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Abstract: Residual networks (ResNets) are prone to over-fitting for low-dimensional and small-scale
datasets. And the existing intrusion detection systems (IDSs) fail to provide better performance,
especially for remote-to-local (R2L) and user-to-root (U2R) attacks. To overcome these problems,
a simplified residual network (S-ResNet) is proposed in this paper, which consists of several cascaded,
simplified residual blocks. Compared with the original residual block, the simplified residual block
deletes a weight layer and two batch normalization (BN) layers, adds a pooling layer, and replaces
the rectified linear unit (ReLU) function with the parametric rectified linear unit (PReLU) function.
Based on the S-ResNet, a novel IDS was proposed in this paper, which includes a data preprocessing
module, a random oversampling module, a S-Resnet layer, a full connection layer and a Softmax
layer. The experimental results on the NSL-KDD dataset show that the IDS based on the S-ResNet
has a higher accuracy, recall and F1-score than the equal scale ResNet-based IDS, especially for R2L
and U2R attacks. And the former has faster convergence velocity than the latter. It proves that the
S-ResNet reduces the complexity of the network and effectively prevents over-fitting; thus, it is more
suitable for low-dimensional and small-scale datasets than ResNet. Furthermore, the experimental
results on the NSL-KDD datasets also show that the IDS based on the S-ResNet achieves better
performance in terms of accuracy and recall compared to the existing IDSs, especially for R2L and
U2R attacks.

Keywords: intrusion detection system; simplified residual network; simplified residual block; random
oversampling; full connection; over-fitting

1. Introduction

With the rapid development of computer networks, network security issues have become
increasingly prominent, resulting in huge economic losses. At present, the most widely used network
security systems are firewalls, intrusion detection systems (IDSs) and intrusion prevention systems
(IPSs). Among them, the IDS is a proactive security protection technology. It collects information
from computer network system and analyses it to find out whether there are any violations of security
policies and signs of being attacked in the network system. As an effective complement to the firewall,
IDS is usually installed behind the firewall to detect intrusions and illegal activities of attack users.
IPS is a kind of network security system which is different from a firewall and IDS. It can implement
active defense and real-time blocking to intrusion activities and attacks, which greatly improves the
security of the network system.

The traditional IDSs mainly check attacks based on feature detection. This method has many
shortcomings, such as lack of accuracy of its feature library, lack of ability to automatically update
features, etc. With the rapid development of network technology, it is very difficult to automatically

Information 2019, 10, 356; doi:10.3390/info10110356 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-9516-1947
http://www.mdpi.com/2078-2489/10/11/356?type=check_update&version=1
http://dx.doi.org/10.3390/info10110356
http://www.mdpi.com/journal/information


Information 2019, 10, 356 2 of 17

extract intrusive and normal behavior by manual analysis alone. Therefore, there is a trend to apply
intelligent data analysis technology to IDS. In recent years, with the development of machine learning
and deep learning, they are also gradually used in IDS [1], including various IDSs based on feature
selection [2–14], IDSs based on machine learning [15–26], IDSs based on deep learning [27–32] and IDSs
based on hybrid model [33–35]. However, these IDSs fail to provide better performance, especially for
remote-to-local (R2L) and user-to-root (U2R) attacks.

Recently, residual networks (ResNets) have received quite a bit of attention at IT conventions [36],
and they are being considered for helping with the training of deep networks. They can help to
preserve good results by using residual blocks in deep learning networks. However, a ResNet is prone
to over-fitting for low-dimensional and small-scale datasets, such as datasets for IDS. To solve these
problems, we put forward a simplified residual network (S-ResNet), which consists of several cascaded,
simplified residual blocks. Then, we present a novel IDS based on the S-ResNet. The experimental
results indicate that our proposed IDS based on the S-ResNet has a higher accuracy, recall and F1-score,
and faster convergence velocity than the equal-scale, ResNet-based IDS. This means that the S-ResNet
reduces the complexity of the network and effectively prevents over-fitting; thus, it is more suitable for
low-dimensional and small-scale datasets than ResNet. And the IDS based on the S-ResNet has higher
accuracy and recall than the other IDSs, especially for R2L and U2R attacks. Hence, our proposed IDS
provides better performance than the existing IDSs.

The remainder of this article is organized as follows. Section 2 provides an overview of the existing
IDSs based on machine learning and deep learning. In Section 3, we provide the rationale of our
proposed S-ResNet. Section 4 gives a novel IDS based on the S-ResNet. In Section 5, we demonstrate
the experimental details and results, and discuss them. Finally, we draw some conclusions in Section 6.

2. Related Works

Pertaining to IDSs based on feature selection, Ambusaidi et al. [2] proposed two feature selection
algorithms, i.e., flexible mutual information based feature selection (FMIFS) and flexible linear
correlation coefficient based feature selection (FLCFS), which were compared with a mutual information
based feature selection (MIFS) algorithm, and 18, 22 and 23 features were selected respectively. Finally,
the classification was performed by combining it with a support vector machine (SVM) algorithm.
Ghazy et al. [3] and Aljawarneh et al. [4] proposed some feature selection methods based on the
correlation feature selection (CFS), information entropy and wrapper. Kang et al. [5] proposed a
feature selection algorithm based on local search and meta-heuristic. Firstly, K-means clustering
algorithm was applied to the training set, and the accuracy obtained was used as a cost function to
select the optimal feature subset. Secondly, 25 features were screened out by the proposed algorithm.
Finally, the multi-layer perception (MLP) model was applied to the optimal subset. Salo et al. [6]
proposed a hybrid dimension reduction method based on information gain and principal component
analysis (PCA), which combines SVM, instance-based k-nearest neighbors (IBK) and multi-layer
perceptron (MLP) algorithms. They reported an accuracy of 98.24% on the NSL-KDD dataset [7].
Beulah et al. [8] proposed an improved hybrid feature selection (IHFS) method, which combines four
feature selection methods; i.e., CFS, gain ratio (GR), one rule (OneR) and symmetrical uncertainty
(SU). Finally, six attributes (i.e., service, flag, src_bytes, dst_bytes, logged_in and srv_serror_rate) were
selected as the optimal subset, and a Bayesian network was combined with logistic regression, nearest
neighbor, NBTree and SVM classifiers. They reported an accuracy of 79.6% for the NSL-KDD dataset.
Bostani et al. [9] proposed a feature selection method based on binary gravitational search algorithm
(BGSA) and mutual information (MI). Then, five features (i.e., service, flag, src_bytes, dst_bytes and
serror_rate) were selected, and an SVM classifier was used. They reported an accuracy of 88.362% for
the NSL-KDD dataset. Acharya et al. [10] proposed a natural heuristic optimization algorithm; i.e.,
intelligent water drops (IWD). Then, nine features were selected and an SVM classifier was used. They
reported an accuracy of 99.0915% on the KDD CUP’99 dataset [11]. Akashdeep et al. [12] combined
information gain with correlation to sort the features, and removed redundant information. Then,
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25 features were selected, and classified by an artificial neural network (ANN) model. Akyol et al. [13]
proposed a feature selection method of discernibility function based feature selection (DFBFS), and then,
the MLP and C4.5 algorithms were applied. They reported an accuracy of 98.03% for the KDD CUP’99
dataset. Bhattacharya et al. [14] proposed a layered wrapper feature selection approach. Finally,
16 features were selected, and naive Bayesian, SVM, k-nearest neighbor (kNN) and AdaBoost methods
were applied. The accuracy of the naive Bayesian was 83.14% for the NSL-KDD dataset.

In respect to IDSs based on machine learning, Panda et al. [15] constructed a new hybrid intelligent
system by combining a naive Bayesian with a decision tree and a rule-based classifier based on
non-nested generalized samples, and extended repeated incremental pruning. Ahmad et al. [16]
compared the three algorithms of SVM, random forest and extreme learning, and the experimental
results show that the accuracy of extreme learning for intrusion detection is better than the other two
methods. Aburomman et al. [17] introduced the integration methods of bagging, boosting, AdaBoost,
stacking and other basic classifiers. Preecha et al. [18] applied PCA to reduce dimensionality, and then
used a simplified fuzzy adaptive resonance theory map (SFAM) to classify, improving the detection
rate of R2L. Alabdallah et al. [19] combined with layered sampling, a loss function and a weighted
support vector machine (WSVM), achieving an accuracy of 98.31% for the NSL-KDD dataset. And the
detection rates of U2R and R2L were improved. Li et al. [20] combined the binary aggregation module
with the kNN algorithm, achieving an anomaly detection rate of 91.35% for the NSL-KDD dataset.
And the detection rates of U2R and R2L are higher than those of other methods. Demir et al. [21]
improved the stacking model by using the logical regression, decision tree and naive Bayesian methods
as base classifiers, and designed 13 groups of experiments. They reported an accuracy of 92.55% on
the KDD CUP’99 dataset. The naive Bayesian method as a combiner can detect U2R and R2L attacks
very well. Kamarudin et al. [22] proposed a Logitboost ensemble algorithm, and selected 10 features
by using hybrid feature selection (HFS), and the random forest method was used as a combination
of weak classifiers. They reported an accuracy of 99.1% on the NSL-KDD dataset. Tian et al. [23]
proposed a robust and sparse ramp loss function to the original one-class SVM (Ramp-OCSVM) method.
The non-differentiable non-convex optimization problem of the obtained model was solved by using a
concave–convex process. Kabir et al. [24] proposed an optimum allocation-based least square support
vector machine (OA-LS-SVM) method. By using the least square support vector machine (LS-SVM)
method, different attack categories and normal categories were grouped into subsets, and then the
proposed model was applied to each subset. Ahmim et al. [25] proposed an IDS based on the
combination of the probability predictions of a tree of classifiers—a two-layer model. The first layer is a
classification tree, and the second layer is a classifier, which combines the probability prediction of the
tree. They reported an accuracy of 89.75% on the NSL-KDD dataset. Aburomman et al. [26] proposed
a weighted one-against-rest SVM (WOAR-SVM) method based on SVM, and applied a differential
evolution (DE) optimization algorithm to model selection. They reported an accuracy of 80.65% for the
NSL-KDD dataset.

In the aspect of IDSs based on deep learning, Yan et al. [27] proposed a local adaptive gated
recurrent unit (LA-GRU) model, which processes unbalanced data using local adaptive synthetic
minority oversampling technology (LA-SMOTE), and then classifies based on the gated recurrent
unit (GRU) networks. Idhammad et al. [28] proposed a sequential inertial semi-supervised machine
learning method based on network entropy estimation, collaborative clustering, information gain
ratio and extra-trees algorithm. They reported an accuracy of 98.23% on the NSL-KDD dataset.
Mohammadi et al. [29] used a deep auto-encoder for feature coding, and then applied a linear memory
classifier to the NSL-KDD dataset, achieving a detection rate of 98.11%. Imamverdiyev et al. [30]
proposed an improved Gaussian–Bernoulli type restricted Boltzmann machine (RBM) method,
and compared with the Bernoulli–Bernoulli RBM, Gaussian–Bernoulli RBM and deep belief network
(DBN) methods. They reported an accuracy of 73.23% for the NSL-KDD dataset. Ma et al. [31] proposed
a spectral clustering and deep neural network (SCDNN) model. In this model, a spectral clustering
algorithm is applied, and then a subset of clustering is put into the deep neural network (DNN) method.
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They reported an accuracy of 92.1% on the NSL-KDD dataset. The model was compared with the
back propagation (BP) network, SVM, random forest and Bayes tree models. Shamshirband et al. [32]
proposed a cooperative fuzzy Q-learning (Co-FQL) method, which was compared with the fuzzy
logic controller, Q-learning and fuzzy Q-learning methods. They reported an accuracy 89.68% on the
NSL-KDD dataset.

Regarding IDSs based on a hybrid model, Al-Qatf et al. [33] proposed a self-taught learning
intrusion detection system (STL-IDS). In the STL-IDS, new features are constructed by sparse self-coding,
and then classified by the J48, naive Bayes, random forest and SVM methods. The experimental results
show that the new features accelerate the training of SVM. They reported an accuracy of 99.396% for
the NSL-KDD dataset. Hussain et al. [34] combined the advantages of SVM and BP network. In the
first stage, SVM is used to classify normal and abnormal. And in the second stage, a BP network is
used to identify attack categories in abnormal. Li et al. [35] proposed a model combining a Gini index
and gradient boosting decision tree (GBDT) with particle swarm optimization (PSO). The optimal
feature subset is selected by the Gini index, and the network attack is detected by a gradient lifting
decision tree algorithm. The parameters of GBDT are optimized by the PSO algorithm. They reported
an accuracy of 86.10% on the NSL-KDD dataset.

In summary, the above IDSs are mainly innovations in the aspects of feature selection algorithms
and classification prediction algorithms. The classification prediction algorithms used in these IDSs
are divided into machine learning models, deep learning models and hybrid models. Currently,
the deep learning model has become more attractive and effective than the other models in the IDS
field. However, the traditional deep learning networks have the problems of the disappearance of
the gradient of the network and the difficulty of training network. To avoid these problems, ResNet
was proposed at recent IT conventions, which is more suitable for high-dimensional image data than
for low-dimensional and small-scale datasets (e.g., datasets for IDS). In order to keep all the features,
we do not use any feature selection algorithm in this paper. But for low-dimensional and small-scale
datasets (e.g., datasets for IDS), we propose a S-ResNet based on ResNet, and put forward a novel IDS
based on the S-ResNet.

3. Simplified Residual Network

ResNet comes from Microsoft Research [36], an artificial intelligence team of Microsoft. It is the
winner of the image classification and object recognition algorithms of the Image Net Large Scale
Visual Recognition Competition (ILSVRC) in 2015. It outperforms the third version of GoogLeNet
(i.e., Inception v3) [37]. ResNet is a large-scale, convolutional neural network constructed by residual
blocks, which is 20 times larger than AlexNet [38] and eight times larger than VGG-16 [39]. Because
of this residual effect, the depth of the network can be deeper than that of the traditional networks,
which can effectively avoid the disappearance of the gradient of the deep network and the difficulty of
training. As the number of layers grows, the performance of ResNet does not deteriorate, but improves
to a certain extent. The structure of residual block is shown in Figure 1.
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Figure 1. The structure of residual block.

In Figure 1, X denotes the input of a residual block; F(X) denotes the output of the residual block
before the second activation function. That is to say, F(X) = W2σ(W1X), where W1 and W2 denote the
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weights of the first and second layers, σ denotes the rectified linear unit (ReLU) activation function [40]
and the output of the residual block is σ(F(X) + X).

In [41], some variants of the residual block were proposed, as shown in Figure 2.Information 2019, 11, x FOR PEER REVIEW 5 of 17 

 

 

Figure 2. Some variants of the residual block. 

In Figure 2, the original residual block is shown, and some variants of the original residual block are 

shown in Figure 2b–e, which mainly adjusts the order of the components of the original residual block. 

ResNet mainly uses residuals to reduce the over-fitting of the model, so that the depth of the 

network can be greater. And ResNet is more suitable for high-dimensional image data. However, 

ResNet is prone to over-fitting for low-dimensional and small-scale datasets (e.g., datasets for IDS), 

resulting in reduced generalization ability of the model. 

To solve this problem, this paper proposes a S-ResNet, which is composed of a cascade of 

simplified residual blocks. Each simplified residual block is mainly composed of a weight layer, a 

PReLU layer and a pooling layer, as shown in Figure 3. 

 

Figure 3. Simplified residual block. 

In Figure 3, the input 
tX  passes through the weight layer; then through the PReLU activation 

layer; then superimposes with the initial input 
tX ; and finally, passes through the pooling layer as 

the output of the residual block. 

Compared with the original residual block, the simplified residual block deletes one weight 

layer and two batch normalization (BN) layers; thus, reducing the parameters and complexity of the 

residual block, but it retained one weight layer and still uses residual to reduce over-fitting. And the 

original ReLU activation function is replaced by the parametric rectified linear unit (PReLU) function 

[40]. Compared with the ReLU function, the PReLU function converges faster and prevents over-

fitting. The simplified residual blocks also add a layer of pooling after additions for downsampling, 

keeping the invariance of the original image and retaining the main features.  

From the above description, the simplified residual block can prevent over-fitting and improve 

the generalization ability of the model, while reducing the parameters and quantity of calculations. 

Weight

PReLU

addition

Xt+1

Pooling

Xt

Figure 2. Some variants of the residual block.

In Figure 2, the original residual block is shown, and some variants of the original residual
block are shown in Figure 2b–e, which mainly adjusts the order of the components of the original
residual block.

ResNet mainly uses residuals to reduce the over-fitting of the model, so that the depth of the
network can be greater. And ResNet is more suitable for high-dimensional image data. However,
ResNet is prone to over-fitting for low-dimensional and small-scale datasets (e.g., datasets for IDS),
resulting in reduced generalization ability of the model.

To solve this problem, this paper proposes a S-ResNet, which is composed of a cascade of simplified
residual blocks. Each simplified residual block is mainly composed of a weight layer, a PReLU layer
and a pooling layer, as shown in Figure 3.
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Figure 3. Simplified residual block.

In Figure 3, the input Xt passes through the weight layer; then through the PReLU activation
layer; then superimposes with the initial input Xt; and finally, passes through the pooling layer as the
output of the residual block.

Compared with the original residual block, the simplified residual block deletes one weight layer
and two batch normalization (BN) layers; thus, reducing the parameters and complexity of the residual
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block, but it retained one weight layer and still uses residual to reduce over-fitting. And the original
ReLU activation function is replaced by the parametric rectified linear unit (PReLU) function [40].
Compared with the ReLU function, the PReLU function converges faster and prevents over-fitting.
The simplified residual blocks also add a layer of pooling after additions for downsampling, keeping
the invariance of the original image and retaining the main features.

From the above description, the simplified residual block can prevent over-fitting and improve
the generalization ability of the model, while reducing the parameters and quantity of calculations.
As a whole, the simplified residual block is a simplification and optimization of the original residual
block for low-dimensional and small-scale datasets. Correspondingly, S-ResNet, which consists of a
cascade of simplified residual blocks, can also reduce the complexity of the network, and can effectively
prevent over-fitting. Therefore, the S-ResNet can be applied to low-dimensional and small-scale
datasets; e.g., datasets for IDS, covering a wider scientific area.

4. Our Proposed IDS

Based on the above S-ResNet, a novel IDS is proposed in this paper, as shown in Figure 4.
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Figure 4. The intrusion detection system (IDS) based on the simplified residual network (S-ResNet).

In this IDS, the original dataset is pre-processed and converted into a series of single channel
images (i.e., a series of black and white images). Then, random oversampling is used to balance the
number of samples of each category. Finally, the data is run through a S-ResNet layer and a full
connection layer, and the prediction probability of the corresponding category is converted through a
Softmax layer.

The application scenario of the above IDS is illustrated in Figure 5, including the training phase
and the testing phase.
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4.1. Data Preprocessing

The data preprocessing in Figure 4 mainly includes data coding, data standardization and data
conversion. One-hot coding, also known as unique hot coding, is used to encode N states with N-bit
registers. Each state has its own register bit, and only one is valid at any time. Its function is to convert
non-numerical variables into computational numeric forms, and to expand features to generate larger
sparse matrices.

Data normalization is to scale the data to a small specific interval, which is used to remove the
unit limitations of data and transform it into dimensionless pure values. It is convenient for different
units or scales of indicators to compare and weigh, improving the convergence speed of the model
and preventing the gradient explosion of the model. The data normalization here adopts Z-score
standardization, and its mathematical formula is as follows.

zk
i =

xk
i − µ

k

σk
, (1)

where zk
i denotes the normalized variable value of attribute k of data sample I; xk

i denotes the actual
variable value of attribute k of data sample i; µk denotes the mean value of attribute k of all data
samples; and σk denotes the standard deviation of attribute k of all data samples.

In this paper, data conversion is mainly through adding the multi-dimensional data of 0 to form
n2-dimensional data. Then, the n2-dimensional data is converted into a series of n× n single channel
images (i.e., a series of n× n black and white images). That way, not only is the original information of
the data retained, but also the amount of redundant information is not increased.

4.2. Random Oversampling

Resampling technology is a popular method to deal with unbalanced data. It mainly uses a
sampling method to improve the imbalance of the sample number of different categories in the dataset.
Resampling technology is mainly divided into: oversampling, undersampling and combinations of
them. The most commonly used are random undersampling and random oversampling. Random
undersampling is to delete most samples from training data randomly, while random oversampling is
to copy a few samples from training data randomly.

Random undersampling may lead to loss of information and cannot make full use of the
information of the original data, resulting in inadequate training and low accuracy of the model. Other
methods of generating new samples, such as synthetic minority oversampling technology (SMOTE)
and synthetic minority oversampling technology nominal continuous (SMOTENC) [42], add new
information, but if multiple categories are mixed together, the labels of the newly generated samples
may not be correct. Consequently, the categories of samples of the testing dataset may be misjudged,
reducing the accuracy of the model.

Random oversampling is only repeated sampling, so it can ensure that the samples of the training
dataset are correct. Therefore, random oversampling will be used to alleviate the imbalance of the
number of samples in the dataset.

4.3. S-ResNet Layer

The S-ResNet layer includes a S-ResNet, which is composed of cascaded simplified residual blocks,
as shown in Figure 6.

In Figure 6, the number of simplified residual blocks of the S-ResNet will be set according to the
size and dimension of the input dataset. Usually, the smaller the size and dimension of the input
dataset, the less the number of simplified residual blocks of the S-ResNet. In the S-ResNet, input
datasets are abstracted and simplified layer by layer.
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Figure 6. The S-ResNet layer.

4.4. Dense Layer

The dense layer mainly classifies feature vectors and maps the samples from the feature space
to the labels. It consists of two parts: The linear part and the nonlinear part. The linear part mainly
performs linear transformation and analyzes the input data; the calculation method of this part is linear
weighted sum, whose mathematical expression is as follows.

Z = W×X + b, (2)

where Z is the output vector of the linear part. It can be expressed as Z = [Z1, Z2, · · ·, Zm]
T. X represents

the input vector of the linear part, which is expressed as X = [X1, X2, · · ·, Xn]
T. W is a weight vector

matrix of m× n. b is a bias vector, which is expressed as b = [b1, b2, · · ·, bm]
T.

The nonlinear part performs nonlinear transformation; namely, corresponding function
transformation. This operation has two functions as follows. (1) Data normalization. That is to
say, no matter what the previous linear part does, all the values of the nonlinear part will be limited to a
certain range. (2) Breaking the linear mapping relation early. In other words, if the dense layer has no
non-linear part, it is meaningless to add multiple neural networks in the model.

4.5. Softmax Layer

The Softmax layer is a Softmax activation function. It maps several scalars into a probability
distribution, and the value range of its output is from 0 to 1. Its mathematical formula is as follows.

σ(z) j =
ez j∑K

k=1 ezk
, (3)

where z denotes a K-dimensional vector. z j and zk denote the elements of the K-dimensional vector.
σ(z) denotes the K-dimensional vector after mapping. j and k denote the subscripts of K-dimensional
vector, and j, k = 1, 2, . . . , K.

5. Experiments and Results Analysis

5.1. Experimental Environment and Dataset

The experimental environment of this paper is a Sugon computer A6320r: the processor was a
16× AMD Opteron (tm) Processor 6320, the memory was 65,949 MB, the operating system was Ubuntu
16.04.5 LTS, the programming language was Python 3.6 and the depth learning framework was Keras.

One of the common datasets for intrusion detection experiment is the NSL-KDD dataset [7], which
is an improvement version of the KDD Cup’99 dataset [11]. It solves the inherent problems in the KDD
Cup’99 dataset. Although the NSL-KDD dataset has the defects of old data, redundant information and



Information 2019, 10, 356 9 of 17

unbalanced numbers of categories [1], the data can be improved after data preprocessing and random
oversampling. In addition, these kinds of unbalanced numbers of attack categories exist in actual
IDSs. Hence, we chose the NSL-KDD dataset for experimentation in this paper. There are 42 attributes
in the dataset, including one category attribute, three non-digital attributes and 38 digital attributes.
The training set of the NSL-KDD dataset has 125,973 samples, while the testing set has 22,544 samples.

There are dozens of attack types in the NSL-KDD dataset. However, experts believe that most of
the new attacks are variants of known attacks, so these attacks are divided into four categories [7]:
(1) Denial of service (DoS): exhausting the resources of the attacked object by savage means; thus,
making it unable to provide normal services; paralysis. (2) R2L: unauthorized access to remote
computers. (3) U2R: unauthorized access to local superuser privileges. (4) Probe: monitoring and
other detection behavior. The types of attacks contained in each category are shown in Table 1.

Table 1. The types of attacks contained in each category.

Attack Category Attack Types

DoS apache2, back, land, mailbomb, Neptune, pod, processtable, smurf,
teardrop, and udpstorm.

Probe Ipsweep, portsweep, mscan, nmap, saint, and satan.
U2R buffer_overflow, loadmodule, httptunnel, perl, ps, sqlattack, rootkit, and xterm.

R2L ftp_write, guess_passwd, phf, imap, multihop, named, sendmail, snmpgetattack,
snmpguess, spy, warezclient, warezmaster, worm, xlock, and xsnoop.

Because the testing set of the NSL-KDD dataset has quite different probability distribution from
its training set, and contains many types of attacks that do not appear in the training set, we selected
the training set of the NSL-KDD dataset as the experimental dataset. In this paper, the experimental
dataset is divided by proportion, where 70% of samples are used for training model, and 30% of
samples are used for testing model. And the attack types of the samples in the experimental dataset
are converted into five categories: Normal, DoS, Probe, R2L and U2R. The number of samples of each
category in the experimental dataset is shown in Figure 7.
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It can be seen from Figure 7 that the proportions of samples of each category in the experimental
dataset are 53.6%, 36.4%, 9.2%, 0.76% and 0.04%. Thus, the experimental dataset is a dataset with
seriously unbalanced samples in each category.
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5.2. Experimental Performance Evaluation

For classification problems, the confusion matrix, including four basic metrics, is generally applied,
as shown in Table 2.

Table 2. The confusion matrix, including four basic metrics.

Predicted Positive Class Predicted Negative Class

Actual positive class True Positive (TP) False Negative (FN)
Actual negative class False Positive (FP) Ture Negative (TN)

In Table 2, for a sample, TP indicates that the predicted class of the sample is true when the actual
class of the sample is true. TN indicates that the predicted class of the sample is false when the actual
class of the sample is false. FP indicates that the predicted class of the sample is true when the actual
class of the sample is false. FN indicates that the predicted class of the sample is false when the actual
class of the sample is true.

To further evaluate the performance of the classification models, several widely applied metrics,
i.e., accuracy, precision, recall and F1-score, are generally used. They are calculated based on the four
basic metrics of the confusion matrix shown in Table 2. And the expressions of them are as follows.

accuracy =
TP + TN

TP + FP + TN + FN
, (4)

precision =
TP

TP + FP
, (5)

recall =
TP

TP + FN
, (6)

F1− score =
2(precison× recall)
precision + recall

=
2TP

2TP + FP + FN
. (7)

Accuracy is the proportion of the number of samples correctly predicted to the total number
of samples. Precision is the proportion of the number of actual positive samples that are correctly
predicted to the number of all samples predicted to be positive. Recall is the proportion of the number
of actual positive samples that are correctly predicted to the number of all actual positive samples.
F1-score is the harmonic mean of precision and recall. In other words, it can be interpreted as a
weighted average of the precision and recall.

Accuracy is the most intuitive performance of an IDS. It directly reflects the superiority of the IDS.
However, if we use accuracy alone to evaluate the performance of the IDS, it may lead to serious skew
of classification, resulting in high accuracy of most classes, but low accuracy of a few classes. Precision
and recall are two important performance factors of the IDS, but there may be conflicts between them.
Besides, F1-score is usually more useful than accuracy, especially for an imbalanced class distribution.
Therefore, this paper mainly uses accuracy, recall and F1-score to evaluate the performance of our
proposed IDS.

5.3. Experimental Results and Analysis

For the above experimental dataset, we first carried out one-hot coding, transforming non
numerical variables into computable numerical forms, and expanding the original 41 dimensions to
122 dimensions, and then carrying out Z-score standardization. If the feature filtering method in [43]
was used directly here, then the attribute with the least correlation would be removed from the above
122-dimensional dataset, and the 121-dimensional dataset will be converted into a series of single
channel images of 11 × 11. However, it will reduce the amount of original information and cause
information loss. In order to avoid this problem, we added a 22-dimensional dataset of 0 to form a
144-dimensional dataset, and then converted the 144-dimensional dataset into a series of 12 × 12 single
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channel images. That way, the original information was retained and the redundant information was
not increased.

After the above data preprocessing, we used random oversampling to make that the proportions
of samples of normal, DOS, Probe, R2L and U2R in the dataset were 1:1:1:1:1:1, and then used it to train
our proposed IDS. According to the size and dimensions of the above converted dataset, the S-ResNet
used in the experiment is shown in Figure 8.Information 2019, 11, x FOR PEER REVIEW 11 of 17 
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Figure 8. The S-ResNet used in the experiment.

In Figure 8, a series of 12 × 12 single channel images that denote the above converted dataset
were inputted into the S-ResNet. And then the optimal architecture of the S-ResNet was chosen
experimentally. At the same time, in order to compare with ResNet, we used the original residual block
to replace the simplified residual block in Figure 8, and added a pooling layer to form an equal scale
ResNet to replace the S-ResNet of the IDS shown in Figure 4, and then carry out a similar experiment.

Through experiments, the confusion matrixes are shown in Figures 9 and 10.
According to Figures 9 and 10, the accuracy, recall and F1-score of the IDS based on the S-ResNet,

and the accuracy, recall and F1-score of the equal scale ResNet-based IDS, are shown in Table 3.
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Figure 10. The confusion matrix of the equal scale ResNet-based IDS.

Table 3. The comparison results for the two IDSs.

IDS. Accuracy (%) Recall F1-Score

The IDS based on the S-ResNet 99.529 0.99529 0.99541
The equal scale ResNet-based IDS 98.765 0.98764 0.98857

Additionally, the recall and F1-score of the IDS based on the S-ResNet for each category, and the
recall and F1-score of the equal scale ResNet-based IDS for each category, are shown in Figures 11 and 12.
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From Table 3, we can see that the IDS based on the S-ResNet has higher accuracy, recall and
F1-score than the equal scale ResNet-based IDS. And according to Figures 11 and 12, the recall and
F1-score of the IDS based on the S-ResNet for each category are higher than those of the equal scale
ResNet-based IDS for each category, especially for R2L and U2R attacks.

Figures 13 and 14 show how the accuracy of the two IDSs changes when training and testing
models. Figures 15 and 16 show how the loss of the two IDSs changes when training and testing models.Information 2019, 11, x FOR PEER REVIEW 13 of 17 
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Figure 13. The change of the accuracy of the two IDSs when training models.
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Figure 14. The change of the accuracy of the two IDSs when testing models.
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Figure 15. The change of the loss of the two IDSs when training models.
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Compared with the equal scale ResNet-based IDS, the IDS based on the S-ResNet achieves a
higher accuracy value at a faster speed according to Figures 13 and 14, and achieves a lower loss value
at a faster speed according to Figures 15 and 16.

According to the comparative analysis of the above experimental results, whether accuracy,
recall, F1-score or convergence speed, the IDS based on the S-ResNet is better than the equal scale,
ResNet-based IDS. It proves that the S-ResNet reduces the complexity of the network and effectively
prevents over-fitting; thus, it is more suitable for low-dimensional and small-scale datasets than ResNet.

In addition, Table 4 shows the comparison accuracy of the IDS based on the S-ResNet and the
other IDSs on the NSL-KDD dataset. Table 5 shows the comparison recall of the IDS based on the
S-ResNet and the other IDSs for each category on the NSL-KDD dataset.

Table 4. The comparison accuracy on the NSL-KDD dataset.

IDSs Accuracy (%)

GINI-GBDTPSO [35] 86.10
CNN [43] 79.48
LSTM [44] 92.00
DMNB [45] 96.50

DBN-SVM [46] 92.84
TUIDS [47] 96.55

RNN-IDS [48] 81.29
Our Proposed IDS 99.529

Table 5. The comparison recall for each category on the NSL-KDD dataset.

IDSs
Recall

Normal DoS Probe R2L U2R

OS-ELM [49] 0.9907 0.9914 0.9035 0.7810 0.5675
MDPCA-DBN [50] 0.8694 0.6875 0.6320 0.3493 0.6000

Hierarchical SOM [51] 0.9840 0.9690 0.6760 0.7300 0.1570
MOGFIDS [52] 0.9836 0.9720 0.8859 0.1578 0.1101

TVCPSO-SVM [53] 0.9913 0.9884 0.8929 0.6784 0.4038
Our Proposed IDS 0.9943 0.9987 0.9921 0.9664 0.6471

From Tables 4 and 5, our proposed IDS (i.e., the IDS based on the S-ResNet) has higher accuracy
than the other IDSs on the NSL-KDD dataset, and higher recall than the other IDSs for each category
on the NSL-KDD dataset, especially for R2L and U2R attacks.
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6. Conclusions

Based the original residual block, we deleted a weight layer and two BN layers, added a pooling
layer, and replaced the ReLU function with the PReLU function to form a simplified residual block,
whose purpose is to reduce the parameters and amount of calculations for a model and effectively
prevent over-fitting and improve the generalization ability of the model. And then, we proposed a
S-ResNet, which is a cascade of simplified residual blocks. On basis of the S-ResNet, we proposed a
novel IDS, which includes a data preprocessing module, a random oversampling module, a S-Resnet
layer, a full connection layer and a Softmax layer. In this IDS, the original dataset is pre-processed
and converted into a series of single channel images (i.e., a series of black and white images). Then,
random oversampling is used to balance the number of samples of each category. Finally, through
the S-ResNet layer and the full connection layer, and the prediction probability of the corresponding
category is converted through the Softmax layer.

After the experiments of our proposed IDS and the equal scale ResNet-based IDS with the
NSL-KDD dataset, the experimental results show that our proposed IDS has higher accuracy, recall and
F1-score than the equal scale ResNet-based IDS, especially for R2L and U2R attacks. And the former
has faster convergence velocity than the latter. It proves that the S-ResNet reduces the complexity
of the network and effectively prevents over-fitting, solving the over-fitting problem of ResNet for
low-dimensional and small-scale datasets, and providing better performance than ResNet. Therefore,
the S-ResNet is more suitable for low-dimensional and small-scale datasets than ResNet. Additionally,
the experimental results also show that our proposed IDS has higher accuracy than the other IDSs,
and higher recall than the other IDSs for each attack category, especially for R2L and U2R attacks. Hence,
our proposed IDS provides better performance than the existing IDSs. In this study, the NSL-KDD
dataset was used for experimental verification of our proposed IDS. We will further validate our
proposed IDS based on the other IDS datasets, and study the variants of the original residual block,
and form new residual network models based on these variants; and propose new IDSs based on these
residual network models, achieving better performance in terms of accuracy, precision, recall, F1-score,
etc., especially for R2L and U2R attacks.
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