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Abstract: Social media represent an inexhaustible source of information concerning public places
(also called points of interest (POIs)), provided by users. Several social media own and publish
huge and independently-built corpora of data about public places which are not linked each other.
An aggregated view of information concerning the same public place could be extremely useful,
but social media are not immutable sources, thus the off-line approach adopted in all previous
research works cannot provide up-to-date information in real time. In this work, we address the
problem of on-line aggregating geo-located descriptors of public places provided by social media.
The on-line approach makes impossible to adopt machine-learning (classification) techniques, trained
on previously gathered data sets. We overcome the problem by adopting an approach based on
fuzzy logic: we define a binary fuzzy relation, whose on-line evaluation allows for deciding if two
public-place descriptors coming from different social media actually describe the same public place.
We tested our technique on three data sets, describing public places in Manchester (UK), Genoa (Italy)
and Stuttgart (Germany); the comparison with the off-line classification technique called “random
forest” proved that our on-line technique obtains comparable results.

Keywords: fuzzy relation; geo-located places and POI; social media; on-line aggregation of POIs;
random forest

1. Introduction

In the last few years, social media have played an increasingly-important role as information
sources for many categories of people (such as travelers, researchers, public administrators, company
managers, and so on). In particular, the exploitation of information concerning public places (also
called points of interests (POIs)) is continuously increasing: posts written by other people concerning
public places (such as reviews) are becoming more and more important for decision making (for
example, to decide whether to visit a museum).

Currently, several players own very large corpora of information concerning public places. Google
has the corpus built for Google Maps; its service called Google Places is a valid tool to get lists of
descriptors of public places in a given area. Facebook has a large corpus of pages concerning public
places; pages are created by owners of places to promote their business (for example, restaurants,
pubs, museums, and so on). Trip Advisor collects reviews about public places looked for by travelers
(typically, restaurants, hotels, and so on). Other famous social media that collect information about
public places are Yelp and FourSquares.

Usually, social media users who wish to get information concerning a given public place, start
by exploiting one source of information (for example, Google Places) and one or two other social
media (for example, Facebook and/or Trip Advisor). This activity is very tedious to carry on, in
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particular when a complete panorama about places in a given area is wished; in fact, at present, it can
be performed only by aggregating information concerning the same place that comes from multiple
sources by hand, by interacting with each single source. Clearly, an on-line aggregation engine for
information describing public places would help people greatly.

Figure 1 illustrates the scenario. A user seeks for a public place in a given city, by getting a list
of places provided by a system, for example Google Places; he/she chooses the desired one and asks
the aggregation engine to provide all pieces of information concerning that place together (like news,
events, reviews, and so on) from several sources (such as Facebook, Trip Advisor, and so on).

The on-line approach is necessary because on-line social media are not stable sources; as
far as public places are concerned, information is continuously added, updated, and removed;
therefore, the best way to aggregate up-to-date information is performing the aggregation on demand.

However, the social nature of social media requires dealing with an important issue: the same
place could have a different name, address, and coordinates in the different sources. As an example,
consider the following case taken from the area of Manchester (UK): the place with Facebook name
“Al-Jumeirah”, in Google Places is named as “Al Jumeirah Restaurant”; to a human eye, they clearly
appear to be the same, but this is not obvious for an automated algorithm.

Figure 1. On-line Aggregation Scenario.

In literature, this problem is usually called “geo-spatial data conflation” and it has been widely
studied for off-line contexts, i.e., when lists of places are available in advance and can be analyzed
and processed with time-consuming techniques. For example, [1–3] adopt some kind of learning
technique to overcome the limitations of applying string-similarity measures. Even those works that
propose methods based on string-similarity metrics evaluated on names and/or addresses, such as [4],
do not consider coordinates of places, and some works [5,6] use complex geometries that are not
available in our context. In general, the problem of on-line conflation of geographical data has not
been considered. Section 2 provides an extensive analysis of the literature, that could help readers
understand the research context.

The contribution of this paper is the definition and evaluation of a technique for on-line
aggregating descriptors of public places coming from two different social media, without prior
knowledge and off-line activities. We follow an approach based on fuzzy logic and possibility
theory [7]: we propose a binary fuzzy relation, named MatchingPlaces, to compare two place
descriptors; the membership degree of this relation describes the degree of likelihood that the two
descriptors actually describe the same place. Note that, in literature, to the best of our knowledge
fuzzy approaches for on-line conflation of geographical data have not been proposed; the only work
based on a fuzzy technique that addresses a similar problem is [8], in which the authors consider data
sets of generic objects (neither public places nor generic geographical objects).
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In order to evaluate the goodness of the approach, the technique has been implemented within
a prototype library. Then, we downloaded three data sets describing places in three different cities,
such as Manchester (UK), Genoa (Italy), and Stuttgart (Germany): descriptors were downloaded
from Google Places and paired with descriptors of Facebook pages. As a baseline for the evaluation,
we considered our preliminary version of the binary fuzzy relation introduced in [9], showing that
the new definition (proposed in this paper) significantly improves the effectiveness of the technique.
Then, we make a comparison with a machine-learning technique, named “random forest”: it is a
well known classification technique, to be executed off-line. We will show that our technique obtains
comparable results, even though it can be applied on-line, without a preliminary download of the
data sets.

The paper is organized as follows. Section 2 discusses related works. Section 3 presents the
problem and the technique we propose. Section 4 introduces the formal fuzzy framework exploited
in Section 5 to define the binary fuzzy relation named MatchingPlaces. Section 6 presents how we
evaluated the technique, in particular how we built the data sets and the comparison with the baseline
and with random forest classifiers. Finally, Section 7 draws the conclusions and future developments.

2. Related Works

Social media have become very important tools for people, not only for exchanging messages
concerning their private life, but also for finding information concerning public places. In fact,
both owners and visitors of public places can post messages either promoting events or disseminating
opinions somehow concerning the place. Contemporary citizens rely on social media to experience
the city. The work [10] is an interesting study, that helps to understand how people live their cities,
in particular how they live public places by exploiting location-based services. The paper points out
limitations to flexibly and effectively use them by citizens.

Clearly, the need to aggregate information concerning public places is not new and several
works were published on the topic. However, we observed that previous works usually do not
exploit coordinates (latitude and longitude) to conflate descriptors of the same public place; at the
best of our knowledge, only the technique proposed by [11] considers coordinates and distance.
Moreover, all of them adopt an off-line approach: corpora containing data describing public places
must be previously downloaded and then aggregated. This approach is suitable for stable and verified
data sets. For instance, digital gazetteers are examples of stable and verified data sets describing
places [5]. This work jointly adopts three metrics that evaluate shape similarity (because it is argued
that place markers are not enough), type similarity (or category of places) and names, trying to
reproduce the cognitive approach performed by people. Our work approaches the problem in a similar
way; however, we can rely neither on shapes of places (social media provide markers only) nor on
reliable categories (social media adopt specific and not comparable categories).

Nevertheless, the topic of aggregating information about public places or POIs coming from
social media is current; in fact, many researchers are working on this topic. For example, the work [12]
addresses semantic aligning of heterogeneous geo-spatial data sets (GDs) produced by various
organizations, in order to find an efficient similarity matching technique. This work seems to be
related to our work; in fact, to solve the aligning problem, the authors presented a holistic approach to
adapt the geo-spatial entities (concepts, properties and instances) together. In particular, they faced the
problem of aligning the instances of various category systems by simultaneously matching unbalanced
schema of data composed by multi-dimensional information.

The work [4] evaluates the DAS technique: it is based on an interesting word similarity measure,
that is exploited in a three step process. Specifically, given the strings reporting names of two public
places, they are compared (after removing blanks) as a whole (this is the word-similarity measure)
and, after tokenization, as sentences (this is called the sentence-similarity measure); finally, if the two
above-mentioned similarity measures are greater than a given threshold, a final comparison is made,
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where all characters in the strings are compared (this is called name-similarity measure). Although it
is effective, the technique considers only names of public places, without considering coordinates.

The work by Santos et al. [1] is closely related to our work. The authors applied different string
similarity metrics, as well as various machine learning methods, to solve the problem of toponym
matching, in order to perform a comparative performance study. They show that machine learning
methods outperform similarity metrics: in particular, classifiers based on the random forest method
outperform other machine learning techniques. In our work, we show that it is possible to perform
similarly to random forest classifiers, by combining similarity between names, addresses, and locations.

The work [3] addresses the problem of urban neighborhood identification. In particular,
neighborhoods are regions (or areas) that own similar characteristics, whose names are often given by
people that inhabit them. These names are important for people that live in these urban neighborhoods,
because they constitute the socio-demographic identity of people; therefore, often they are not
listed in official data sets. The source of information considered in [3] is the Craigslist platform
(https://www.craigslist.org): specifically, ads concerning house rentals are of interest, because they
are geo-tagged and contain neighborhood names. The methodology proposed by the authors extracts
all n-grams from ads text and geo-tags them with coordinates associated with ads; then, a pool of
statistical measures, possibly denoting spatial correlation, are associated to n-grams; these are labeled
based on the capability of identifying neighbourhoods; finally, a random-forest classifier is built,
in order to identify novel neighbourhoods. Interestingly, the paper shows that a classification model
built on n-grams collected for Washington D.C. (USA), is able to discover n-grams denoting unknown
neighborhoods in ads for Seattle, WA (USA) and Montreal, QC (CA), by using spatial statistical
correlation measures associated with n-grams.

The authors of [13] address the problem of geo-spatial data conflation as well; in particular,
they consider POIs, because they convey important information about spatial entities and territories.
They propose a method to match objects (describing POIs) coming from different sources, by means of
an entropy-based technique organized in four steps. (1) A normalized similarity formula is developed,
that helps to simplify the computation of spatial attribute similarity; in particular, the authors specified
the rule of attribution selection, then study POI matching for spatial, name, and category attribution
and indicated a way for weighted multi-attribute matching of POIs. (2) They used phonetic and
word segmentation methods in order to remove linguistic ambiguity. (3) They established category
mapping in order to address heterogeneity among various classifications. (4) They calculated attribute
weights by computing the entropy of attributes, in order to manage non-linearity of attribute similarity.
Experiments demonstrated that this technique obtains good results in terms of precision and recall for
matching instances from various POI data sets.

In another work [2] the authors face the problem of toponym matching by using a deep neural
network. The focus is pairing strings that represent the same POI location. The authors noted that
techniques based on string similarity metrics are either dedicated for matching POI names or combined
with other metrics. But these techniques, that establish similarity by detecting common sub-strings,
do not always detect the character substitutions involved in toponym changes caused by changes in
language. Therefore, the authors present a matching approach based on a deep neural network in
order to classify pairs of toponyms as “same POI” (matching) or “different POIs” (non matching). In
particular, their network architecture exploits recurrent nodes in order to create representations from
the sequences of bytes that are the strings to match. In a second step, the above representations are
combined and passed to feed-forward nodes in order to achieve the classification decision. The authors
used a data set of the GeoNames gazetteer. The final results show that their technique can do better
than individual similarity metrics and methods based on supervised machine learning methods.

In [8], Bunke et al. do not focus on conflation of public places, but on conflation of objects from
generic data sets. Specifically, they propose an approach based on fuzzy sets and fuzzy rules. In details,
objects are seen as vectors of features; fuzzy sets are used to characterize the distance of each single
pair of homogeneous features; fuzzy rules combine fuzzy sets evaluated on single feature pairs and

https://www.craigslist.org
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determine the distance between two objects. At the best of our knowledge, this is the closest proposal
to our work, since it adopts a fuzzy approach, although it does not consider coordinates.

A side problem is addressed in [6]: Jung et al. faced the problem of conflating geographical objects
from different catalogues coming from different portal APIs (Application Programming Interfaces).
Although apparently it is similar to the problem addressed in this paper, the problem they addressed
is quite different, because they consider the shape of objects and the neighborhoods of them on the
map; in contrast, we consider punctual coordinates of public places, for which the shape of buildings
is not available.

Fuzzy approaches and soft computing are of interest in many contexts, in particular to manage
web data and geographical information. To cite some work related to our experience, in [14–16] fuzzy
techniques to perform location-based spatial queries are presented; fuzzy logic helps in dealing with
uncertainty about both user position and places of interest. The methodology presented in these papers
is also the long-term result of research in flexible querying in relational databases: in fact, an extension
to SQL, called SoftSQL, was proposed to provide users of relational databases with a powerful tool to
express queries based on linguistic predicates and soft aggregators on relational tables [17,18].

To conclude, soft approaches can be applied to post-process web searches; in [19–21] we studied
the evolution of a framework for clustering web-search results; clusters could be manipulated, in order
to find out the pool of search results that fit user needs. The soft approach was essential to deal with
imprecision of search results.

3. Problem Statement

In this section, we state the problem we address in this paper. To do that, we need to introduce
the concept of place descriptor.

Definition 1. Place descriptor. A place descriptor is a tuple

pd = 〈name, address, city, location : 〈latitude, longitude〉〉

where the names of fields clearly denote their meaning; notice that latitude and longitude are nested within a
compound field named location.

If a string-valued field (name and adress) is missing, its value is the zero-length string; if a number-valued
field (latitude and longitude) is missing, it has the null value.

The general problem we want to address is to develop a software library that, given a place
descriptor, looks for descriptors of the same place in social media.

To achieve this goal, the following essential activities must be performed:

1. Given the descriptor pd1 of a place obtained from source S1, a request must be sent to APIs of
source S2;

2. The set D2 = {pd2,1, . . . , pd2,n} of descriptors obtained from source S2 possibly matching pd1

must be built.
3. Problem 1, hereafter presented, must be solved.

Problem 1. Consider a place descriptor pd1 obtained from a source S1 and the set D2 = {pd2,1, . . . , pd2,n} of
place descriptors pd2,i obtained from a source S2 and possibly matching pd1.

The problem we address in this paper is the following: given pd1 and D2, find the descriptor pd2 ∈ D2

that actually describes the same place described by pd1, if any. pd2 must be identified by means of a ranking
method that can be applied without any prior knowledge and without any off-line activity.

Problem 1 is addressed in Section 5 by adopting a fuzzy-logic approach, that relies on possibility
theory [7]. Consequently, Section 4 introduces basic concepts about fuzzy relations.



Information 2019, 10, 388 6 of 22

4. Concepts about Fuzzy Relations

Fuzzy logic has been introduced by [22] and its goal is to represent the world in terms of
non-precise (fuzzy) concepts. To this end, fuzzy logic provides the possibility of defining gradual
concepts, i.e., concepts that are not only true or false, but partially true. Classical logical operators
have been redefined, as well as a plethora of aggregation operators have been defined, consequently.

In this formal framework, predicates become linguistic predicates, i.e., they express soft linguistic
concepts and relations (see the works [23,24]).

4.1. Basic Concepts

Hereafter, we introduce basic concepts, that will be exploited in the rest of the paper.

Definition 2. Binary fuzzy relation and membership degree. Consider a binary relation R between two
items e1 ad e2. The membership degree µR(e1, e2) ∈ [0, 1] expresses the degree with which the pair 〈e1, e2〉
belongs to relation R (or, alternatively, the degree with which relation R is satisfied for the 〈e1, e2〉 pair). In
particular, if µR(e1, e2) = 1, this means that the 〈e1, e2〉 pair fully belongs to relation R (i.e., relation R is fully
satisfied by the 〈e1, e2〉 pair)); if µR(e1, e2) = 0, this means that the 〈e1, e2〉 pair does not belong to relation
R (i.e., relation R does not hold at all for the 〈e1, e2〉 pair); an intermediate value means that the 〈e1, e2〉 pair
partially belongs to relation R (i.e., relation R partially holds for the 〈e1, e2〉 pair).

For example, suppose we want to define the ComparableShops(c1, c2) relation between two cities
c1 and c2, that compares cities c1 amd c2 based on the respective number of shops c1.shops and c2.shops.
The following ratio:

rs = |c1.shops−c2.shops|
max(c1.shops,c2.shops)

is the percentage of the difference between the shops divided by the higher number of shops. We
might define µComparableShops(c1, c2), the membership degree of relation ComparableShops, in this way:

• if rs ≤ 0.1, then µComparableShops(c1, c2) = 1, i.e., if the ratio is less than or equal to 10%, the two
cities have a comparable number of shops;

• if 0.1 < rs < 0.5, then µComparableShops(c1, c2) progressively decreases from 1 to 0, i.e., a value
µComparableShops(c1, c2) = 0.6 means that the number of shops is only partially comparable;

• if rs ≥ 0.5, than µComparableShops(c1, c2) = 0, i.e., the number of shops is not at all comparable.

Notice that, this way, we can express a linguistic predicate (i.e., comparable shops) as a fuzzy
relation. The membership function gives the extent to which two cities have a comparable number
of shops.

Fuzzy relations can be composed to express compound relations. To this end, the classical logical
operators are extended; furthermore, various aggregation operators were proposed in literature [25].

Given two fuzzy terms t1 and t2 (we consider only relations as fuzzy terms), each one provided
with its membership degree µ(t1) and µ(t2), the operators AND, OR and NOT are defined as follows
(see [22]):

• t1 AND t2 has µ(t1 AND t2) = min(µ(t1), µ(t2)) as membership degree;
• t1 OR t2 has µ(t1 OR t2) = max(µ(t1), µ(t2)) as membership degree;
• NOT t has µ(NOT t) = 1− µ(t) as membership degree.

In this paper, we make use of the weighted averaging operator (see Definition 2.1 in [25]) in the
binary form waβ(t1, t2). This operator weights the relative importance of two terms t1 and t2, provided
a weighting parameter β ∈ [0, 1] that expresses the relative importance of term t1 with respect to term
t2. The membership degree is defined as µ(waβ(t1, t2)) = β× µ(t1) + (1− β)× µ(t2)) (when β = 0.5
the resulting membership degree is the average of membership degrees of terms t1 and t2).
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4.2. Geographical Fuzzy Relation

Here, we define a geographical fuzzy relation whose aim is to define linguistic predicates that
express the concept of “closeness” between two locations. A location l = 〈latitude, longitude〉 is the
pair of latitude and longitude (spherical coordinates) of a place.

Definition 3. Close Relation. Consider two locations l1 and l2, and function dist(l1, l2) that gives the
geodetic distance, in meters, between l1 and l2. The Close(l1, l2) relation denotes how much the two locations are
close each other. Given a minimum threshold mind and a maximum threshold maxd, its membership function is
defined as follows.

µClose(l1, l2) =



1 if 0 ≤ dist(l1, l2) ≤ mind

(maxd− dist(l1, l2)
(maxd−mind)

if mind < dist(l1, l2) < maxd

0 if distd(l1, l2) ≥ maxd

Figure 2 depicts the membership function for the Close relation, with mind = 50 m and
maxd = 1000 m.

The rationale is that when two locations are at a distance less than 50 m, they are actually
close. When the distance increases, the two locations become less and less close. After 1000 m,
the membership degree is eventually 0, because the two locations can no longer be considered close.

Figure 2. Membership function for the Close relation.

4.3. Fuzzy Relation between Strings

Fuzzy relations can be used to compare strings as well. Clearly, the membership degree should
be 1 when the two compared strings coincide; the membership degree should be 0 when the two
compared strings are completely different; the membership degree should be an intermediate value
between 0 and 1 when the two compared strings are similar but not equal.

We decided to adopt the Jaro–Winkler similarity measure, that currently is considered one of
the best string-similarity measures. Since it is defined in the range [0, 1], it can be considered as the
membership degree of a fuzzy relation to compare strings.
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The Jaro–Winkler similarity measure is derived from the Jaro similarity measure (see the seminal
paper [26], later cited in [27]), that is defined in the range [0, 1] too; consequently, it can be considered
as the membership function of another string-similarity relation. For this reason, we report both the
definitions of Jaro and Winkler string-similarity relations.

Definition 4. Jaro String–Similarity Relation. The Jaro string-similarity relation is applied to a pair of
strings s1 and s2, i.e., Jaro(s1, s2). Its membership function µJaro(s1, s2) is defined as:

µJaro(s1, s2) =


0 if m = 0

1
3

( m
|s1|

+
m
|s2|

+
m− t

m

)
otherwise

where |s1| and |s2| are the lengths of strings s1 and s2 (respectively), m is the number of matching characters
and t is half the number of transpositions of characters.

Terms m and t are obtained by comparing each character in s1 with each character in s2, in order to find
matching characters. Two characters in the two strings are considered matching if they are the same and their
positions are no farther than

greatest
(max(|s1|,|s2|)

2
)
− 1

where function greatest is the greatest integer number less than or equal to the argument.
With this premise, m is the number of matching characters that maintain the order, while t is the number of

matching characters that do not respect the order divided by 2.

In [28], Winkler proposed a measure that is based on Jaro’s measure, in order to consider
common prefixes. Hereafter, we define the fuzzy relation named Winkler, based on Winkler’s
string-similarity measure.

Definition 5. Winkler String-Similarity Relation. The Winkler string-similarity relation is applied to a
pair of strings s1 and s2, i.e., Winkler(s1, s2). Its membership function µWinkler(s1, s2) is defined as:

µWinkler(s1, s2) = µJaro(s1, s2) + l × p× (1− µJaro(s1, s2))

where l is the length of the longest common prefix at the beginning of the strings up to a maximum of four
characters; p is a constant scaling factor (usually, p = 0.1).

Recall that Jaro–Winkler is a similarity measure; we use it as the membership function of the
Winkler relation. In any case, the Winkler relation is not a fuzzy logic operator; thus, no specific
properties like transitivity can be proven on it.

5. A Fuzzy Approach to Identify Matching Places

In this section, we present the fuzzy approach we followed to identify matching places and solve
Problem 1. First of all, we introduce the general approach based on possibility theory. Then, we report
the baseline solution which this work starts from. Finally, we present the novel proposal that is one of
the main contributions of this paper.

5.1. Approach

In order to address Problem 1, we adopt an approach based on fuzzy logic and possibility theory,
introduced by Zadeh in [7]. Hereafter, we explain the approach, considering our problem.

• In our context, we have neither prior knowledge nor previous data sets; thus, machine learning
techniques cannot be applied.
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• We try to tackle the problem by defining a binary fuzzy relation denoted as
MatchingPlaces(pd1, pd2) on two place descriptors pd1 ad pd2. Its role is to guess the
degree of likelihood that the two descriptors pd1 and pd2 actually describe the same place. In
other words, this relation expresses the possibility that pd1 and pd2 describe the same place,
through its membership function.

• The membership function of the MatchingPlaces relation expresses the degree of truth we give to
the fact that descriptors pd1 and pd2 describe the same place. Based on this membership degree,
we decide if they do actually match or do not, by de-fuzzifying: a pair with a membership degree
no less than a given threshold α is considered as a “Good Pair”, otherwise as a “Bad Pair”.

• In case for the same descriptor pd1 more than one good pair is found (see Problem 1), the pair
with the highest membership degree is chosen.

Hereafter, we explain the rationale behind the approach. The membership function of the
MatchingPlaces(pd1, pd2) relation provides the degree of truth that two descriptors pd1 and pd2

actually match, i.e., that they describe the same place. By means of this degree of truth, we try to
determine something that we do not know in advance, i.e., if the two descriptors match. In fact, reality
is crisp (i.e., descriptors either do describe the same place or they do not). However, we do not know
in advance the real situation, thus the membership degree is the degree of truth that we can suppose
by comparing properties of descriptors: the greater the degree of truth, the greater the likelihood that
the two descriptors describe the same place.

However, at the end we have to choose, i.e., we have to de-fuzzify. Given a threshold α, we assign
a label to the 〈pd1, pd2〉 pair: the label is “Good Pair” (or simply “Good”) if the membership degree of
the MatchingPlaces relation is no less than α; otherwise, the label is “Bad Pair” (or simply “Bad”). The
former label means that we suppose that descriptors pd1 and pd2 describe the same place; the latter
means the contrary.

Thus, Problem 1 reduces to find a good formulation for the MatchingPlaces fuzzy relation and a
proper value for the α threshold.

Note that we cannot rely on probability, because we do not have any prior knowledge about the
actual situation; we get two descriptors, by on-line querying two social media, and we have to make a
hypothesis. For this reason, we decided to rely on possibility theory.

5.2. Baseline Formulation for the MatchingPlaces Relation

The main focus of the research is to find the proper formulation for the MatchingPlaces fuzzy
relation, that evaluates if two place descriptors actually describe the same place. In [9], we introduced
a formulation, that we report in the following definition. This formulation, hereafter denoted as
MatchingPlacesV1, constitutes our baseline.

Definition 6. Relation MatchingPlacesV1(pd1, pd2) is defined as

MatchingPlacesV1(pd1, pd2) =

= wa0.5(wa0.5(Winkler(pd1.address, pd2.address),
Close(pd1.location, pd2.location)),

Winkler(pd1.name, pd2.name))

where the Close relation is composed with the Winkler relation on addresses, through the weighted averaging
operator with weight 0.5; the resulting term is further composed with the Winkler relation on names, again
through the weighted averaging operator with weight 0.5.

The membership function µMatchingPlacesV1(pd1, pd2) is then defined as

µMatchingPlacesV1(pd1, pd2) =

= 0.5× (0.5× µWinkler(pd1.address, pd2.address)+
0.5× µClose(pd1.location, pd2.location))+

0.5× µWinkler(pd1.name, pd2.name)
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The Close relation, that estimates if two locations can be actually considered as “close”,
is compounded with the Winkler relation on addresses: in this way, the contribution of geographic
information has a higher priority with respect to information concerning names. In fact, the similarity
between names is used to give the final contribution to geographical similarity: if two places are close
and they have the same name, it is likely that they are the same place; if two places are close but their
names are different, they are not the same place (probably, they are in the same building).

In [9], we tested the effectiveness of this relation with a threshold α = 0.75 and with thresholds
mind = 100 m and maxd = 2000 m for the Close relation. We obtained good results, but the data set
used during the experiments was clean: no descriptors with missing fields were present. In contrast,
social media APIs can provide descriptors with missing fields; furthermore, we observed that Winkler’s
string-similarity measure behaves properly with English addresses (where urban designations, such as
“street” and “square”, are at the end), while it is in troubles with languages like Italian (where urban
designations are at the beginning). For this reason, we decided to change the formulation of the
MatchingPlaces relation, as described in the next section.

5.3. Novel Formulation for the MatchingPlaces Relation (Rewritten)

Social media APIs often provide descriptors that present various problems, in order to be
effectively used for matching places. Hereafter, we report them.

• Missing fields. Incomplete descriptors are often provided by social media APIs: this is due to the
freedom given to users, who can upload incomplete information concerning places.

• Contradictory information. Errors during input of information concerning places can occur, resulting
in contradictions.

• Different addresses for the same building. When a place is located in a building that can be easily seen
by a main street/road but its (official) entrance is located in a secondary street, place owners prefer
to provide the main street as address, instead of the official one. This makes it more complicated
to match the same place.

• District vs city. Often, social media APIs provide the name of the city district for field city in
descriptors, instead of the actual city name. Without previous knowledge providing the set of
districts in a given city, this behaviour prevents to use city names for matching places.

Based on the above-mentioned considerations, we have defined a new version of the
MatchingPlaces relation, that in the remainder of the paper we denote as MatchingPlacesV2. We cannot
define it immediately, because we need to introduce a fundamental relation named SameLocation in
Definition 13. However, since this relation must deal with possibly missing addresses and coordinates,
its definition is not trivial. So first, we need to introduce some utility fuzzy relations and a utility
function in Section 5.3.1. Then, in Section 5.3.2, we will define three sub-relations that separately deal
with three different sub-cases concerning the possibility that two descriptors denote the same location;
these three sub-relations will be aggregated into the global SameLocation relation in Definition 13.
Finally, in Section 5.3.3 Definition 14 presents the new formulation of the MatchingPlaces relation,
denoted as MatchingPlacesV2.

5.3.1. Utility Relations and Functions

In this section, we introduce some utility relations and one utility function that will be used in
Section 5.3.2.

Definition 7. MissingString Relation. The MissingString(s1, s2) relation models a crisp situation,
i.e., if the length of at least one of the two string arguments s1 and s2 is zero or not. It is defined as
MissingString(s1, s2) = NOT(|s1| > 0) OR NOT(|s2| > 0). Its membership function results as
µMissingString(s1, s2) = max(1 − µ(|s1| > 0), 1 − µ(|s2| > 0)), where, given a comparison predicate p,
µ(p) = 1 if p is true, otherwise µ(p) = 0.
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Definition 8. MissingCoords Relation. The MissingCoords(l1, l2) relation models the case where one or
more coordinates in the two location arguments are missing. It is defined as

MissingCoords(l1, l2) =
= ((l1.latitude = null OR l1.longitude = null) OR

(l2.latitude = null OR l2.longitude = null)).

Its membership degree µMissingCoords(l1, l2) is defined as

µMissingCoords(l1, l2) =
= max(max(µ(l1.latitude = null), µ(l1.longitude = nul)),

max(µ(l2.latitude = null), µ(l2.longitude = null))).

Definition 9. Clean Function. The Clean(s) function returns a string obtained from the string argument s
by removing urban designations, punctuation, and numbers.

Note that, in English, urban designations are “street”, “road”, “square”, and so on. We suppose
that the function is able to deal with urban designations coming from different languages.

5.3.2. The SameLocation Relation

We can now define the SameLocation fuzzy relation. To help the reader understand the definition,
we explain the three different cases we considered, based on the considerations reported at the
beginning of Section 5.3.

• Case A. At least one address is missing, but all coordinates are available: in this case, we can
rely only on the Close relation to evaluate if two descriptors denote the same location. For this
purpose, we define the SameLocation_A relation in Definition 10.

• Case B. At least one of the four coordinates is missing, but both the addresses are available. In this
case, it is possible to rely only on addresses (by applying the Wikler relation for string similarity)
to evaluate if two descriptors actually denote the same location. For this purpose, we define the
SameLocation_B relation in Definition 11.

• Case C. If the addresses and the coordinates are available, the evaluation that the two descriptors
denote the same location must mix both contributions given by closeness of coordinates and
string similarity between addresses. For this purpose, we define the SameLocation_C relation in
Definition 12.

Definition 10. Relation SameLocation_A(pd1, pd2) deals with Case A, i.e., one or both addresses are missing,
but all coordinates are available. Thus, only the Close relation can be used. It is defined as:

SameLocation_A(pd1, pd2) =

= (MissingString(pd1.address, pd2.address) AND
NOT MissingCoords(pd1.location, pd2.location) AND
Close(pd1.location, pd2.location)).

The membership function of the SameLocation_A relation is, consequently, defined as follows:

µSameLocation_A(pd1, pd2) =

= min(µMissingString(pd1.address, pd2.address),
1− µMissingCoords(pd1.location, pd2.location),
µClose(pd1.location, pd2.location)).

Notice that the first two lines in the formalization of the relation (and, correspondingly, in the
definition of the membership function) are necessary to get a non-zero membership degree only when
Case A actually occurs; otherwise, if Case A does not occur, the membership degree must be zero.
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Definition 11. Relation SameLocation_B(pd1, pd2) deals with Case B, i.e., one or all the coordinates are
missing, but both the addresses are available. Thus, only the Winkler relation on addresses can be used. It is
defined as:

SameLocation_B(pd1, pd2) =

= NOT MissingString(pd1.address, pd2.address) AND
MissingCoords(pd1.location, pd2.location) AND
Winkler(Clean(pd1.address), Clean(pd2.address)).

The membership function of the SameLocation_B relation is, consequently, defined as:

µSameLocation_B(pd1, pd2) =

= min(1− µMissingString(pd1.address, pd2.address),
µMissingCoords(pd1.location, pd2.location),
µWinkler(Clean(pd1.address), Clean(pd2.address))).

Notice that the first two lines in the formalization of the relation (and, correspondingly, in the
definition of the membership function) are necessary to get a non-zero membership degree only when
Case B actually occurs; otherwise, if Case B does not occur, the membership degree must be zero.

Furthermore, notice that the Winkler relation is applied to addresses cleaned by the Clean function,
i.e., without urban designations, punctuation and numbers. In fact, we realized that people may be
wrong in writing urban designations and civic numbers. Furthermore, in some languages (like Italian)
urban designations are typically at the beginning of the address; consequently, two addresses that are
not actually the same might result quite similar, since they begin with the same urban designation.

Definition 12. The SameLocation_C(pd1, pd2) relation deals with Case C, i.e., when all the addresses and
all the coordinates are available,. In this case, it is necessary to mix both contributions given by closeness of
coordinates and string similarity of addresses. The relation is defined as:

SameLocation_C(pd1, pd2) =

= NOTMissingString(pd1.address, pd2.address) AND
NOT MissingCoords(pd1.location, pd2.location) AND
(Winkler(Clean(pd1.address), Clean(pd2.address)) OR
Close(pd1.location, pd2.location)).

The membership function of the SameLocation_C relation is, consequently, defined as:

µSameLocation_C(pd1, pd2) =

= min(1− µMissingString(pd1.address, pd2.address),
1− µMissingCoords(pd1.location, pd2.location),
max(µWinkler(Clean(pd1.address), Clean(pd2.address)),

µClose(pd1.location, pd2.location)))).

Notice that the first two lines in the formalization of the relation (and, correspondingly, in the
definition of the membership function) are necessary to get a non-zero membership degree only when
Case C actually occurs; otherwise, if Case C does not occur, the membership degree must be zero.

Furthermore, notice the choice of the OR operator to mix both contributions given by locations
and addresses (as in Case B, addresses are cleaned by the Clean function). In terms of membership
degree, this means that the maximum membership degree of the two contributions is taken as the final
membership degree. This appears to be a simple yet effective solution.

At this point, we can give the aggregate definition of the SameLocation relation.

Definition 13. The SameLocation(pd1, pd2) relation is defined by aggregating, by means of the OR operator,
the contribution of all Cases A, B, and C. It is defined as:



Information 2019, 10, 388 13 of 22

SameLocation(pd1, pd2) =

= SameLocation_A(pd1, pd2) OR SameLocation_B(pd1, pd2) OR SameLocation_C(pd1, pd2).

The membership function of the SameLocation relation is, consequently, defined as:

µSameLocation(pd1, pd2) =

= max(µSameLocation_A(pd1, pd2), µSameLocation_B(pd1, pd2), µSameLocation_C(pd1, pd2)).

The SameLocation relation tries to guess if the locations of two places either coincide or are so
close to be approximated as the same location. Notice that Cases A, B, and C are exclusive, i.e., only one
of them can occur. Consequently, only one of the three sub-relations Samelocation_A, Samelocation_B
and Samelocation_C, actually can provide a non-zero membership degree.

5.3.3. Global MatchingPlaces Relation

Two different places may be in the same location, so, it is necessary to consider the contribution
of their names. This consideration leads us to define the new version of the MatchingPlaces relation,
denoted as MatchingPlacesV2.

Definition 14. The MatchingPlacesV2(pd1, pd2) relation is defined as:

MatchingPlacesV2(pd1, pd2) =

= waβgeo (SameLocation(pd1, pd2), Winkler(pd1.name, pd2.name))

where the SameLocation relation is composed with the Winkler relation on names, through the weighted
averaging operator with weight βgeo.

The membership function µMatchingPlacesV2(pd1, pd2) is then defined as

µMatchingPlacesV2(pd1, pd2) =

= βgeo × µSameLocation(pd1, pd2)+ (1− βgeo)× µWinkler(pd1.name, pd2.name).

The rationale of the definition is the following: if two places are in the same location (as identified
by the SameLocation relation, they could be different places located in the same building or in the
same area. Thus, the name of the two places is essential to evaluate the possibility that two descriptors
actually describe the same place. The contribution of the two relations is balanced by the βgeo parameter;
in Section 6, we will evaluate various settings for it.

6. Experimental Evaluation

In order to evaluate the effectiveness of our technique, we built three test data sets—specifically,
by exploiting the algorithm to download place descriptors proposed in [9]. We downloaded place
descriptors from Google Places; for each of them, we looked for up to two descriptors of Facebook
pages, possibly corresponding to the place described by the Google Places descriptor.

We decided to consider three cities to build our data sets: Manchester (UK), Genoa (Italy), and
Stuttgart (Germany). This way, we could test our technique with place descriptors written in three
different languages, i.e., English, Italian, and German. The main difference between these languages
are related to addresses: in fact, in Italian the urban designations (like “via” and “piazza”, that stand
for “street” and “square”, respectively) are positioned at the beginning of the address, while in the
other two languages urban designations are positioned at the end. Recall that in the definition of
the SameLocation_A and SameLocation_C relations (Definitions 10 and 12) we introduced the Clean
function, that removes urban designations and civic numbers from addresses.

We chose these cities because they are comparable with respect to the number of inhabitants;
they are not small cities, but they are not even big cities; furthermore, they have a large variety of
public places. From Google Places API, we obtained 5214 descriptors for Manchester, 4895 descriptors
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for Genoa, and 5596 descriptors for Stuttgart. From Facebook API, we obtained 5738 descriptors for
Manchester, 4086 descriptors for Genoa, and 2724 descriptors for Stuttgart. We composed 2310 pairs
for Manchester, 1644 pairs for Genoa, and 1280 pairs for Stuttgart.

At the end, we selected randomly 400 pairs for each city. By hand, we labeled each pair either
with “Yes” or with “No” (i.e., the two paired descriptors do or do not represent the same public
place, respectively).

At this point, we randomly divided each pool of 400 pairs into a training set of 300 pairs and
a test set of 100 pairs. We denote these data sets as Manchester training set, Manchester test set, Genoa
training set, Genoa test set, Stuttgart training set, and Stuttgart test set (training sets will be used to train
the random forest classifier, as described in Section 6.2).

6.1. Evaluation

First of all, we studied the behavior of the MatchingPlacesV2 relation with 15 different settings.
Recall that we have two parameters: βgeo and α. βgeo is the contribution of the geographical relation
SameLocation to the membership degree of the MatchingPlacesV2 relation. α is the threshold to
de-fuzzify and label a pair: if the membership degree of the MatchingPlacesV2 relation is no less than
α, the assigned label is “Good”, otherwise it is “Bad”. Table 1 reports the 15 chosen settings.

Table 1. Configurations for parameters βgeo (contribution of geographical information) and α

(threshold to de-fuzzify).

Con f βgeo α

Con f 1 0.65
Con f 2 0.15 0.75
Con f 3 0.85

Con f 4 0.65
Con f 5 0.30 0.75
Con f 6 0.85

Con f 7 0.65
Con f 8 0.50 0.75
Con f 9 0.85

Con f 10 0.65
Con f 11 0.70 0.75
Con f 12 0.85

Con f 13 0.65
Con f 14 0.85 0.75
Con f 15 0.85

We considered five different values for the βgeo parameter (0.15; 0.30; 0.50; 0.70; 0.85) so as to
evaluate the effect of the geographical contribution, by varying its weight from a very small weight
to a very high weight. We also considered three different values for the α parameter (0.65; 0.75; 0.85),
in order to evaluate the effect of increasing the threshold (the greater the threshold, the stronger the
membership degree necessary to classify a pair as “Good”). As far as the Close relation is concerned,
we ran all the experiments with mind = 50 m and maxd = 1000 m.

We evaluated recall, precision, and F1-score. Remember that recall represents the ratio between
the number of descriptor pairs labeled as “Good” by the technique that were labeled with “Yes” by
hand (the true positive pairs) and the total number of descriptor pairs labeled with “Yes” by hand
(formally, recall = TP

TP+FN , where TP stands for “true positive” and FN stands for “false negative”).
Then, remember that precision represents the ratio between the number of descriptor pairs labeled as
“Good” by the technique which were labeled with “Yes” by hand and the total number of descriptor
pairs labeled as “Good” by the technique (formally, precision = TP

TP+FP , where FP stands for “false
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positive”). Finally, remember that F1-score (or F1) represents a combined/synthetic metric of recall
and precision: it is defined as F1-score= recall×precision

recall+precision × 2.
Table 2 reports the results of our experiments performed on Manchester test set; Table 3 reports the

results of our experiments performed on Genoa test set; Table 4 reports the results of our experiments
performed on Stuttgart test set.

Table 2. Sensitivity analysis shown by the MatchingPlacesV2 relation on Manchester test set.

Con f βgeo α Recall Precision F1-Score

Con f 1 0.65 93.10% 58.70% 72.00%
Con f 2 0.15 0.75 93.10% 64.29% 76.06%
Con f 3 0.85 89.66% 74.29% 81.25%

Con f 4 0.65 93.10% 77.14% 84.38%
Con f 5 0.30 0.75 89.66% 86.67% 88.14%
Con f 6 0.85 93.10% 84.38% 88.52%

Con f 7 0.65 96.55% 77.78% 86.15%
Con f 8 0.50 0.75 93.10% 84.38% 88.52%
Con f 9 0.85 93.10% 93.10% 93.10%

Con f 10 0.65 96.55% 82.35% 88.89%
Con f 11 0.70 0.75 93.10% 87.10% 90.00%
Con f 12 0.85 82.76% 92.31% 87.27%

Con f 13 0.65 96.55% 84.85% 90.32%
Con f 14 0.85 0.75 93.10% 93.10% 93.10%
Con f 15 0.85 82.76% 92.31% 87.27%

Table 3. Sensitivity analysis shown by the MatchingPlacesV2 relation on Genoa test set.

Con f βgeo α Recall Precision F1-Score

Con f 1 0.65 85.29% 56.86% 68.24%
Con f 2 0.15 0.75 79.41% 60.00% 68.35%
Con f 3 0.85 73.53% 64.10% 68.49%

Con f 4 0.65 94.12% 60.38% 73.56%
Con f 5 0.30 0.75 76.47% 61.90% 79.31%
Con f 6 0.85 67.65% 68.42% 73.02%

Con f 7 0.65 94.12% 61.54% 74.42%
Con f 8 0.50 0.75 88.24% 76.92% 82.19%
Con f 9 0.85 70.59% 100.00% 82.76%

Con f 10 0.65 94.12% 69.57% 80.00%
Con f 11 0.70 0.75 94.12% 88.89% 94.13%
Con f 12 0.85 88.24% 93.75% 90.91%

Con f 13 0.65 94.12% 84.21% 88.89%
Con f 14 0.85 0.75 94.12% 88.89% 91.43%
Con f 5 0.85 94.12% 88.89% 91.43%

In order to easily conduct the sensitivity analysis, results in Tables 2–4 are plotted, respectively,
in Figures 3–5. In particular, Figure 3 plots how recall varies depending on the variation of configuration
settings; the blue line plots results obtained with the Manchester test set, the orange line plots how recall
varies for the Genoa test set, and the black line plots how recall varies for the Stuttgart test set. We can
notice that Genoa test set was quite sensitive to variations of the βgeo parameter; we observe that the
orange line becomes stable for configurations Con f 13, Con f 14, and Con f 15. The other two test sets
were more stable; nevertheless, all three lines reached a good stability for the last three configurations.
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Table 4. Sensitivity analysis shown by the MatchingPlacesV2 relation on Stuttgart test set.

Con f βgeo α Recall Precision F1-Score

Con f 1 0.65 95.65% 57.89% 72.13%
Con f 2 0.15 0.75 86.96% 57.14% 68.97%
Con f 3 0.85 86.96% 62.50% 72.73%

Con f 4 0.65 100.00% 60.53% 75.41%
Con f 5 0.30 0.75 82.61% 95.00% 88.37%
Con f 6 0.85 82.61% 100.00% 90.48%

Con f 7 0.65 95.65% 88.00% 91.67%
Con f 8 0.50 0.75 91.30% 95.45% 93.33%
Con f 9 0.85 78.26% 100.00% 87.80%

Con f 10 0.65 95.65% 88.00% 91.67%
Con f 11 0.70 0.75 86.96% 90.91% 88.89%
Con f 12 0.85 86.96% 95.24% 90.91%

Con f 13 0.65 95.65% 88.00% 91.67%
Con f 14 0.85 0.75 91.30% 87.50% 89.36%
Con f 15 0.85 86.96% 90.91% 88.89%

Figure 4 plots precision obtained for the three test sets for all the 15 configurations. Note how
increasing values of the βgeo parameter strongly influence precision, which substantially increases.
Even though for Genoa test set (orange line) we obtain the best precision with Con f 9 and for Stuttgart
test set (black line) we obtain the best precision also with Con f 4; all three curves become stable
for configurations Con f 13, Con f 14 and Con f 15, confirming what emerged by analyzing plots for
recall (Figure 3).

Figure 5 plots the behavior of F1-score, for the three test sets with all the 15 configurations.
The F1-score is quite useful to analyze the behavior in an aggregated way. We can see that the
three lines all converge to show stable and good results for configurations from Cong11 to Con f 15.
This confirms that high values of the βgeo parameter obtained the best results, while changes in the α

parameter usually got little effects for high values of the βgeo parameter.
After this analysis, it is possible to see that configuration Con f 14 can be chosen as the reference

configuration for our technique, because it obtained the best combination of recall, precision, and
F1-score for the three test sets.

Figure 3. Sensitivity analysis of recall for relation MatchingPlavesV2.
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Figure 4. Sensitivity analysis of precision for relation MatchingPlavesV2.

Figure 5. Sensitivity Analysis of F1-score for relation MatchingPlavesV2.

Table 5 reports, in the upper part, the results obtained by applying the MatchingPlacesV1 relation
(see Definition 6), that is the baseline definition of the MatchingPlaces relation; in the middle,
the table reports the results obtained for the MatchingPlacesV2 relation with Con f 14 as reference
configuration. Recall (from Section 5.2) that, as far as the Close relation is concerned, we run
experiments for the MatchingPlacesV1 relation with settings mind = 100 m and maxd = 2000 m,
as in [9]; furthermore, the minimum threshold to defuzzify is α = 0.75.

Table 5. Evaluation of recall, precision and F1-score for Con f 14 (β = 0.85, threshold = 0.75).

MatchingPlacesV1 Recall Precision F1-Score

Manchester (UK) 68.97% 95.24% 80.00%
Genoa (Italy) 82.35% 93.33% 87.50%

Stuttgart (Germany) 69.57% 88.89% 78.05%

MatchingPlacesV2 Recall Precision F1-Score

Manchester (UK) 93.10% 93.10% 93.10%
Genoa (Italy) 94.12% 88.89% 91.43%

Stuttgart (Germany) 91.30% 87.50% 89.36%

Random f orest Recall Precision F1-Score

Manchester (UK) 93.10% 93.10% 93.10%
Genoa (Italy) 88.24% 90.91% 89.55%

Stuttgart (Germany) 78.26% 94.74% 85.71%
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The table clearly shows that the novel formulation of the MatchingPlaces relation (denoted as
MatchingPlacesV2) always outperforms the baseline version (denoted as MatchingPlacesV1) as far as
recall and F1-score are concerned.

In particular, notice that we obtained 93% for F1-score, recall and precision for the Manchester
test set.

Figures 6 and 7 depict the results reported in the upper and middle parts of Table 5.
Specifically, green bars denote recall, red bars denote precision and yellow bars denote F1-score.

Figure 6. Performance of MatchingPlacesV1 relation.

Figure 7. Performance of MatchingPlacesV2 relation with setting Con f 14.

It is possible to notice that the baseline has good performance with Italian language, while it does
not perform so well with English and German languages. This is due to the fact that the Manchester
test set and Stuttgart test set have a significant number of missing fields. This confirms that the novel
formulation of the MatchingPlaces relation is actually effective in dealing with such missing fields.

6.2. Comparison with Random-Forest Classifiers

We now compare our technique with the machine-learning technique known as “random forest”.
It is a known supervised ensemble learning method for classification devised by Ho [29]. In a
supervised learning method, there are two types of variables: many features that are the input
independent variables; and one target that is the output dependent variable (individual classes into
which the input variables maybe mapped). The name of the technique is motivated by the fact that,
during the training phase, many classification trees are generated (i.e., a forest of classification trees).
During the test phase, all the classification trees are exploited and the class assigned by the majority of
them is taken.
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We chose the random-forest technique because it was used by Santos et al. [1] to compare the
performances of different string similarity metrics in the task known as toponym matching.

We performed experiments by adopting the Python library named ML provided within the
sklearn module; specifically, we exploited the method named RandomForestClassifier. In particular, we
configured its parameters as follows:

• f eatures_number = 3, out of 3 (instead of
√

# f eatures);
• trees_number = 10 (default value);
• split_criterion = gini (default value).

Hereafter, we discuss the choices. We chose three out of three features (instead of
√

# f eatures,
where # f eatures is the total number of features in the data set) in order to compare it with our
technique. These features are: the membership degree of the Winkler relation evaluated on names;
the membership degree of the Winkler relation evaluated on addresses; the distance (in meters)
between locations. Finally, for each tree of the random forest, the Gini impurity criterion serves to split
the sample in each node.

For each training set, we generated three distinct classifiers. So, we have a random forest for
Manchester training set, one for Genoa training set and one for Stuttgart training set. Recall that each
training set contains 300 pairs of descriptors, while each test set contains 100 pairs of descriptors.

Table 5 compares performances shown by the random-forest technique (bottom part) with
performances obtained by our technique (middle part of the table), with configuration Conf14, that is
the configuration that provided the best average performance. Furthermore, Figure 8 compares recall
(green bars), precision (red bars), and F1-score (yellow bar) obtained by applying the random-forest
technique to the three test sets (denoted as Manchester, Genoa, and Stuttgart), as opposed to Figure 7,
that compares performances obtained by the MatchingPlacesV2 relation with configuration Con f 14.

We can notice that as far as recall and F1-score are concerned, our technique always outperformed
(even slightly) the random-forest technique. In particular, while with the Manchester test set the results
were the same, our technique behaveed better with Genoa test set and Stuttgart test set.

Figure 8. Performance of random forest machine-learning technique.

In contrast, the random forest technique behaved better in terms of precision with Genoa test set
and Stuttgart test sets. This means that the classifier based on random forests retrieved fewer false
positive pairs of descriptors. In any case, the higher recall shown by our technique significantly
compensates the slightly lower precision of our technique, as shown by the F1-score.
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Consequently, we can conclude that our technique is effective as much as random-forest classifiers,
and sometimes it is slightly better. This confirms that our approach is good for performing the on-line
aggregation of place descriptors coming from different social media, in that it does not require
any preliminary training phase and behaves as random-forest classifiers that, in contrast, require a
preliminary training phase.

7. Conclusions

In this paper, we addressed the problem of on-line aggregating information concerning public
places and points of interest gathered and published by social media. The goal is to develop a tool able
to provide users with a unique and aggregated view of all pieces of information concerning the same
public place.

We proposed a fuzzy technique based on a binary fuzzy relation named MatchingPlaces: by
relying on possibility theory; the proposed relation allows us to make a hypothesis about the fact
that two place descriptors actually describe the same place, without prior knowledge. In order to
validate the approach, we tested it on three real-life data sets, concerning Manchester (UK), Genoa
(Italy), and Stuttgart (Germany), downloaded from Google Places and Facebook. We compared the
new technique with the preliminary version proposed in [9], that we used as baseline: experiments
show that the new version significantly outperforms the baseline, meaning that it deals with anomalies
better than the baseline. Furthermore, we compared it to the well known off-line classification
technique called random forest: we could see that the two techniques obtained comparable results;
however, to build a random-forest classifier, a preliminary download and a training phase preceded
by hand-made labeling of data were necessary; our technique can be directly applied on-line, when
querying social-media APIs.

The reader could wish to understand if the proposed approach, based on the adoption of fuzzy
relations, could be applied to different application contexts, always related to social media but not
concerning public places. If this question is intended as “is it possible to apply the same complex
MatchingPlaces relation as it is to conflate lists of triples (name, address, location) not describing public
places?”, the answer is “yes, it can be applied as it is”. In this case, we would obtain two advantages:
(i) no preliminary training phase on data would be necessary, because our relation does not require
training; (ii) the reason why two items are aggregated is clearly explained by the definition of the
MatchingPlaces relation. In contrast, if the problem to address could not be formulated as we said,
we could expect that other complex fuzzy relations should be defined, possibly reusing basic fuzzy
relations concerned with string similarity or closeness; in fact, the fuzzy approach is general and can
be applied when imprecision and uncertainty must be addressed, but relations must be specifically
designed for the specific problem.

In the future, we will further refine our technique, by designing new fuzzy relations that
exploit different fuzzy aggregation operators; moreover, we will compare our method with other
machine-learning methods. Finally, we think that the MatchingPlaces relation should be parameterized
with respect to the size of the geographical area of interest and number of inhabitants in cities, in order
to tailor the aggregation technique to the specific context. Notice that this is a different kind of prior
knowledge, if compared with the knowledge provided by labeling training sets for off-line classifiers;
in fact, this knowledge describes the geo-political context in which public places are, and can l be
acquired on-line, by querying specific web services.
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