.A.; Lee, S.; Chung, T. Toward Self-Driving Bicycles Using

State-of-the-Art Deep Reinforcement Learning Algorithms. Symmetry 2019, 11, 290. [CrossRef]
29. Zhao, G.; Tatsumi, S.; Sun, R. RTP-Q: A Reinforcement Learning System with Time Constraints Exploration

Planning for Accelerating the Learning Rate. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 1999, 82,
2266–2273.

30. Basyigit, A.I.; Ulu, C.; Guzelkaya, M. A New Fuzzy Time Series Model Using Triangular and Trapezoidal
Membership Functions. In Proceedings of the International Work-Conference On Time Series, Granada,
Spain, 25–27 June 2014; pp. 25–27.

31. Zhou, Q.; Shi, P.; Xu, S.; Li, H. Observer-based adaptive neural network control for nonlinear stochastic
systems with time delay. IEEE Trans. Neural Netw. Learn. Syst. 2012, 24, 71–80. [CrossRef]

32. Harper, R. Evolving Robocode tanks for Evo Robocode. Genet. Program. Evol. Mach. 2014, 15, 403–431.
[CrossRef]

33. Woolley, B.G.; Peterson, G.L. Unified Behavior Framework for Reactive Robot Control. J. Intell. Robot. Syst.
2009, 55, 155–176. [CrossRef]

34. Auer, P.; Cesabianchi, N.; Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Mach. Learn.
2002, 47, 235–256. [CrossRef]

35. Shi, H.; Xu, M. A Multiple Attribute Decision-Making Approach to Reinforcement Learning. IEEE Trans.
Cogn. Dev. Syst. 2019. [CrossRef]

36. Shi, H.; Xu, M. A Data Classification Method Using Genetic Algorithm and K-Means Algorithm with
Optimizing Initial Cluster Center. In Proceedings of the 2018 IEEE International Conference on Computer
and Communication Engineering Technology (CCET), Beijing, China, 18–20 August 2018; pp. 224–228.

37. Xu, M.; Shi, H.; Jiang, K.; Wang, L.; Li, X.A. Fuzzy Approach to Visual Servoing with A Bagging Method
for Wheeled Mobile Robot. In Proceedings of the 2019 IEEE International Conference on Mechatronics and
Automation, Tianjin, China, 4–7 August 2019; pp. 444–449.

38. Shi, H.; Xu, M.; Hwang, K.; Cai, B.Y. Behavior Fusion for Deep Reinforcement Learning. ISA Trans. 2019.
[CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/ss/1177011077
http://dx.doi.org/10.1109/ACCESS.2018.2847048
http://dx.doi.org/10.1109/TFUZZ.2019.2931219
http://dx.doi.org/10.1109/ACCESS.2018.2808266
http://dx.doi.org/10.3390/sym11020290
http://dx.doi.org/10.1109/TNNLS.2012.2223824
http://dx.doi.org/10.1007/s10710-014-9224-2
http://dx.doi.org/10.1007/s10846-008-9299-1
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1109/TCDS.2019.2924724
http://dx.doi.org/10.1016/j.isatra.2019.08.054
http://www.ncbi.nlm.nih.gov/pubmed/31543262
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Robot Confrontation System
	Machine Learning Algorithms
	Research Motivation in This Work
	Contributions in This Work
	Paper Structure

	Background
	Reinforcement Learning
	Softmax Function Based on Simulated Annealing

	An RL Model for a Single Agent
	An Improved Q-Learning Method in Semi-Markov Decision Processes
	A Reinforcement Learning Method using a Fuzzy System

	A Proposed Learning Model for Multi-Robot Confrontation
	Neural Network Model with Adaptive Momentum
	Multi-Agent RL Algorithm Based on Decision-Making Neural Network with Parameter Sharing

	Curriculum Transfer Learning
	Experiment and Analysis
	RL Model for a Confrontation Decision-Making System
	Proposed RL Algorithm Test
	Effect Test for Multi-Agent RL Based on DMNN and Fuzzy Method
	Effect Test for Curriculum Transfer Learning (TF)

	Conclusions
	References

