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Abstract: In brain magnetic resonance (MR) images, image quality is often degraded due to the
influence of noise and outliers, which brings some difficulties for doctors to segment and extract
brain tissue accurately. In this paper, a modified robust fuzzy c-means (MRFCM) algorithm for brain
MR image segmentation is proposed. According to the gray level information of the pixels in the
local neighborhood, the deviation values of each adjacent pixel are calculated in kernel space based
on their median value, and the normalized adaptive weighted measure of each pixel is obtained.
Both impulse noise and Gaussian noise in the image can be effectively suppressed, and the detail
and edge information of the brain MR image can be better preserved. At the same time, the gray
histogram is used to replace single pixel during the clustering process. The results of segmentation
of MRFCM are compared with the state-of-the-art algorithms based on fuzzy clustering, and the
proposed algorithm has the stronger anti-noise property, better robustness to various noises and
higher segmentation accuracy.

Keywords: fuzzy c-means clustering; image segmentation; spatial constraints; brain magnetic
resonance image

1. Introduction

Magnetic resonance imaging (MRI) has been widely used in clinical diagnosis because of its
advantages of non-ionizing radiation and wide applicability. In order to detect the volume change
of brain tissue in physiological or pathological state [1], doctors often need to segment the brain
MR images accurately. Generally, the MR images are divided into white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF), which can quantitatively measure the cross-sectional area or
volume of brain tissue or lesions to improve the accuracy of the diagnosis of patients’ condition.
Therefore, the visual quality of MR images directly affects the accuracy of clinical diagnosis. However,
the acquisition of MR images may be affected by noise, resulting in serious degradation of image
quality, which brings some troubles for the accurate segmentation of brain tissue.

At present, there are many segmentation methods for brain MR image, such as threshold
method [2], region method [3], random field method [4], neural network method [5] and clustering
method [6–9]. As one of the main techniques of unsupervised machine learning, clustering method,
especially fuzzy c-means (FCM) clustering method [10], has been widely used in brain MR image
segmentation. But unfortunately, although the standard FCM algorithm works well on noise-free
images, it is very sensitive to noise and other disturbances in the image because it does not consider any
spatial neighborhood information. In order to overcome this disadvantage of FCM, the corresponding
image preprocessing schemes were presented in some literature [11–16], and then FCM algorithm was
used. Pedrycz et al. [11] took advantage of the available classified information and actively applied
it as part of their optimization procedures. Szilagyi et al. [12] proposed an enhanced fuzzy c-means
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clustering (EnFCM) algorithm to accelerate the image segmentation process. In EnFCM, the pixels
of an image are replaced by their gray-level histogram, and the statistical number and calculation is
much smaller than FCM. In order to further reduce the computational time and improve the parameter
inflexibility, Cai et al. [13] presented a fast generalized fuzzy c-means clustering (FGFCM) method,
and FGFCM introduced a flexible locality factor Sij incorporating simultaneously both the gray-level
difference and spatial distance in a local window. Ahmed et al. [16] proposed an adaptively regularized
kernel-based fuzzy c-means clustering (ARKFCM) algorithm for brain MR image segmentation.
ARKFCM employed the heterogeneity of grayscales in the neighborhood and exploited a measure for
local contextual information to replace the standard Euclidean distance with Gaussian radial basis
kernel functions. However, in these methods, some important details in the image may be lost due to
the use of an image smoothing operation, especially boundary or edge. In addition, they are difficult
to control and adjust the balance between smooth and non-smooth clustering. To mitigate the effects of
noise in brain MR images, a fast image segmentation algorithm based on FCM clustering is proposed
in this paper, it does not require a balance control factor, and the related parameters can be adaptively
acquired from local neighborhood information. MRFCM algorithm can improve the robustness against
noise and program execution efficiency.

The remaining of this paper is organized as follows. Several well-known models are
briefly described in Section 2. The proposed model MRFCM is introduced in detail in Section 3.
The comparison results of MRFCM with several state-of-the-art models and quantitative evaluation
are demonstrated in Section 4 to show the performance of MRFCM. Finally, we give the conclusion of
this paper in Section 5.

2. Basic Concepts and Related Algorithms

2.1. Enhanced FCM

In view of the shortcomings of the standard FCM algorithm being sensitive to noise, the improved
FCM algorithm introduced by Ahmed et al. [17] adopted cyclic optimization filtering, which improved
the image segmentation quality. However, due to the addition of loop iteration in the convergence,
the algorithm was inefficient and ran for a long time. Therefore, Szilagyi et al. [12] proposed an
Enhanced FCM (EnFCM) algorithm, which effectively improved the computational efficiency in the
segmentation process and also provided higher segmentation quality for MR brain image. In order to
speed up the image clustering, a linear weighted sum was formed in advance from the original image
and its local spatial neighborhood in EnFCM, as follows

ξi =
1

1 + α

(
xi +

α

NR
∑

j∈Ni

xj

)
(1)

where ξi is the linear weighted gray value of the ith pixel in the image, the parameter α is used to
adjust the intensity of the neighborhood constraint, xj is the gray value of neighborhood pixels centered

at xi, and NR denotes the pixel number of neighborhood pixels. In fact,
(

∑j∈Ni
xj

)/
NR represents the

mean filtering of pixels in the neighborhood. During the running of the program, each pixel in the
image is not directly calculated, but the linear weighted sum in Equation (1) is clustered. The objective
function of EnFCM algorithm is

JEnFCM =
c

∑
k=1

q

∑
l=1
γlu

m
kl(ξl − vk)

2 (2)
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where vk is the kth cluster center, ukl represents the fuzzy membership of the kth cluster that gray
value is l, and q denotes the number of gray levels of a given image, q is much less than the total
number N of image pixels. γl denotes the number that gray value of the pixel is equal to l, satisfying

q

∑
l=1
γl = N (3)

Under the constraints of ∑c
k=1 ukl = 1 for any gray value l, the partial derivatives of JEnFCM to ukl

and vk are solved by using Lagrange optimal criterion to minimize respectively, then the updated
expressions of corresponding fuzzy membership and cluster center are

ukl =
(ξl − vk)

− 2
m−1

c
∑

j=1

(
ξl − vj

)− 2
m−1

(4)

vk =

q
∑

l=1
γlum

klξl

q
∑

l=1
γlum

kl

. (5)

There are generally 256 gray levels per pixel in brain MR image, which is much smaller than the
total number of pixels in the image. It can be seen from Equations (4) and (5) that the running time of
EnFCM program is significantly reduced. EnFCM provides a fast and robust segmentation method,
but the quality of the segmentation result depends largely on the control factor α, the size of the
neighborhood region and other parameters. If the parameter α is set to be large enough, the anti-noise
ability will be improved, but the boundaries or details may be lost. On the other hand, if the parameter
α is sufficiently small, although the segmented image can retain more detail information, the sensitivity
to noise is increased. Therefore, there is no prior knowledge about image noise, the choice of parameter
α is a difficult task. In general, it can only be decided as an optimal value by trial-and-error.

2.2. Fast Generalized FCM

In order to avoid the selecting problem of the parameter α and improve the clustering effect,
Cai et al. [13] proposed a fast generalized fuzzy c-means clustering (FGFCM) algorithm. FGFCM
introduced a local similarity measure Sij containing grayscale and distance information, which is
defined as follows

Sij =

{
e−max(|pi−pj|,|qi−qj|)/λs−‖xi−xj‖2/λgσ

2
i , i 6= j

0, i = j
. (6)

Let xi is the gray value of center pixel in the local window, xj denotes the gray value of neighbor
pixel falling into window, (pi, qi) denotes the position coordinate of pixel xi in the image, λs and λg are
two scale factors, they have a similar functionality with α in EnFCM, and σi is defined as

σi =

√√√√√ ∑
j∈Ni

∥∥xi − xj
∥∥2

NR
(7)

where NR represents the number of pixels in the neighborhood. In FGFCM, the similarity measure Sij

is used to calculate the new gray value ξi, and a new image ξ is obtained as follows

ξi =

∑
j∈Ni

Sijxj

∑
j∈Ni

Sij
. (8)
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Compared with EnFCM, FGFCM can improve the segmentation accuracy, and the parameter Sij

can be changed with the change of local neighborhood window, which overcomes the defect of fixed
parameter α to some extent and has better flexibility.

3. Basic Principles of The Modified Algorithm

3.1. Weighted Measure with Neighborhood Information

There are usually two kinds of common noise in the image: pulse-like noise and Gaussian noise.
Since the generation mechanisms and expressions of two types of noise are very different, it is difficult
to design an algorithm which can effectively remove two kinds of noise at the same time. The classical
median filter is very effective for impulsive noise, but it does not perform well for Gaussian noise.
Mean filter is good for eliminating Gaussian noise, but it is very poor for impulsive noise. Therefore,
in order to overcome the influence of noise using FCM algorithm to segment noisy images, based on
the EnFCM, FGFCM and ARKFCM algorithm [16], a modified image segmentation algorithm with
spatial constraints is proposed for noisy image in this section.

Firstly, let data set X = {x1, x2, . . . , xn} be composed of the gray level of each pixel in the image,
and n is the total number of pixels. A pixel xi (i = 1, 2, . . . , n) is selected as the center of the
neighborhood window Ni in the image, and then sort all the pixels in the window according to their
gray value and take the median zi, i.e.,

zi = median{xi|i ∈ Ni}. (9)

The purpose of taking the median is to eliminate the pulse-like noise in the image, such as salt
and pepper noise. Next, we calculate the deviation σij of all the pixels in the neighborhood relative to
the median zi, and the formula is as follows

σij = abs(xj − zi), j ∈ Ni,i 6=j (10)

where xj denotes the gray value of all pixels in neighborhood except xi. σij is mapped to kernel space
combining Equation (6) and obtains new variable yij

yij = exp

−
σij − ∑

j∈Ni ,i 6=j

σij/(NR − 1)

 (11)

where NR denotes the pixels number of neighborhood Ni, and the normalized weighting coefficient
wij of each pixel in the neighborhood can be derived using yij, as follows

wij =
yij

∑
j∈Ni

yij
. (12)

Therefore, the revised gray level value of the pixel can be calculated by Equation (13)

ξ∗i = ∑
j∈Ni

wijxi (13)

In order to analyze the role of weighting coefficients wij for each pixel in the neighborhood, an
example is chosen to illustrate, as shown in Figure 1. In a noisy MR image, two 3 × 3 neighborhood
windows are selected to calculate the weighting coefficients wij of each pixel respectively. As can be
seen from Figure 1, if the pixel is judged as a noise point, its weighting coefficient is close to zero,
so that it does not substantially play a role in pixel classification and discrimination, which makes the
misclassification rate significantly reduced.
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Figure 1. The normalized weight coefficient of each pixel in the neighborhood.

3.2. Objective Function

In order to increase the clustering speed, each pixel is not directly processed, but the histogram of
the image is calculated to obtain the objective function. It is basically the same as Equation (2), but the
processing method for pixels is different.

According to the constraints ∑c
k=1 u∗kl = 1 and u∗kl ∈ [0, 1], the membership degree u∗kl and cluster

center v∗k of the kth pixel can be obtained by the Lagrangian optimal criterion, as follows

u∗kl =
(ξ∗l − v∗k)

− 2
m−1

c
∑

j=1

(
ξ∗l − v∗j

)− 2
m−1

(14)

v∗k =

q
∑

l=1
γl(u∗kl)

m
ξ∗l

q
∑

l=1
γl(u∗kl)

m
(15)

3.3. Local Membership Function

According to the SFCM algorithm proposed by Chuang et al. [18], in order to improve the
clustering performance of the FCM algorithm, the membership degrees of pixels in the local
neighborhood are also taken into account, and the new membership function is obtained.

uN
ki =

(u∗ki)
phq

ki
c
∑

j=1
(u∗ji)

phq
ji

(16)

where hki = ∑j∈Ni
u∗kj, hki denotes the membership degree sum belonging to the kth cluster of all pixels

in the neighborhood. If the probability that a pixel in the neighborhood belongs to the kth cluster is
high, the probability of its neighbor pixels belonging to the kth cluster is also high according to the
correlation among the local pixels of the image. p and q are the parameters for controlling the relative
importance of the two membership functions u∗ki and hki, and p = q = 1 in this paper.

3.4. Program Flowchart

The flowchart for MRFCM is illustrated in Figure 2, and pseudo code of program as follows in
Algorithm 1.
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Algorithm 1. MRFCM algorithm
Begin
Input:

original image; % brain MR image to be segmented
c; % cluster number
r; % the radius of neighborhood window
ε; % stop criterion

Initialization: randomly initialize membership degree ukl and cluster center vk and set t = 0
Process:

for t = 0: T iterations
compute the weighting measure wij using Equation (12) and update gray value ξ∗i ;
compute and update the membership degree u∗ki using Equation (14);
compute and update the revised membership degree uN

ki using Equation (16) and clustering
prototypes v∗k using Equation (15);

end
Output: the segmented image
End
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4. Experimental Results and Analysis

In order to test and analyze the performance of MRFCM algorithm in this paper, related
experiments were carried out on three types of images: synthetic images, simulated brain MR images
and real brain MR images. At the same time, five representative image segmentation algorithms
were selected to compare with MRFCM: standard FCM, EnFCM [12], FGFCM [13], MICO [19] and
ARKFCM [16]. For FCM algorithm and its improved algorithms, the relevant parameters are set
as follows: fuzzy exponent m = 2, neighborhood window size of 3 × 3 and stop iteration ε = 0.001.
In addition, α = 4 is taken in EnFCM, and λs = 3 and λg = 6 in FGFCM.

4.1. Synthetic Images

The size of the first synthetic image is 128 × 128 pixels and two pixel gray values: 30 and 220,
as shown in Figure 3a. The image was corrupted by 12% salt and pepper noise, as shown in Figure 3b.
Six segmentation methods including FCM, EnFCM, FGFCM, MICO, ARKFCM and MRFCM are used
to segment the noisy image, and the experimental results are shown in Figure 3c–h. It can be seen
from Figure 3 that standard FCM algorithm is very sensitive to pulse-like noise and has almost no
noise immunity. Although anti-interference ability is considered in the EnFCM and MICO algorithms,
they are almost incapable for salt and pepper noise. FGFCM and ARKFCM algorithms have certain
anti-noise ability, but the experimental effect is still not satisfactory. It is obvious that MRFCM has
better segmentation result and strong robustness to salt and pepper noise.

The size of the second synthetic image is still 128 × 128 pixels and it contains three gray values:
0, 128 and 255, as shown in Figure 4a. The image is corrupted by zeromean Gaussian noise with
standard deviation 0.08, as shown in Figure 4b. Similarly, FCM, EnFCM, FGFCM, MICO, ARKFCM
and MRFCM are also used to segment the noisy image, and the experimental results are shown in
Figure 4c–h. It can be seen from Figure 4 that the EnFCM algorithm is robust to Gaussian noise, but its
effect is not very satisfactory. The rest of the FGFCM, MICO, ARKFCM and MRFCM have the ability
to resist Gaussian noise. Obviously, MRFCM has the best segmentation effect.
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(b) noisy image; (c) FCM result; (d) EnFCM result; (e) FGFCM result; (f) MICO result; (g) ARKFCM
result; (h) MRFCM result.
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In order to quantitatively analyze and evaluate the experimental results, Table 1 gives the average
segmentation accuracy (SA) of the above six algorithms under different noise level, SA is defined as
the ratio of the number of correctly classified pixels to the total number of pixels in the image [20],
as follows

SA =
c

∑
i=1

Ai ∩Ci
c
∑

j=1
Cj

(17)

where c is the number of cluster, Ai is the pixel number belonging to the ith cluster found by the
algorithm, and Ci is the pixel number belonging to the ith cluster in ground truth. It can be clearly
shown from the experimental results in Table 1, MRFCM has higher segmentation accuracy, and it is
more robust to noise than the other five algorithms.

Table 1. The comparison of SA values under different noise level.

Noise Type Noise
Level (%) FCM EnFCM FGFCM MICO ARKFCM MRFCM

Salt and pepper
noise

4 0.9803 0.9881 0.9944 0.9876 0.9988 0.9995
8 0.9576 0.9622 0.9902 0.9599 0.9970 0.9991

12 0.9385 0.9436 0.9875 0.9435 0.9943 0.9976
16 0.9203 0.9291 0.9685 0.9213 0.9872 0.9923

Gaussian noise

4 0.8154 0.9599 0.9611 0.9507 0.9798 0.9993
8 0.6921 0.8509 0.8768 0.8610 0.9540 0.9985

12 0.6346 0.7825 0.8269 0.7967 0.9453 0.9912
16 0.6016 0.7141 0.7877 0.7233 0.9314 0.9872

4.2. Simulated Brain MR Images

It is difficult to quantitatively evaluate the performance of segmentation algorithm because
the ground truth (GT) of real brain MR image usually does not exist in clinical practice. Brainweb,
developed by the brain imaging center of the Montreal Neurology Institute at McGill University,
provides a synthetic brain database (SBD) [21], including a set of data generated by an MRI
simulator that is close to real brain MR images. The brain MR image data in SBD is composed
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of a three-dimensional matrix of 181 × 217 × 181 voxels, which can simulate T1, T2 and PD
(Proton-density) weighted brain MR images, and the slice thickness, noise level and intensity
inhomogeneity can be set by oneself. According to the requirement of the research task, 3D image can
be sliced and extracted from three planes (axial, sagittal and coronal) to obtain 2D image data.

In this section, 9 T1 weighted brain MR images are selected as test samples, and 3D brain MR
images are sliced from the axial, sagittal and coronal plane, respectively. In Figure 5, The serial numbers
are 98, 108 and 96, the slice thickness is 1 mm. and skull, blood vessels and muscle tissue and so
on have been removed before the experiment. Noise level in the image is 9%, there is no intensity
inhomogeneity, and three slice images are shown in Figure 5a. In general, the structure of brain tissue
is very complex, but the brain MR image is generally divided into four parts in clinical applications:
white matter (WM), gray matter (GM), cerebrospinal fluid (CSF) and background. In this section,
the simulated brain MR images are still tested using six methods: FCM, EnFCM, FGFCM, MICO,
ARKFCM and MRFCM. The segmentation results are shown in Figure 5b–g, and GT is illustrated in
Figure 5h. It can be seen from the experimental results that the standard FCM without considering
spatial information of the neighborhood is very sensitive to noise and cannot accurately segment the
noisy MR image. The improved FCM algorithms with local neighborhood constraints, because the
spatial neighborhood information are considered in these algorithms, the segmentation validity is
improved compared with standard FCM. In these improved methods, EnFCM and MICO algorithms
have weak robustness to noise, and the segmentation effect of FGFCM and ARKFCM is relatively
good, but they are not ideal for the processing of the edge structure of the brain tissue. By comparing
with GT, MRFCM has the best matching degree and the best segmentation results.
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of FGFCM; (e) segmentation results of MICO; (f) segmentation results of ARKFCM; (g) segmentation
results of MRFCM; (h) ground truth.

As a quantitative evaluation index of segmentation result, the dice coefficient is used to compare
the segmentation performance of the six algorithms for simulated brain MR images [22], and the dice
coefficient is defined as follows

ρ(S1, S2) =
2|S1 ∩ S2|
|S1|+ |S2|

(18)

where S1 and S2 represent the segmented image by the evaluated algorithm and GT respectively and
|·| indicates the number of pixels in the corresponding operation. ρ ∈ [0, 1], the larger the value of ρ,
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the better the segmentation performance. In Figure 6, Dice coefficients of WM, GM and CSF obtained
by the above six algorithms are illustrated respectively. As can be seen from the data curve, with
the change of noise level, the value of the dice coefficient also changes accordingly. Comparing the
magnitude of the ρ value, the strong robustness of the MRFCM is further verified. ARKFCM algorithm
has an over-smoothing problem at the edges and details, which leads to the Dice coefficient decreasing
sharply and the worse segmentation performance with the increase of noise in CSF extraction. The
performance of the MRFCM in this paper is very stable, and it can effectively extract various brain
tissues.Information 2019, 10, 74 11 of 15 
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4.3. Real Brain MR Images

In order to more fully verify the performance of the algorithm, an experiment was performed
for real brain MR images from Internet Brain Segmentation Repository (IBSR) database provided by
Formal Measurement Center (CMA) of Massachusetts General Hospital [23]. IBSR database is a set
of clinical data generated by real MRI scans, which contains different levels of noise, and there are
also varying degrees of intensity inhomogeneity, covering various problems that may arise in real MR
data segmentation.

In experiments, we still selected 9 T1-weighted real brain MR images from IBSR database.
In Figure 7, three sliced images are extracted from 3D brain MR data from axial, sagittal, and coronal
plane, respectively. The corresponding numbers are 127, 76 and 116, as shown in Figure 7a, and the
ground truth images of these images are also given, as shown in Figure 7h. Segmentation algorithms
still adopt FCM, EnFCM, FGFCM, MICO, ARKFCM and MRFCM, and the segmentation results are
shown in Figure 7b–g. It can be clearly seen that the segmentation result of the MRFCM is closest to
ground truth, which further validates the effectiveness of the algorithm in real brain MR images.
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images; (b) segmentation results of FCM; (c) segmentation results of EnFCM; (d) segmentation results
of FGFCM; (e) segmentation results of MICO; (f) segmentation results of ARKFCM; (g) segmentation
results of MRFCM; (h) ground truth.

4.4. Selection of Window Radius r

For the same brain MR image is corrupted by different noise-level, the segmentation accuracy of
each radius r is shown in Table 2.

Table 2. Comparison of segmentation accuracy between different noise level and different.

Noise Variance
Radius r

1 2 3 4 5

0.05 0.9962 0.9949 0.9881 0.9864 0.9816
0.15 0.9935 0.9915 0.9834 0.9758 0.9701
0.25 0.9893 0.9866 0.9822 0.9707 0.9615
0.35 0.9847 0.9742 0.9618 0.9589 0.9523
0.65 0.8019 0.8431 0.9007 0.8652 0.8712
0.95 0.6128 0.6793 0.7386 0.7436 0.7528

As can be seen from Table 2, with the noise increasing, the segmentation accuracy gradually
decreases. When variance σ ≤ 0.35, the window radius r = 1 corresponds to the highest segmentation
accuracy. The increase of the window radius leads to a decrease in segmentation accuracy because
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the large window can well overcome the influence of noise, but it is easy to erase the details and edge
parts of the image, so the segmentation accuracy is reduced. When σ > 0.35, the segmentation accuracy
corresponding to the window radius r = 1 will drop significantly, and the segmentation effect is poor.
The segmentation accuracy is the highest when the window radius r = 3. It can be seen that the larger
the window radius, the stronger the anti-noise ability of MRFCM, but the segmentation accuracy is
worse. On the other hand, the larger the window radius is, the higher the computational complexity of
the algorithm. Based on the consideration of segmentation accuracy and computational complexity for
brain MR images, when the noise level is small, the image can be segmented with the window radius
r = 1, and when the image noise level is larger, the window radius r = 3 is used.

5. Conclusions

In the process of brain magnetic resonance imaging, noise interference is an inherent defect.
In medical image segmentation, it will affect the segmentation accuracy of brain tissue extraction, and
may further affect the treatment effect in clinical diagnosis. A modified FCM scheme incorporating
spatial neighborhood information is proposed in this paper, which has strong anti-noise ability,
and the algorithm is simple and the calculation speed is fast. MRFCM is applied to three types of
images: synthetic images, simulated brain MR images and real brain MR images, and compared the
experimental results with standard FCM and several state-of-the-art improvement schemes based
on FCM. The experimental results show that MRFCM is robust to noise and can accurately segment
noisy brain MR images. Our future work will focus on reducing its computational complexity by
incorporating convex optimization techniques, the extension of the existing algorithm to 3D data and
multi-modal image segmentation.
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