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Abstract: Role-based access control (RBAC) is one of the most popular access-control mechanisms
because of its convenience for management and various security policies, such as cardinality
constraints, mutually exclusive constraints, and user-capability constraints. Role-engineering
technology is an effective method to construct RBAC systems. However, mining scales are very
large, and there are redundancies in the mining results. Furthermore, conventional role-engineering
methods not only do not consider more than one cardinality constraint, but also cannot ensure
authorization security. To address these issues, this paper proposes a novel method called
role-engineering optimization with cardinality constraints and user-oriented mutually exclusive
constraints (REO_CCUMEC). First, we convert the basic role mining into a clustering problem,
based on the similarities between users and use-partitioning and compression technologies,
in order to eliminate redundancies, while maintaining its usability for mining roles. Second,
we present three role-optimization problems and the corresponding algorithms for satisfying single
or double cardinality constraints. Third, in order to evaluate the performance of authorizations in
a role-engineering system, the maximal role assignments are implemented, while satisfying multiple
security constraints. The theoretical analyses and experiments demonstrate the accuracy, effectiveness,
and efficiency of the proposed method.

Keywords: role engineering; role mining; role assignments; cardinality constraints; user-oriented
mutually exclusive constraints

1. Introduction

With the rapid development and comprehensive application of network-information technology,
there are considerable amounts of storage and many exchanges in large-scale and complex
information-management systems [1]. Determining how to ensure the security of system data and
user information has attracted much interest. Numerous enterprises and organizations have adopted
role-based access control (RBAC) as their main access-control mechanism, since the employment of
RBAC is not only convenient and flexible, but also reduces the computational complexity of problems
and alleviates the management burdens of systems [2–7]. With the successful implementation of RBAC
systems, devising an accurate and effective set of roles and constructing a good RBAC system, that can
satisfy actual application requirements, have become critical tasks. Role-engineering technology [8,9],
which aims to migrate from non-RBAC systems to RBAC systems, has been proposed. There are two
main approaches to this process: Top-down [10] and bottom-up [11–15]. The former devises roles by
analyzing and decomposing business processes into smaller units that are associated with the needed
permissions. However, this approach is time-consuming and labor-intensive when there are tens of
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thousands of users and millions of permissions. The latter starts from the original user-permission
assignments and aggregates them into roles by applying data mining techniques, which is also known
as role mining. This latter approach has gained considerable attention in recent years.

To discover interesting roles from existing permission assignments, two algorithms called the
Complete Miner and Fast Miner are proposed [16]. Both algorithms use subset enumeration and
allow overlapping roles. While the first algorithm can enumerate all potential roles, its computational
complexity is exponential. The second algorithm improves the mining process, and its computational
complexity is remarkably reduced. However, it identifies only a partial set of roles. The Fast Miner is
sufficient for practical applications. Vaidya et al. [17] converted role mining into a matrix-decomposition
problem and presented a definition for a basic role mining problem (basic RMP). Basic RMP has been
proven to be NP-complete, for which several existing studies have already been done to find efficient
solutions. According to different optimization objectives for role mining, many other approaches have
been proposed, such as δ-approx RMP [17], min-noise RMP [17], edge RMP [18], usage RMP [19],
and user-oriented exact RMP [20].

Essentially, role mining is the task of clustering users with identical or similar permissions and
constructing different roles with these permissions. Indeed, many roles contain several identical
permissions and are frequently assigned to users. Frequently usable roles can facilitate the management
and maintenance of the system and decompose the set of users into clusters of users with different
attribute characteristics [21]. However, the analysis of mining, resulting from large-scale clusters,
is complex [22]. On the other hand, a fairly small number of roles may not be assigned or assigned to
only a small number of users. These roles are not frequently used, so they are redundant roles. Thus,
owing to the diversity of system resources and the variability of resource access, there are redundancies
in the mining results that use conventional methods.

A key characteristic of RBAC is that it allows the specification and enforcement of various security
policies [23–25], such as cardinality constraints, which can reflect the security policies of different
organizations and ensure system security. For example, the general-manager role in a company must
be assigned to only one person; ordinary users should not have too many roles, otherwise there is the
possibility for users to abuse their privileges (e.g., the fewer roles assigned to the permission of opening
a safe, the better). There are four different types of cardinality constraints [26]: (1) User-role cardinality
constraint (UCC), (2) permission-role cardinality constraint (PCC), (3) role-user cardinality constraint
(RUC), and (4) role-permission cardinality constraint (RPC). In the approaches for role optimization
with cardinality constraints, most existing methods not only do not consider more than one constraint,
but also cannot determine whether other security constraints are met in the constructed RBAC system.

Furthermore, mutually exclusive constraints and user-capability constraints are also essential
components in the enforcement of security policies, especially in the process of role assignments.
The most commonly used constraint, which is called the statically-mutually-exclusive-roles (SMER)
constraint, aims at restricting the role memberships assigned to a single user [27]. For example,
the account-manager and financial-auditor roles cannot be assigned to the same person. Another
important constraint, which is usually used in actual application environments, is the user-capability
constraint [28]. Specifically, users cannot be assigned to roles arbitrarily in an organization,
since different users have different qualifications and competencies. For example, a user with
a degree in business can perform roles, such as an account manager or financial auditor, but cannot
perform the roles of a computer professional, such as the role of a software designer, software developer,
or software tester. The premise of implementing role assignments is that an RBAC system already
exists. However, in many cases, the systems and constraints are completely unknown.

To address the above issues, this paper proposes a novel method called role-engineering
optimization with cardinality constraints and user-oriented mutually exclusive constraints
(REO_CCUMEC). The main contributions of this paper are as follows:

(1) Partitioning and compression are two important methods used to analyze clustering problems;
they are widely used in scientific research and production practice because of their simple
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and accurate characteristics [29]. In order to reduce computational complexity and mining
scale, we convert the basic role mining problem into a clustering problem, use partitioning
and compressing technologies to eliminate redundancies, and evaluate the accuracy of the
proposed method.

(2) Role optimization that satisfies one cardinality constraint may violate another cardinality
constraint. In order to limit the number of roles assigned to any user and/or a related permission,
we present three role-optimization problems and their corresponding algorithms, and evaluate
the effectiveness of the proposed method.

(3) Mutually exclusive constraints, user-capability constraints, and cardinality constraints are critical
to ensure authorization security. In order to satisfy these constraints, while maximizing the role
assignments in the role-engineering system, we present a role-assignment algorithm and evaluate
the efficiency of the proposed method.

The remainder of the paper is organized as follows. In Section 2, we discuss the related work
and present preliminary information. Section 3 proposes a novel method that includes three aspects:
Pre-processing, role optimization, and role assignments. We present theoretical analyses and examples
in Section 4. We show the experimental evaluations in Section 5. Section 6 concludes the paper and
discusses future work.

2. Related Work and Preliminary Information

2.1. Methods of Role Optimization

Many methods have been proposed for role optimization. Depending on whether or not constraints
are considered in role optimization, existing studies mainly fall into the following two categories: Role
optimization with no constraints and role optimization with constraints.

Vaidya et al. converted role mining into a matrix-decomposition problem and presented a definition
for a basic role mining problem, that attempts to find a minimal set of roles from bottom-user permission
assignments and completely cover the original assignments. However, it is difficult to derive an optimal
role set in practical applications. To reflect the organization-function requirements and enhance the
interpretability of mining roles, Molloy et al. [30] represented roles with the formal concept of
lattices and proposed an optimization algorithm. To optimize the RBAC system, Zhang et al. [31]
presented an algorithm using graph-optimization theory. However, this algorithm did not eliminate
the redundancies in the mining results. Ene et al. [32] adopted heuristics and graph theory to mine as
few optimized roles as possible, thereby reducing the redundancies of the mining roles. Lu et al. [19]
proposed a unified role-optimization framework and presented a number of greedy algorithms that
could solve basic RMP, δ-approx RMP, min-noise RMP, and edge RMP, based on methods of integer
linear programming and Boolean matrix decomposition. However, the scale of role optimization
is very large. To reduce the complexity of solving problems, Colantonio et al. [33] divided the
user-permission-assignment dataset into several subsets. To reduce the mining scale, Verde et al. [34]
converted role mining into a clustering problem, which compresses the division into a single sample,
extracts similar features from multiple divisions, and ensures the integrity of the mining results.
Although, constraints are essential for the RBAC model, none of these methods take constraints
into consideration.

In order to avoid an abuse of privileges, Kumar et al. [35] proposed a constrained role-miner
algorithm, that limits the number of permissions assigned to a role. Blundo et al. [36] proposed
a heuristic capable of returning a complete set of roles, thereby satisfying the same cardinality constraint
as above. Hingankar et al. [37] proposed a biclique-cover method to derive roles that limit the maximum
number of users related to a role. John et al. proposed two alternative approaches for restricting
the number of roles assigned to a user: Role priority-based approach (RPA) and the coverage of
permissions-based approach (CPA). The RPA prioritizes roles based on the number of permissions and
assigns optimal roles to users, according to the priority order. The CPA chooses roles by iteratively
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picking the role with the largest number of permissions that are yet uncovered and then ensures that no
user is assigned more than a given number of roles [38]. In order to limit the maximum number of users
or permissions related to a role, Ma et al. [26] proposed a role mining algorithm to generate roles based
on permission cardinality constraints and user cardinality constraints. In order to simultaneously limit
the maximum number of roles assigned to a user and a related permission, Harika et al. proposed
the two role-optimization methods: Post processing and concurrent processing. In the first method,
roles are initially mined without taking the constraints into account. The user-role and role-permission
assignments are then checked for constraint violation in the optimization process and appropriately
re-assigned, if necessary [39]. The concurrent processing method implements optimization with double
constraints during the process of role mining. In addition to these methods for satisfying cardinality
constraints, Sarana et al. [40] proposed three role-optimization methods, including separation-of-duty
constraints either, during, or after, the mining process. In order to satisfy separation-of-duty constraints
and ensure authorization security, Sun et al. [41] proposed a method called role-mining optimization,
with separation-of-duty constraints and security detection for authorizations.

2.2. Methods of Role Assignments

In order to obtain permissions, while satisfying a collection of constraints for a given authorization
request, Zhang et al. proposed a user authorization query (UAQ) problem, that adopts the greedy
algorithm and mutually-exclusive-role constraint to search for objects. The UAQ is used to discover
a set of roles to be activated in a single session for the particular set of permissions requested by
the user [42]. Lu et al. [43] proposed a novel approach, based on role–permission reassignments,
to support the UAQ, which assists administrators in modifying system configurations in an automatic
manner. In order to implement role assignments, while satisfying the t-t SMER constraints in RBAC,
Roy et al. proposed a method for finding the minimum number of users with multiple t-t SMER
constraints, modelled the general problem using graphs, and presented a two-step method for solving
the problem [44]. Afterwards, the problem of the cardinality constrained-mutually exclusive task
for minimum users, was defined. This problem aims to find the minimum users that can carry out
a set of tasks, while satisfying the given security constraints [45]. Furthermore, Roy et al. [28] defined
the employee assignment problem, which aims to assign employees to roles, so that the maximal
flexibility is reflected in assigning roles to employees, while ensuring that the user-capability constraints,
role-cardinality constraints, and liveness constraints are met simultaneously.

Obviously, from the above analyses, we find that there are three limitations in the existing studies.
The first limitation is that the role-mining scale is very large, and there are redundancies in the mining
results. The second limitation is that most existing role-optimization methods only consider one
cardinality constraint and do not evaluate authorization security in a constructed RBAC system, so role
assignments cannot satisfy user-capability constraints and mutually exclusive constraints. The third
limitation is that the existing role assignments assume that RBAC systems already exist. However,
in many cases, the systems are completely unknown, and the constraints are uncertain. Hence, in this
paper, we propose a novel role-engineering method (REO_CCUMEC), which mainly includes three
elements: (1) Partitioning and compressing technologies are used to eliminate redundancies for the
unconstrained role mining, (2) the role-optimization problems and their corresponding algorithms
are presented for satisfying double cardinality constraints simultaneously, and (3) the maximal role
assignments are implemented, while satisfying multiple security constraints in the constructed RBAC
system. We also evaluate the performance of the proposed method using three groups of experiments
and present its advantages and limitations.

2.3. Preliminaries

2.3.1. Basic Components of Role Engineering

Conventional role engineering consists of the following basic components [5–7]:
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(1) U, P, and R are the basic elements of RBAC; these elements denote a set of users, a set of
permissions, and a set of roles, respectively;

(2) UPA ⊆ U×P, a many-to-many mapping of user-permission assignments in the non-RBAC model;
(3) UA ⊆ U ×R, a many-to-many mapping of user-role assignments in the RBAC model;
(4) PA ⊆ R× P, a many-to-many mapping of role-permission assignments in the RBAC model;
(5) user_roles(u) =

{
r
∣∣∣∃r ∈ R : (u, r) ∈ UA)

}
, the mapping of user u onto a set of roles;

(6) role_users(r) =
{
u
∣∣∣∃u ∈ U : (u, r) ∈ UA)

}
, the mapping of role r onto a set of users;

(7) role_permissions(r) =
{
p
∣∣∣∃p ∈ P : (r, p) ∈ PA

}
, the mapping of role r onto a set of permissions;

(8) permission_roles(p) =
{
r
∣∣∣∃r ∈ R : (r, p) ∈ PA

}
, the mapping of permission p onto a set of roles;

(9) user_permissions(u) =
{
p
∣∣∣∃p ∈ P,∃r ∈ R : ((u, r) ∈ UA)∧ ((r, p) ∈ PA)

}
, the mapping of user u

onto a set of permissions.

2.3.2. RBAC Constraints

We consider different kinds of constraints in RBAC: UCC and PCC, mutually exclusive constraints,
and user-capability constraints.

(1) The UCC and PCC
The UCC [26] states that, for a given set U of users, set R of roles, and threshold MRCuser,

the number of roles assigned to any user should not exceed MRCuser. This can be formalized as follows:

∀u ∈ U :
∣∣∣user_roles(u)∩R

∣∣∣ ≤MRCuser. (1)

The PCC [26] states that, for a given set of U of users, set R of roles, and threshold MRCpermission,
the number of roles to which any permission can be assigned should not exceed MRCpermission. This can
be formalized as follows:

∀p ∈ P :
∣∣∣permission_roles(p)∩R

∣∣∣ ≤MRCpermission. (2)

In addition, as the mapping relationships of UA and PA are bidirectional, there are another two
constraints that, respectively restrict the number of users and the number of permissions assigned to
a role, which are not discussed in the paper.
(2) Mutually exclusive constraints

According to the different intensities of restrictions, the SMER constraint includes the following
two types [27]:

The t-m SMER constraint states that, given m roles r1,r2, . . . ,rm, no user is allowed to have t or
more of these m roles. This constrained is expressed as smer<{r1,r2, . . . ,rm},t>, where m and t are
integers that satisfy 2 ≤ t ≤ m. This can be formalized as follows:

∀u ∈ U :
∣∣∣{r1, r2, . . . , rm} ∩ user_roles(u)

∣∣∣ < t. (3)

The t-t SMER constraint states that, given t roles r1,r2, . . . ,rt, no user is allowed to have all of
these t roles. This is expressed as smer<{r1,r2, . . . ,rt},t>, where t is an integer, and t ≥ 2, and can be
formalized as follows:

∀u ∈ U : {r1, r2, . . . , rt}user_roles(u). (4)

It has been shown that any t-m SMER constraint can be equivalently represented as a set of t-t
SMER constraints [27]. Thus, we only take into consideration the t-t SMER constraint in this paper.
(3) User-capability constraint
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This constraint is represented as the Boolean matrix UC [28], where the rows correspond to users,
and the columns correspond to roles. The value 1 in cell UC[i][j] denotes that user ui is capable of
performing role rj; otherwise, ui cannot perform rj. This can be formalized as follows:

UC[i][ j] =
{

1, i f ui is capable o f per f orming r j
0, otherwise

(5)

2.3.3. Similarity and Dissimilarity in Clustering

The Jaccard coefficient [46] in statistic, which is widely used to measure the similarity or
dissimilarity (also called distance) among different sets of samples, aims to identify sample clusters.
Given set S = {Sa,Sb, . . . ,Si, . . . }, where Sa = {a1,a2, . . . }, Sb = {b1,b2, . . . }, Si = {i1,i2, . . . },

(1) ∀(Si,Sj)∈S; the similarity and dissimilarity between sample Si and sample Sj are, respectively,
calculated as follows:

sim(Si, S j) =

∣∣∣Si ∩ S j
∣∣∣∣∣∣Si ∪ S j
∣∣∣ (6)

dis(Si, S j) = 1− sim(Si, S j) (7)

(2) ∀(Si,Sj1,Sj2, . . . )∈S; the similarity and dissimilarity between sample Si and sample set {Sj1,Sj2, . . .
} are, respectively, calculated as follows:

sim(Si,
{
S j1, S j2, . . .

}
) =

1∣∣∣∣{S j1, S j2, . . .
}∣∣∣∣

∑
S j∈{S j1,S j2,...}

sim(Si, S j) (8)

dis(Si, {S j1, S j2, . . .}) = 1− sim(Si,
{
S j1, S j2, . . .

}
). (9)

2.3.4. Basic RMP Problem and the Fast Miner Method

The basic RMP [17] can be formalized as follows:{
min|R|

UA⊗ PA = UPA
(10)

For the sake of simplicity, the UPA, UA, and PA are used to represent their respective assignment
relationships, as well as the corresponding matrices. The Fast Miner method [16] mainly consists of
the following two steps:

Step 1. Based on the hash mapping rule, a group of all users who have the exact same set of
permissions for a given permission assignment, and construct an initial set of roles. This significantly
reduces the size of the original data set.

Step 2. Identify all potentially interesting roles by implementing intersections between all pairs
of the initial roles. Generate new roles and count the number of users associated with any new role.

For readability, we have summarized the main symbols used in the paper in Table 1.
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Table 1. Main symbols and their meanings.

Symbol Meaning

U,P,R,UA,PA,UPA Basic components of RBAC
UCC Limitation on the number of roles assigned to any user

MRCuser Threshold of the UCC
PCC Limitation the number of roles related to any permission

MRCpermission Threshold of the PCC
SMER Static mutually exclusive roles

smer<{r1,r2, . . . ,rt},t> t-t SMER constraint
C Set of the t-t SMER constraints

UC Matrix of the user-capability constraints
CU Cluster of users
VC Set of the compression points
RR Role-utilization ratio

3. Proposed Method

In this section, we propose a novel method, REO_CCUMEC, which includes three elements:
(1) Preprocessing for basic RMP, (2) role optimization satisfying cardinality constraints, and (3) role
assignments satisfying multiple constraints.

3.1. Preprocessing for Basic RMP

To satisfy the basic RMP, the methods of the Fast Miner algorithm and Boolean matrix
decomposition are used to mine the initial roles, as shown in Algorithm 1.

Algorithm 1. Initial role mining for basic RMP.

Input: the original matrix UPA
Output: preprocessed matrices UA and PA and the initial set CR of the roles
The Fast Miner and Boolean matrix decomposition are adopted to derive CR and configure RBAC, such that{

min|CR|
UA⊗ PA = UPA

.

According to Equation (6) and the results from Algorithm 1, the similarity and dissimilarity
between ui and uj are calculated as follows:

sim(ui, u j) =

∣∣∣user−permissions(ui)∩ user−permissions(u j)
∣∣∣∣∣∣user−permissions(ui)∪ user−permissions(u j)
∣∣∣ (11)

dis(ui, u j) = 1− sim(ui, u j). (12)

Partitioning can be done in many ways. However, it has been shown that, using business
information is typically preferable to using other types of information, since it generates more
meaningful roles. Business information includes both user and permission attributes. For the sake of
clarity, we only consider partitions induced by user attributes.

According to the above calculations, we can identify the cluster {CU1,CU2,...} of users. Then,
we use the partitioning and compressing technologies to handle each user cluster independently.

3.1.1. Partitioning User Clusters

To identify user clusters, we use the well-known clustering algorithm, partitioning around
cluster medoids (PAM) [47]. This algorithm is similar to the k-means clustering algorithm, except
that dissimilarities are used instead of distances, and center points are used instead of means. First,
we define the center point as follows.
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Definition 1. (center point) Given a cluster of users CU = {u1,u2, . . . ,ui, . . . ,uj, . . . }, the user ui is called the
center point if and only if:

∀u j ∈ CU\{ui} : dis(ui, CU\{ui}) < dis(u j, CU\
{
u j

}
). (13)

In other words, the center point of a cluster is the user whose dissimilarity to all the other users in
the cluster is minimal. The partitioning process is presented in Algorithm 2.

Algorithm 2. Partitioning user clusters.

Input: user cluster CU and the k number of center points
Output: center points and partitions
1. Randomly choose k users u1,u2, . . . ,uk in CU as the initial center points;
2. for each center point ui in {u1,u2, . . . ,uk} do
3. for each non-center point uj in associate(ui) do

4.
dis(ui, associate(ui)) =

1− 1
|associate(ui)|

∑
u j∈associate(ui)

sim(ui, u j);

5.
dis(u j, associate(ui)\

{
u j

}
∪ {ui}) =

1− 1
|associate(ui)\{u j}∪{ui}|

∑
uk∈(associate(ui)\{u j}∪{ui})

sim(u j, uk);

6. if dis(uj,associate(ui)\{uj}∪{ui})<dis(ui,associate(ui)) then
7. associate(ui) = associate(ui)\{uj}∪{ui};
8. swap(uj,ui) and divide CU into k partitions;
9. end if
10. end for
11. end for

In Algorithm 2, we first randomly select k users u1,u2, . . . ,uk, take them as the initial center
points, and divide CU into k partitions (line 1). The function associate(ui) represents all the non-center
points closest to center point ui in a partition, and we associate each user to the closest center point.
Then, for each center point ui and non-center point uj in associate(ui), we respectively calculate
dis(ui,associate(ui)), dis(uj,associate(ui)\{uj}∪{ui}) in lines 2–5. Lines 6–9 indicate that if the dissimilarity
of uj to the set of associate(ui)\{uj}∪{ui} is less than that of ui after swapping the two users, then uj is
referred to as the new center point instead of ui.

Computational complexity: Partitioning a user cluster depends on the double loops and the swap
operations. The execution time of the algorithm is O(s× k× (n− k)), where k is the number of center
points, n is the number of users in the cluster, and s is the number of swaps between the center points
and non-center points. Usually, k� n, so the impact of k on the performance can be ignored, and the
total time is really O(s× n).

3.1.2. Compressing Cluster Partitions

After identifying user clusters and the respective center points, we further simplify each cluster
using the support degree and compression point, which are defined as follows.

Definition 2. (support degree of a permission) Let the user cluster be CU = {u1,u2, . . . ,ui, . . . },
where user_permissions(ui) = {pi1,pi2, . . . ,pij, . . . }, and pij is the permission possessed by ui. The percentage
of different users possessing p in CU is called the support degree of p with respect to CU. This percentage is
represented as,

supportCU(p) =

∣∣∣{uk
∣∣∣∃uk ∈ CU : p ∈ user_permissions(uk)

}∣∣∣
|CU|

(14)

where supportCU(p) ∈ (0, 1].
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Definition 3. (compression point) Given user cluster CU = {u1,u2, . . . ,ui, . . . } and threshold t, user ui is
called the compression point if and only if

∃ui ∈ CU,∀pi j ∈ ui : supportCU(pi j) ≥ t. (15)

We represent the cluster with ui, and the sets of all compression points are represented as VC.
The compression process is presented in Algorithm 3.

Algorithm 3. Compression cluster partitions.

Input: the initial set CR of the roles, the set VC of the compression points, the partition with center point ui,
and threshold t
Output: compressed matrix UPAcompressed
1. Initialize UPAcompressed = Φ, VC = Φ;
2. for each p in CR do

3.
supportassociate(ui)∪{ui}

(p) =
|{u|∃u∈associate(ui)∪{ui}:p∈user_permissions(u)}|

|associate(ui)∪{ui}|
;

4. if supportassociate(ui)∪{ui}
(p) ≥ t then

5. insert ui into VC;
6. UPAcompressed = UPAcompressed ∪ {(ui, p)};
7. end if
8. end for

Indeed, threshold t plays an important role in identifying the compression point. For example,
when t equals 1, it is difficult to identify the compression point, because of the differences among users;
when t is less than 1, identification is possibly easier.

3.2. Role Optimization Satisfying Cardinality Constraints

In order to optimize the pre-processed results, the UCC and PCC should be taken into consideration
individually or simultaneously in role optimization. Specifically, the preprocessed matrices UA and/or
PA are first checked to determine if they violate the given cardinality constraint(s). If there are no
constraint violations, they are regarded as efficient solutions. Otherwise, to limit the number of roles
assigned to the violating user and/or the related permission, we next present three role-optimization
problems and the corresponding algorithms.

3.2.1. Role Optimization Satisfying UCC

Definition 4. (a role-optimization problem with UCC) Given a user-permission assignment matrix UPAn×m,
the preprocessed UA and PA matrices, and a particular threshold MRCuser, find an optimal set R of roles,
such that the UA and PA are consistent with the UPA, the number of roles assigned to any user is less than or
equal to MRCuser, and the number of the optimal roles is minimized. This process can be formalized as follows:

min|R|
UA⊗ PA = UPA∑

j UA[i][ j] ≤MRCuser ≤
∣∣∣R∣∣∣,∀i ∈ [1, n]

. (16)

According to Definition 4, in order to satisfy role optimization in the presence of UCC,
the optimizing process is presented in Algorithm 4.
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Algorithm 4. Role optimization satisfying UCC.

Input: preprocessed matrices UA and PA, the initial role set CR, and threshold MRCuser

Output: the optimized matrices UA and PA
1. Define and compute count_user_roles(u) as the number of roles possessed by user u;
2. Define and compute count_role_users(r) as the number of users assigned to role r;
3. while ∃u∈U: count_user_roles(u) > MRCuser do
4. k = count_user_roles(u) − (MRCuser − 1);
5. Choose the top k roles from u with the highest count_role_users(r) values to constitute set S;
6. Merge the permissions of all the k roles and denote the union as set PS;
7. Create a new role rnr such that role_permissions(rnr) = PS;
8. for each pt in P do
9. if pt∈PS then
10. PA[nr][t] = 1;
11. else
12. PA[nr][t] = 0;
13. end if
14. end for
15. for each ui in U do
16. if ∀rj∈S: UA[i][j] = = 1 then
17. ∀rj∈S: UA[i][j] = 0;
18. UA[i][nr] = 1;
19. else
20. UA[i][nr] = 0;
21. end if
22. end for
23. Update count_user_roles(u) and count_role_users(r);
24. end while

In Algorithm 4, we first define two functions, count_user_roles(u) and count_role_users(r) (lines
1–2). Line 3 determines whether the number of roles possessed by any user exceeds MRCuser. For each
violating user u, the k number of roles is represented by calculating count_user_roles(u) − (MRCuser − 1)
in line 4, and the top k roles, which are currently assigned to the maximum number of users, are chosen
to constitute set S in line 5. We merge the permissions of all the k roles into set PS, and assign the PS
to the newly created role while retaining the other (MRCuser − 1) roles assigned to user u (lines 6–7).
Then, the new role is inserted into the PA and UA. We update matrices PA and UA, based on the new
role, in Lines 8–22. As a result, the UCC is satisfied, with a possible reduction in the number of roles
assigned to the violating user, because the newly created role is used instead of the k merging roles.

3.2.2. Role Optimization Satisfying PCC

Definition 5. (role-optimization problem with PCC) Given a user-permission assignments matrix UPAn×m,
the preprocessed results UA and PA matrices, and a particular threshold MRCuser, find an optimal set R of roles,
such that the UA and PA are consistent with the UPA, the number of roles to which any permission can be
assigned is less than or equal to MRCpermission, and the number of the optimal roles is minimized. It can be
formalized as follows: 

min|R|
UA⊗ PA = UPA∑

j PA[ j][t] ≤MRCpermission ≤
∣∣∣R∣∣∣,∀t ∈ [1, m]

(17)

According to Definition 5, in order to satisfy role optimization in the presence of PCC, the optimizing
process is presented in Algorithm 5.
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Algorithm 5. Role optimization satisfying PCC.

Input: the preprocessed matrices UA, PA, initial role set CR, and threshold MRCpermission
Output: the optimized matrices UA and PA
1. Define and compute count_permission_roles(p) as the number of roles related to permission p;
2. Define and compute count_role_permissions(r) as the number of permissions assigned to role r;
3. while ∃p∈P: count_perm_roles(p)>MRCpermission do
4. k = count_perm_roles(p) − (MRCpermission − 1);
5. Choose the top k roles from p with the highest count_role_permissions(r) values to constitute set S;
6. Intersect the permissions of all the k roles and denote the intersection as set PS;
7. Create a new role rnr such that role_permissions(rnr) = PS;
8. for each ui in U do
9. if count_user_roles(ui)⊇rnr then
10. UA[i][nr] = 1;
11. else
12. UA[i][nr] = 0;
13. end if
14. end for
15. for each rj in S do
16. if ∀pt∈PS: PA[j][t] = = 1 then
17. ∀pt∈PS: PA[j][t] = 0;
18. PA[nr][t] = 1;
19. else
20. PA[nr][t] = 0;
21. end if
22. end for
23. Update count_perm_roles(p) and count_role_perms (r);
24. end while

In Algorithm 5, we first define two functions: Count_permission_roles(p) and count_role_permissions(r)
(lines 1–2). Line 3 determines whether the number of roles to which any permission is assigned
exceeds MRCpermission. For each violating permission p, k number of roles is represented by calculating
count_permission_roles(p) − (MRCpermission − 1) in line 4, and the top k roles, which possess the maximum
number of permissions, are chosen to constitute set S in line 5. We intersect the permissions of all the k
roles into set PS, and assign PS to the newly created role while retaining the other (MRCpermission − 1)
roles related to permission p (lines 6–7). Then, the new role is inserted into the UA and PA. We update
matrices UA and PA, based on the new role, in Lines 8–22. As a result, the PCC is satisfied with
a possible reduction in the number of roles related to the violating permission, because the newly
created role is used instead of the k intersecting roles.

3.2.3. Role Optimization Satisfying both UCC and PCC

Algorithm 4 and Algorithm 5 show that either, the UCC or PCC, are considered. However,
with an increase in the number of roles related to permission pt (owing to the merging roles), lines 9–10
may cause a violation of the PCC in Algorithm 4. Similarly, with an increase in the number of roles
assigned to user ui (owing to the intersecting roles), lines 9–10 may cause a violation of the UCC in
Algorithm 5. Thus, it is necessary to study whether the double constraints are satisfied simultaneously.

Definition 6. (a role-optimization problem with both UCC and PCC) Given a user-permission assignment
matrix UPAn×m, the preprocessed result matrices UA and PA, and two thresholds MRCuser and MRCpermission,
find an optimal set R of roles, such that the UA and PA are consistent with the UPA, where the number of
roles assigned to any user is less than or equal to MRCuser, the number of roles to which any permission can be
assigned is less than or equal to MRCpermission, and the number of the optimal roles is minimized. This can be
formalized as follows:
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
min|R|

UA⊗ PA = UPA∑
j UA[i][ j] ≤MRCuser ≤

∣∣∣R∣∣∣,∀i ∈ [1, n]∑
j PA[ j][t] ≤MRCpermission ≤

∣∣∣R∣∣∣,∀t ∈ [1, m]

. (18)

In addition, a role set RU, which would not cause any new violations in the role-permission
assignments, needs to be identified; another role set RI, which would not cause any new violations in
the user-role assignments, also needs to be identified. Specifically, for each role r in RU, any permission
assigned to r does not violate the PCC when r is chosen and implemented in Algorithm 4. This can be
represented as:

∀r ∈ RU, ∀p ∈ role_permissions(r): count_perm_roles(p) ≤MRCpermission − 1.
Similarly, for each role r in RI, any user possessing r would not violate the UCC when r is chosen

and implemented in Algorithm 5. This process can be represented as:
∀r ∈ RI, ∀u ∈ role_users(r): count_user_roles(u) ≤MRCuser − 1.
According to Definition 6, the optimizing process is presented in Algorithm 6.

Algorithm 6. Role optimization satisfying both UCC and PCC.

Input: preprocessed matrices UA, PA, initial role set CR, and thresholds MRCuser and MRCpermission
Output: optimized matrices UA and PA
1. Define and compute count_user_roles(u), count_role_users(r), count_permission_roles(p), and
count_role_permissions(r);
2. Identify RU, RI;
3. while (∃u∈U: count_user_roles(u) > MRCuser) or
(∃p∈P: count_perm_roles(p) > MRCpermission) do
4. Choose violating users or violating permissions based on a heuristic strategy;
5. if user u is chosen then
6. k = count_user_roles(u) − (MRCuser − 1);
7. Choose the top k roles of u from RU with the highest count_role_users(r) values to constitute set S;
8. Merge the permissions of all the k roles and denote the union as set PS;
9. Create a new role rnr such that role_permissions(rnr) = PS;
10. Update the PA and UA with rnr according to Algorithm 4;
11. else
12. k = count_perm_roles(p) − (MRCpermission − 1);
13. Choose the top k roles of p from RI with the highest count_role_permissions(r) values to constitute set S;
14. Intersect the permissions of all the k roles and denote the intersection as set PS;
15. Create a new role rnr such that role_permissions(rnr) = PS;
16. Update the UA and PA with rnr according to Algorithm 5;
17. end if
18. end while

In Algorithm 6, we first identify RU, RI, and determine the violating users or permissions
using a heuristic strategy in lines 2–4. Then, if user u is chosen, the top k roles are chosen from
RU; if permission p is chosen, the top k roles are chosen from RI. Similar to updating the UA and
PA in Algorithm 4 and Algorithm 5, detailed descriptions of the algorithm are omitted, due to the
limited space.

3.3. Role Assignments Satisfying Multiple Constraints

In this subsection, we study the issue of assigning the available users with different capabilities
to the mining roles in the role-engineering system, such that the number of user-role assignments is
maximized while satisfying the relevant security constraints. Specifically, we study how to assign
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each role with the maximum number of users based on the two conditions: (1) Retaining the UCC in
role-mining optimization, and (2) considering the user-oriented mutually exclusive constraints and
constraint degree of the roles in role assignments. First, we present the following definitions.

Definition 7. (A user-oriented mutually exclusive constraint) Given a matrix UC for user-capability
constraints, consider a constructed set C for the t-t SMER constraints in the role-engineering system. Then,
the role assignments for any user in UC should satisfy both the UC and C constraints.

Definition 8. (The constraint degree of a role) Let the t-t SMER constraint set be C = {c1,c2, . . . ci, . . . },
where ci = smer<{r1,r2, . . . rti},ti>. The percentage of different constraints, including role r, in C is called the
constraint degree of r with respect to C, which is represented as,

smerC(r) =
|{ck|∃ck ∈ C : r is included in ck}|

|C|
(19)

where smerC(r) ∈ (0, 1].

Definition 9. (A role-assignment problem with multiple constraints) Besides the set U of users, set R of
roles, and threshold MRCuser for the UCC constraint in the role-mining optimization, given the matrix UC for
user-capability constraints, and a set C for the t-t SMER constraints, we find a role-assignment matrix UA’
such that the number of role assignments is maximized while satisfying all the constraints. This matrix can be
formalized as follows: 

max|UA′|
UA′[i][ j] = 0,∀UC[i][ j] = 0

user_roles(u) satis f y C,∀u ∈ UA′

count_user_roles(u) ≤MRCuser,∀u ∈ UA′

(20)

According to Definitions 7–9, the assigning process is presented in Algorithm 7.
Obviously, it is observed that if user ui in UC cannot perform role rj, then we say that

(
ui, r j

)
< UA′;

otherwise, it is uncertain whether rj can be assigned to ui. On the other hand, if
(
ui, r j

)
∈ UA′, then we

say that
(
ui, r j

)
∈ UC; otherwise, it is uncertain whether ui can or cannot perform rj. We formalize these

observations as follows:

(1) ∀i,∀ j : UC[i][ j] == 0⇒ UA′[i][ j] == 0 , UC[i][ j] == 1 ; UA′[i][ j] == 1;
(2) ∀i,∀ j : UA′[i][ j] == 1⇒ UC[i][ j] == 1 , UA′[i][ j] == 0 ; UC[i][ j] == 0.

In Algorithm 7, we first initialize UA’, based on the observations in lines 1–7, and represent the
uncertainty with variable aij (line 5). Then, we create a new priority queue Q and insert set R into Q,
according to the constraint degree of roles, where the lower the smerC(r) value, the higher the priority of
role r (lines 8–9). Next, we implement the role assignments while satisfying all the security constraints
until Q is empty (lines 10–22).
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Algorithm 7. Role assignments satisfying multiple constraints.

Input: Set U for users, set R for roles, threshold MRCuser, matrix UC for user-capability constraints, and set C
for t-t SMER constraints
Output: user-role assignment matrix UA’
1. for each UC[i][j] in UC do
2. if UC[i][j] = = 0 then
3. UA’[i][j] = 0;
4. else
5. UA’[i][j] = aij;
6. end if
7. end for
8. Create a new priority queue Q and insert all roles of R into Q;
9. Sort roles in Q according to the ascending order of their constraint degree. Role r, which has a lower smerC(r)
value, has a higher priority;
10. while Q is not empty do
11. Choose role rj with the highest priority in Q;
12. for each ui in UC do
13. if UA’[i][j], 0 then
14. for each smer<{r1,r2, . . . ,rt},t> in C do
15. if (|{user_roles(ui) ∪ {rj}} ∩ {r1,r2, . . . ,rt}|<t) and
(count_user_roles(ui)≤MRCuser − 1) then
16. UA’[i][j] = 1;
17. end if
18. end for
19. end if
20. end for
21. Remove rj from Q;
22. end while

4. Theoretical Analyses and Running Examples

4.1. Relationship between the Center Point and Compression Point

According to Algorithm 2, since user cluster CU is divided into k partitions, k different compression
points need to be created in most of the compression processes. The storage space for many compression
points becomes much larger with an increasing number of user clusters. In order to reduce the cost of
storage, it is necessary to find suitable substitutes from existing users to meet the characteristics of the
compression points.

Statement 1. The center point of any partition can be a substitute for the compression point in line 5 of
Algorithm 3.

Proof. We analyze the statement from two perspectives: Sufficiency and necessity.
Sufficiency: Definition 1 indicates that the average similarity of the center point to all the non-center

points in any partition is maximal. Meanwhile, it is observed from equation (11) that the number of
users who possess permission p assigned to center point ui is no less than that of permission p’ assigned
to any non-center point. That is,

∀p ∈ user_permissions(ui),∀p′ < user_permissions(ui) :∣∣∣{u∣∣∣∃u ∈ associate(ui) : (u, p) ∈ UPA
}∣∣∣≥∣∣∣{u′∣∣∣∃u′ ∈ associate(ui) : (u′, p′) ∈ UPA

}∣∣∣
⇒ supportassociate(ui)∪{ui}

(p) ≥ supportassociate(ui)∪{ui}
(p′) ≥ t.

This is clearly true.
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Necessity: We use the method of contradiction and assume that the support degree of permission
p, which is assigned to center point ui, does not satisfy the decision condition in Algorithm 3. In other
words, there exists a satisfied permission p’ not assigned to ui. That is,

∃p ∈ assigned_permissions(ui),∃p′ < assigned_permissions(ui) :
supportassociate(ui)∪{ui}

(p′) ≥ t > supportassociate(ui)∪{ui}
(p)

⇒

∣∣∣{u′∣∣∣∃u′ ∈ associate(ui) : (u′, p′) ∈ UPA
}∣∣∣≥∣∣∣{u∣∣∣∃u ∈ associate(ui) : (u, p) ∈ UPA

}∣∣∣.
Then,

∃u j ∈
{
u′

∣∣∣∃u′ ∈ associate(ui) : (u′, p′) ∈ UPA
}

:
sim(u j, associate(ui)\

{
u j

}
∪ {ui}) > sim(ui, associate(ui))

⇒ dis(u j, associate(ui)\
{
u j

}
∪ {ui}) < dis(ui, associate(ui)).

It is contradictory to the case that ui is the center point. Thus, the assumption is false. �

4.2. The Influencing Factors of Role Assignments

According to Definition 9, the task of the role assignment aims to find matrix UA’ such that the
number of role assignments is maximized. In order to analyze the assigning efficiency of the method,
we present the definition of the role-utilization ratio, as follows:

Definition 10. (role-utilization ratio, RR) Given matrix UA’ of the role assignments and matrix UC of the
user-capability constraints, the RR is calculated as follows,

RR =
|UA′|
|UC|

× 100% (21)

where RR ∈ (0, 1].

Indeed, RR is the percentage of the number of 1 in the UA’ compared to that in the UC. Note that
if none of the constraints are considered, then RR is equal to 100% because UA’ = UC. However, RR is
influenced by various parameters during the whole process of the role-engineering optimization.
The value of RR varies with the varying truth assignments for the UA’. Thus, it is necessary to study
how RR is influenced by existing factors, such as cardinality constraints and user-oriented mutually
exclusive constraints.

Statement 2. Given the threshold MRCuser of the UCC constraint, set R’ of the roles in the UC constraint,
and the density δ of the UC matrix (that is, a percentage of 1 in the UC), the upper bound of RR satisfies the
following:

RR <
MRCuser

|R′|×δ.

Proof. The number of cells in matrix UC is |U′| × |R′|. As the percentage of 1 in the UC is δ, |UC| =
|U′| × |R′| × δ. Meanwhile, as any user in the UC is assigned MRCuser roles, at most, |UA′| < |U′| ×MRCuser.
Thus, RR = |UA′ |

|UC| <
|U′ |×MRCuser
|U′ |×|R′ |×δ = MRCuser

|R′ |×δ . �

It is observed from Statement 2 that the value of RR increases with an increasing value of MRCuser,
and decreases as the number of roles and the density of the UC increase. Furthermore, it is observed
from line 14 of Algorithm 7 that RR is also influenced by the number of constraints in set C. As the
truth assignments for the UA’ decrease with an increasing number of the constraints, the value of RR
decreases with an increasing value of |C|.
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4.3. Relationship between the UCC and PCC

Although, both optimized results can satisfy a single constraint requirement, according to
Algorithm 4 and Algorithm 5, another security constraint may be violated. In other words, they do not
address the issue of balancing the role-mining effectiveness and system security.

Statement 3. The UCC and PCC are mutually exclusive.

Proof. We can analyze the statement from lines 9–10 in Algorithm 4 and lines 9–10 in Algorithm
5. However, detailed descriptions are omitted due to limited space. That is, it is a contradictory
relationship between the UCC and PCC. �

4.4. Running Examples

In order to eliminate redundancies while maintaining the system’s usability for role mining,
we handle the original permission assignments UPAoriginal using the compression technology and
convert the uncompressed matrix UPAoriginal into the compressed matrix UPAcompressed. Note that the
UPAcompressed is much denser than the UPAoriginal, particularly in large-scale access control systems.
Indeed, it is convenient and feasible to analyze and handle the compressed data object. As shown
in Table 2, (UPAcompressed)6×6 is a compressed matrix, where the shadow parts are dense and provide
motivation for available mining roles. The following example is presented to demonstrate the
effectiveness of our method.

Table 2. Compressed matrix (UPAcompressed)6×6.

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

Example 1. This example considers the matrix UPAoriginal of the original permission assignments, a k number of
center points, a threshold t of the support degree, a threshold MRCuser of the UCC, and a threshold MRCpermission
of the PCC, where the UPAoriginal is comprised of 15 users and 6 permissions, as shown in Table 3, k = 2, t = 0.66,
and MRCuser = MRCpermission = 2.

In the preprocessing phase, we first calculate the similarities between different users based on
equation (11) and the results of Algorithm 1 and identify user clusters CU = {CU1,CU2}, where CU1 =

{u1,u2,u4,u5,u11,u12,u13,u14} and CU2 = {u3,u6,u7,u8,u9,u10,u15}. Then, we use the partitioning technology
(Algorithm 2) to handle each user cluster with k = 2 independently. As shown in the results in Table 4,
CU1 is divided into two partitions: {u1,u2,u4,u11} (with center point u4) and {u5,u12,u13,u14} (with center
point u12). Similarly, CU2 is also divided into two partitions, as shown in Table 5. Next, we use the
compression technology (Algorithm 3) to compress each partition with t = 0.66. As shown in Tables 4
and 5, the full-line shadow parts, which satisfy the compressing condition, are regarded as usable for
mining roles. The dotted-line shadow fractions, such as (u1,p6), (u11,p5), and (u5,p6), which do not
satisfy the compressing condition, are regarded as redundant. The compressed matrix is shown in
Table 6, and the set of mining roles is Rinitial = {{p1,p2,p4},{p2,p3,p4},{p2,p4},{p4},{p3,p6},{p5,p6},{p6}}.

In the role optimization phase, we use Algorithm 6 with MRCuse r = MRCpermission = 2, and the set
of the optimized roles is Roptimized = {{p1,p2},{p2,p4},{p4},{p3},{p6},{p5}}. The optimized results, which are
shown in Table 7 and in Table 8, can satisfy the double constraints simultaneously.
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Table 3. Original matrix UPAoriginal.

p1 p2 p3 p4 p5 p6

u1 0 0 0 1 0 1

u2 1 1 0 1 0 0

u3 0 0 0 0 1 1

u4 1 1 0 1 0 0

u5 0 1 1 1 0 1

u6 0 0 0 0 1 1

u7 0 0 1 0 0 1

u8 0 1 1 0 0 1

u9 1 0 1 0 0 1

u10 0 0 0 1 1 0

u11 1 1 0 1 1 0

u12 0 1 1 1 0 0

u13 0 1 1 1 0 0

u14 0 1 0 1 0 0

u15 1 0 1 0 0 1

Table 4. User cluster CU1.
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Table 6. Compressed matrix.

p1 p2 p4 p3 p6 p5

u1 0 0 1 0 0 0

u4 1 1 1 0 0 0

u12 0 1 1 1 0 0

u14 0 1 1 0 0 0

u3 0 0 0 0 1 1

u7 0 0 0 1 1 0

Table 7. Optimized UA.

r1 r2 r3 r4 r5 r6

u1 0 0 1 0 0 0

u4 1 0 1 0 0 0

u12 0 1 0 1 0 0

u14 0 1 0 0 0 0

u3 0 0 0 0 1 1

u7 0 0 0 1 1 0

Table 8. Optimized PA.

p1 p2 p4 p3 p6 p5

r1 1 1 0 0 0 0

r2 0 1 1 0 0 0

r3 0 0 1 0 0 0

r4 0 0 0 1 0 0

r5 0 0 0 0 1 0

r6 0 0 0 0 0 1

To further demonstrate the effectiveness of our method, we simulate an actual-application scenario
and implement role assignments in the role-engineering system. Table 9 presents descriptions of
several roles used in the following example.

Example 2. Besides the threshold MRCuser of the UCC and the Roptimized set of the optimized roles in Example
1, consider the following user-oriented mutually exclusive constraints:

(1) The matrix UC of user-capability constraints, which is shown in Table 10;
(2) set C = {c1,c2,c3,c4} for the t-t SMER constraints, where c1 = smer<{r1,r3},2>, c2 = smer<{r2,r3},2>,

c3 = smer<{r1,r2,r3},3>, and c4 = smer<{r4,r5},2>.

In the role assignment phase, we first initialize the UA’ according to Algorithm 7, as shown in
Table 11. Then, we determine the constraint degree of the different roles, with respect to set C:smerC(r1)
= smerC(r2) = 0.5, smerC(r3) = 0.75, smerC(r4) = smerC(r5) = 0.25. Then we insert set {r1,r2,r3,r4,r5} into
queue Q according to the constraint degree of the roles. Next, we implement the role assignments,
as follows.
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Table 9. Descriptions of roles.

Role Description

r1 Software Designer
r2 Software Developer
r3 Software Tester
r4 Accounts Manager
r5 Financial Auditor

Table 10. Matrix UC.

r1 r2 r3 r4 r5

u1 1 0 0 1 0

u2 0 0 1 1 1

u3 1 1 1 0 0

u4 0 0 0 1 1

u5 1 0 0 0 1

u6 1 1 1 1 1

Table 11. Initialization for matrix UA’.

r1 r2 r3 r4 r5

u1 a11 0 0 a14 0

u2 0 0 a23 a24 a25

u3 a31 a32 a33 0 0

u4 0 0 0 a44 a45

u5 a51 0 0 0 a55

u6 a61 a62 a63 a64 a65

Here, r4 is chosen as the candidate role according to its priority in step 1, and we set a14 = a24 =

a44 = a64 = 1, a25 = a45 = a65=0, which is shown in Table 12; r5 is chosen as the candidate role in step 2,
and we can set a55 = 1, which is shown in Table 13; r1 is chosen as the candidate role in step 3, and we
set a11 = a31 = a51 = a61 = 1, a33 = a63 = 0, which is shown in Table 14; r2 is chosen as the candidate role
in step 4, we set a32 = 1, and a62 is 0 because of the cardinality constraint, which is shown in Table 15;
lastly, r3 is chosen as the candidate role, and we set a23 = 1. As per the results shown in Table 16,
the role assignments satisfy all the given constraints. Table 17 presents the assigning process that does
not stop until queue Q becomes empty.

Table 12. Assignments in step 1.

r1 r2 r3 r4 r5

u1 a11 0 0 1 0

u2 0 0 a23 1 0

u3 a31 a32 a33 0 0

u4 0 0 0 1 0

u5 a51 0 0 0 a55

u6 a61 a62 a63 1 0
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Table 13. Assignments in step 2.

r1 r2 r3 r4 r5

u1 a11 0 0 1 0

u2 0 0 a23 1 0

u3 a31 a32 a33 0 0

u4 0 0 0 1 0

u5 a51 0 0 0 1

u6 a61 a62 a63 1 0

Table 14. Assignments in step 3.

r1 r2 r3 r4 r5

u1 1 0 0 1 0

u2 0 0 a23 1 0

u3 1 a32 0 0 0

u4 0 0 0 1 0

u5 1 0 0 0 1

u6 1 a62 0 1 0

Table 15. Assignments in step 4.

r1 r2 r3 r4 r5

u1 1 0 0 1 0

u2 0 0 a23 1 0

u3 1 1 0 0 0

u4 0 0 0 1 0

u5 1 0 0 0 1

u6 1 0 0 1 0

Table 16. Assignments in step 5.

r1 r2 r3 r4 r5

u1 1 0 0 1 0

u2 0 0 1 1 0

u3 1 1 0 0 0

u4 0 0 0 1 0

u5 1 0 0 0 1

u6 1 0 0 1 0

Table 17. The assigning process.

Step Candidate Role Identified aij Assigned Users Updated Q

1 r4 a14, a24, a44, a64, a25, a45, a65 u1,u2,u4,u6 {r5,r1,r2,r3}
2 r5 a55 u5 {r1,r2,r3}
3 r1 a11, a31, a51, a61, a33, a63 u1,u3,u5,u6 {r2,r3}
4 r2 a32, a62 u3 {r3}

5 (finish) r3 a23 u2 Φ
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5. Experimental Evaluations

In this section, three groups of experiments are carried out. The first group of experiments is used
to evaluate the accuracy of REO_CCUMEC, the second is to evaluate its effectiveness, and the third is to
evaluate its efficiency. We comprehensively consider 11 datasets from the work in [14]. These datasets
are both real and synthetic, and the regular mining tool RMiner [48] was run on these datasets in the
literature to evaluate the performance of unconstrained role mining. The original datasets, including
the density of the dataset, the number of the initial role set CR, and the execution time, are shown
in Table 18. All experiments are implemented on a standard desktop PC with an Intel i5–7400 CPU,
4 GB RAM, and 160 GB hard disks, running a 64-bit Windows 7 operating system. All simulations are
compiled and executed in Eclipse IDE for a Java Developer environment.

Table 18. Original datasets.

Dataset |U| |P| |UPA| Density |CR| Execution Time(s)

America-large 3485 10,127 185,294 0.5% 423 78.78
America-small 3477 1587 105,205 1.9% 213 6.31

Apj 2044 1164 6841 0.3% 456 5.60
Customer 10,961 284 45,427 1.5% 276 4.66
Domino 79 231 730 4% 20 0.01

Emea 35 3046 7,20 6.8% 34 0.02
Firewall1 365 709 31,951 12.3% 69 0.11
Firewall2 325 590 36,428 19% 10 0.15

Healthcare 46 46 1486 70% 15 0.01
University1 493 56 3955 14.3% 31 0.01
University2 400 14 3073 54.9% 15 0.01

5.1. The Accuracy of the REO_CCUMEC

5.1.1. Experimental Setup

We denote the percentage of the number of center points in the user cluster as the compression ratio.
For the given user cluster CU with k center points, the compression ratio = k/|CU|. The experimental
setup includes to following. The compression ratio increases from 0.05 to 0.4 with a step of 0.05, and we
choose 0.66, 0.8, 1 as the threshold t of the support degree. In addition, the partitioning and compression
algorithms are written in Java.

5.1.2. Evaluation Measures

To evaluate the accuracy of the REO_CCUMEC in the preprocessing phase, on the one hand,
we consider the similarity between the roles from the compressed results and initial roles with respect
to the same set of users as one measure, which is denoted as simU(UAcompressed,UAinitial); on the other
hand, we consider the similarity with respect to the same set of permissions as another measure,
which is denoted as simP(PAcompressed,PAinitial).

5.1.3. Experimental Results and Analyses

We implement the experiments on the America-large, America-small, University1, and University2
datasets, as shown in Table 18, and take the median value. The results of the experiments are shown in
Figures 1 and 2, where the lateral axis represents the varying values of the compression ratio, and the
vertical axis represents the changes of similarity.

Figure 1 demonstrates that the value of simP(PAcompressed,PAinitial) does not obviously vary as the
compression ratio increases under different t values. This value is very smooth and always remains
above 0.95; no matter how one divides the user cluster into partitions, permissions are inserted into
the compressed matrix once their support degree exceeds the threshold t, according to Algorithm
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3. For the same permission set, the roles from the compressed results are the same as the initial
ones. Although, there remains the possibility of temporary changes in access-resource permissions in
large-scale application systems, a dissimilarity below 0.05 can be accepted. Therefore, it is accurate to
use the method of preprocessing from the viewpoint of simP(PAcompressed,PAinitial).

Figure 2 demonstrates that the values of simU(UAcompressed,UAinitial) are different under different t
values. The value of simU(UAcompressed,UAinitial) increases slightly as the compression ratio increases when
t = 0.66, but it tends to grow linearly as the compression ratio increases when t = 0.8 or 1. The higher the
compression ratio, the greater the number of compression points (that is, the center point) and the roles
assigned to the users. In addition, The value of simU(UAcompressed,UAinitial) is no lower than 0.6 as the
compression ratio increases when t = 0.66 but remains less than 0.6 when the compression ratio grows
to 0.25 when t = 0.8 or 1. The higher the threshold t of the support degree, the fewer the users and
the roles that satisfy the corresponding requirements. Therefore, the results are less accurate from the
viewpoint of simU(UAcompressed,UAinitial) when t exceeds 0.66.
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5.2. The Effectiveness of the REO_CCUMEC

5.2.1. Performance Evaluations under a Single Constraint

We first study how the number of optimized roles is influenced by a single cardinality constraint
according to Algorithms 4–5. The preprocessing results UA and CR are considered to be inputs;
both thresholds, MRCuser and MRCpermission, are greater than 1, and we implement the experiments on
the Domino and Healthcare datasets, as shown in Table 18.

In order to evaluate the effectiveness of the REO_CCUMEC under the UCC, we compare the
performance of our method with the results of the representative RPA and CPA [38]. The results are
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shown in Figures 3 and 4, where the lateral axis represents varying values of the threshold MRCuser,
and the vertical axis represents varying values for the number of roles.

It is observed from Figure 3 that the number of roles decreases as MRCuser increases in the
REO_CCUMEC, which tends to be stable and no longer changes as MRCuser increases to a certain value.
Specifically, the number of roles does not obviously vary and remains close to 20 when the value of
MRCuser exceeds 8. Note that the number of the initial mining roles from the Domino dataset is 20 as
shown in Table 18. Thus, the maximum number of roles assigned to any user can be regarded as 8 in the
case of unconstrained mining. A further observation is that the number of roles first varies slightly and
then increases significantly as MRCuser decreases. The reason for this result is that the greater the value
of MRCuser, the more roles assigned to any user (that is, not too many permissions need to be assigned
to a regular role) and the weaker the constraint. In other words, with a greater value of MRCuser,
regular roles are more applicable and can be utilized more frequently. Thus, fewer irregular roles need
to be created, and the number of roles does not vary considerably. On the contrary, the smaller the
value of MRCuser, the stronger the constraint. More permissions are assigned to irregular roles that are
rarely utilized, and the number of roles increases remarkably because of the creation of more new roles.

However, the number of roles tends to increase as MRCuser increases, from 1 to 4, in both the
RPA and CPA, which seems to be contradictory. The reason for this result is that the Domino dataset
contains exclusive permissions and produces exclusive roles in the presence of constraints. As shown
in the figure, the maximum number of roles is close to 30 when MRCuser equals 4, while the minimum
number of roles is 23 when MRCuser equals 1. Therefore, our method outperforms the RPA and CPA in
the Domino dataset.

Similar to the analyses in Figure 3, it is observed in Figure 4 that the number of roles also decreases
as MRCuser increases in the REO_CCUMEC, which tends to be stable and remains close to 15 when
MRCuser increases to a certain value. However, the variations of the results in both the RPA and CPA
are simple. The RPA generates 15 roles that remain unchanged when MRCuser exceeds 1, while the
number of roles is 18 when MRCuser equals 1; the CPA generates 18 roles that remain unchanged as
MRCuser varies. Therefore, our method outperforms the CPA in the Healthcare dataset.

In order to evaluate the effectiveness of the REO_CCUMEC under the PCC, a representative
post-processing method [39] is used for the performance comparison. The results are shown in Figures 5
and 6, where the lateral axis represents the varying values of the threshold MRCpermission, and the
vertical axis represents the varying values of the number of roles. It is observed that the number of
roles first varies slightly as MRCpermission decreases and then increases significantly in the two methods.
Moreover, the number of optimized roles in our method is close to that in the post-processing method.
Detailed analyses are not discussed in this paper as similar discussions have been presented for the
changes of MRCuser values. Therefore, our method is as effective as the post-processing method in the
Domino and Healthcare datasets.
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5.2.2. Performance Evaluations under the Double Constraints

Next, we study the impacts of both the UCC and PCC on the number of the optimized roles.
According to Algorithm 6, the sets of users or permissions violating the UCC or PCC are first determined.
Either a violating user or a violating permission is chosen based on the heuristic strategy in line 4
of the algorithm. In this paper, we consider four heuristics: (1) choose the user or permission with
the maximum number based on (count_user_roles(u)-MRCuser) or (count_perm_roles(p)-MRCpermission),
(2) choose the user or permission with the minimum number based on (count_user_roles(u)-MRCuser) or
(count_perm_roles(p)-MRCpermission), (3) choose the violating permission first and then the user, and (4)
choose the violating user first and then the permission.

In order to evaluate the effectiveness of the REO_CCUMEC under these double constraints,
we implement the experiments with different heuristics on the America-large, Apj, Firewall1,
and Firewall2 datasets, as shown in Table 18. The results are shown in Tables 19–22 as the values of
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MRCuser and MRCpermission vary, where the intersections between MRCpermission on the row and MRCuser

on the column represent the number of roles. As the two constraints are mutually exclusive, it is
possible that both constraints cannot be satisfied simultaneously, and we use “x” to denote that no
valid set of roles is generated.

Table 19. The number of optimized roles in the America-large dataset.

MRCpermission

MRCuser

6 5 4 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

145 423 423 423 423 424 424 424 424 425 425 425 425 x x x x
140 424 424 425 425 425 425 426 426 427 428 428 428 x x x x
130 424 424 425 425 425 425 426 426 427 428 428 428 x x x x
120 425 427 427 427 426 428 428 428 427 431 429 429 x x x x
110 427 431 428 428 428 433 429 429 427 433 431 431 x x x x
100 428 435 431 431 429 437 432 432 433 437 435 435 x x x x

Table 20. The number of optimized roles in Apj.

MRCpermission

MRCuser

13 11 9 7

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

69 456 456 456 456 457 457 457 457 457 459 458 458 461 463 465 465
65 457 457 457 457 458 458 458 458 458 460 459 459 462 464 466 466
55 458 460 459 459 459 461 460 460 461 463 461 461 x x 467 469
45 459 462 460 460 460 463 461 461 463 467 462 462 x x x x
35 460 462 460 460 461 463 462 462 x 468 x x x x x x
25 460 463 462 462 461 463 462 462 x 469 x x x x x x

Table 21. The number of optimized roles in Firewall1.

MRCpermission

MRCuser

21 17 13 9

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

27 69 69 69 69 70 70 70 70 71 71 71 71 73 75 73 73
25 70 70 70 70 71 71 71 71 72 72 72 72 74 76 74 74
22 70 71 71 71 72 73 72 72 73 73 74 74 x 77 75 75
18 71 72 73 73 73 74 74 74 74 75 76 76 x x x x
15 72 73 74 74 74 75 75 75 75 76 77 77 x x x x
11 73 74 75 75 75 76 76 76 x 77 78 78 x x x x

Table 22. The number of optimized roles in Firewall2.

MRCpermission

MRCuser

9 8 7 6

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

3 10 10 10 10 11 11 11 11 11 11 11 11 x x x x
2 x x x x x x x x x x x x x x x x

It is observed in Tables 19–22 that, when the values of MRCpermission are fixed at 145, 69, 27, and 3,
respectively, the best experimental results of our method are as follows. As MRCuser decreases, 423, 424,
and 425 roles are generated from the America-large dataset; 456, 457, 459, and 461 roles are generated
from the Apj dataset; 69, 70, 71, and 73 roles are generated from the Firewall dataset; 10, 11, and 11
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roles are generated from the Firewall2 dataset. Note that the number of roles increases slightly or
remains unchanged as the value of MRCuser or MRCpermission decreases.

Furthermore, Table 19 shows that the effective sets of roles are generated when MRCuser exceeds 3
as MRCpermission varies. However, no valid roles are generated from the America-large dataset when
MRCuser equals 3. Tables 20–22 show that the effective sets of roles are generated when the values
of both MRCuser and MRCpermission are greater, but no valid roles exist with respect to any heuristic
strategy when MRCuser or MRCpermission becomes smaller. In conclusion, for the given MRCuser and
MRCpermission, if no valid roles can be generated, the role optimization remains ineffective by reducing
one or more constraint values; otherwise, the role optimization remains effective by increasing one or
more constraint values.

5.3. The Efficiency of the REO_CCUMEC

5.3.1. Experimental Setup

To simulate the actual scenarios while satisfying the security requirements in the role-engineering
system, we adopt the method of generating the t-t SMER constraints [41]. The value of the cardinality
constraint is greater than or equal to 2, and the density of the user-capability matrix changes from 0.4
to 0.6 with a step of 0.05. In addition, the role assigning algorithm is written in Java.

5.3.2. Evaluation Measure

To evaluate the efficiency of the REO_CCUMEC, we compare RR as the cardinality constraints;
the t-t SMER constraints and the user-capability constraints vary in different datasets.

5.3.3. Experimental Results and Analyses

We use different parameters that include the threshold MRCuser, the density δ of matrix UC, and set
C of t-t SMER constraints as inputs, implement the experiments 10 times on the Apj and Customer
datasets (as shown in Table 18), and take the median value. The results of the experiments are shown
in Figures 7 and 8, where the vertical axis represents the varying values of RR, and the lateral axis
represents varying values of MRCuser, C, and δ, respectively.

Figure 7 shows that the role-utilization ratio varies with varying values of the cardinality constraint;
when the number of set C changes from 100 to 400, the number of roles in the UC constraint is 15, and the
density of matrix UC is fixed at 0.6. Specifically, it is observed that the value of the role-utilization
ratio first increases with an increase in the value of MRCuser and then tends to be stable and no longer
changes after a certain point. The reason for this result is that the upper bound of the role-utilization
ratio is directly proportional to the value of the cardinality constraint, as shown in Statement 2 of
this paper. However, after a particular value for the cardinality constraint, the increase in utilization
will be saturated ahead of time, as the t-t SMER constraints play important roles in restricting the
role assignments. A further observation is that the value of the role-utilization ratio decreases with
an increase in the number of the t-t SMER constraints because the greater the constraints, the fewer the
users assigned to a particular role.

Figure 8 shows that the role-utilization ratio varies with varying values of the density of matrix
UC; when the number of set C changes from 100 to 400, the number of roles in the UC constraint
is 15, and MRCuser is fixed at 5. It is observed that the value of the role-utilization ratio decreases
with an increase in the value of δ because the upper bound of the role-utilization ratio is inversely
proportional to the value of δ. We also note that this value decreases as the number of the t-t SMER
constraints increases.
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5.4. Advantages and Limitations of the REO_CCUMEC

From the above analyses of the REO_CCUMEC, we find that it has the following main advantages:

(1) In the preprocessing phase, it can reduce the mining scale, while eliminating the redundancies of
the mining roles by using partitioning and compressing technologies.

(2) In the role optimization phase, REO_CCUMEC constructs a role-engineering system based
on the mining results in the previous phase. Thus, it can satisfy two cardinality constraints
simultaneously, and the problem of constraint conflicts between the UCC and PCC can be
effectively solved.

(3) In the role assignment phase, besides the cardinality constraints and the given user-capability
constraints, we construct t-t SMER constraints using the existing mature methods. It is effective
and efficient to implement the maximal role assignments, while satisfying all the constraints in
the constructed RBAC system.

Meanwhile, it is observed in Sections 1 and 2 that the methods proposed by Kumar et al. [35] and
Blundo et al. [36] only satisfied the cardinality constraint RPC; the method proposed by Hingankar et
al. [37] only satisfied the RUC; the CPA and RPA proposed by John et al. [38] only satisfied the UCC;
the method proposed by Ma et al. [26] satisfied the RUC or RPC; the methods proposed by Sarana
et al. [40] did not satisfy any cardinality constraint but satisfied the SMER constraints; the methods
proposed by Harika et al. [39] could satisfy the UCC and PCC simultaneously. In addition, the system
status was unknown using any of these methods. Although, the method proposed by Roy et al. [28]
satisfied the UCC, SMER, and user-capability constraints simultaneously, the RBAC system existed
in advance. Therefore, compared with existing studies, the security characteristics of the proposed
method are shown in Table 23, where a tick

√
denotes that the characteristic is available.
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Table 23. Comparison of security characteristics.

Characteristic Kumar et al. [35]
Blundo et al. [36]

Hingankar
et al. [37]

John et
al. [38]

Ma et
al. [26]

Sarana
et al. [40]

Harika
et al. [39]

Roy et
al. [28]

Proposed
Method

UCC
√ √ √ √

PCC
√ √

RUC
√ √

RPC
√ √

SMER
√ √ √

User-Capability
Constraints

√ √

Unknown
System Status

√ √ √ √ √ √ √

Nevertheless, the REO_CCUMEC still has limitations:

(1) It is observed from Section 5.1.1 that for the given user cluster, how to set the parameters (including
compression ratio and the threshold of the support degree) lacks a theoretical justification. Different
parameters may cause different evaluation results. Although, the preprocessing roles are very
similar to the initial roles from the viewpoint of simP(PAcompressed,PAinitial), they are less accurate
from the viewpoint of simU(UAcompressed,UAinitial) when the threshold t exceeds a particular value.

(2) It is observed in from Tables 19–22 that the effective roles that can be generated as MRCuser and
MRCpermission vary. However, certain combinations of the values of MRCuser and MRCpermission
cannot produce a valid solution since the UCC and PCC are mutually exclusive, especially when
MRCuser or MRCpermission becomes smaller.

6. Conclusions and Future Work

A novel role-engineering method, REO_CCUMEC, has been proposed in this paper. We first
converted the basic role mining problem into a clustering problem, and used the partitioning and
compressing technologies to eliminate redundancies. We then presented three role-optimization
problems with single or double cardinality constraints, and proposed the corresponding algorithms.
Lastly, the maximal role-assignments problem was discussed in the constructed role-engineering
system. As a result, the proposed method could address the stated problems: Reducing the mining
scale and computational complexity in role mining, satisfying the double cardinality constraints
simultaneously in the role optimization, and meeting multiple security constraints in the role
assignments. The experiments demonstrated that the proposed method is accurate, effective,
and efficient.

There are still, however, a few interesting issues to be resolved. In view of the above limitations
of the REO_CCUMEC, to further enhance the accuracy of the preprocessing results, one issue is to
consider how to provide theoretical justifications for choosing the compression ratio and threshold of
the support degree. In order to further enhance the effectiveness of role optimization for satisfying the
UCC and PCC simultaneously, another issue is to consider how to determine the upper and lower
bounds of constraint values. Moreover, implementing the REO_CCUMEC in systems with the recent
hot fields like the blockchain, wireless sensor networks, and internet of things, is also an interesting
topic for future work.
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