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Abstract: By introducing an easy knapsack-type problem, a probabilistic knapsack-type public key
cryptosystem (PKCHD) is proposed. It uses a Chinese remainder theorem to disguise the easy knapsack
sequence. Thence, to recover the trapdoor information, the implicit attacker has to solve at least two hard
number-theoretic problems, namely integer factorization and simultaneous Diophantine approximation
problems. In PKCHD, the encryption function is nonlinear about the message vector. Under the
re-linearization attack model, PKCHD obtains a high density and is secure against the low-density subset
sum attacks, and the success probability for an attacker to recover the message vector with a single
call to a lattice oracle is negligible. The infeasibilities of other attacks on the proposed PKCHD are also
investigated. Meanwhile, it can use the hardest knapsack vector as the public key if its density evaluates
the hardness of a knapsack instance. Furthermore, PKCHD only performs quadratic bit operations which
confirms the efficiency of encrypting a message and deciphering a given cipher-text.
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1. Introduction

A public key cryptosystem (PKC), a concept introduced by Diffie and Hellman in their landmark
paper [1], is a critical cryptographic primitive in the area of network and information security. Traditional
PKCs such as RSA [2] and ElGamal [3] suffer from the same drawback of relatively low speed, which
hampers the further applications of public-key cryptography and also motivates the cryptographers to
design faster PKCs. Among the first public-key schemes, knapsack-type cryptosystems were invented as
fast PKCs. Due to the high speed of encryption and decryption and their NP-completeness, they were
considered to be the most attractive and the most promising for a long time. However, some attacks
lowered the initial enthusiasm and even announced the premature death of trapdoor knapsacks.

Following the first knapsack system developed by Merkle and Hellman [4], many knapsack-type
cryptosystems can be found. However, only a few of them are considered to be secure, including the
most resistant one, the Chor-Rivest knapsack system [5,6]. In the literature, many techniques were
developed and many trapdoors were found to hide information, i.e., using the 0-1 knapsack problem [4],
compact knapsack problem [7], multiplicative knapsack problem [8,9], modular knapsack problem [10,11],
matrix cover problem [12], group factorization problem [13,14], polynomials over GF(2) [15], Diophantine
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equations [16], complementing sets [17], and so on. However, almost all the additive knapsack-type
cryptosystems are vulnerable to low-density subset sum attacks [18-20], GCD attack [21], simultaneous
Diophantine approximation attack [22] or orthogonal lattice attack [14]. Additionally, Refs. [23,24] show
the rise and fall of knapsack cryptosystems.

Three reasons clarify the insecurities of the additive knapsack-type cryptosystems. Firstly, as observed
in [21], these systems are basically linear. Secondly, for some of them, the trapdoor information is easy to
recover. In particular, some systems use the size conditions to disguise an easy knapsack problem that
make them vulnerable to simultaneous Diophantine approximation attacks [22]. Thirdly, the densities of
some systems are not high enough. Coster et al. [20] showed that, if the density is <0.9408 - - -, a single call
to a lattice oracle will lead to polynomial time solutions.

Like the aforementioned, to design a secure knapsack-type PKC, we must ensure that

*  in the system, the encryption function is nonlinear about the message vector;

*  to disguise the easy knapsack problem, the size conditions should be excluded;

*  the encryption function must be non-injective. A cipher-text must have so many preimages that it is
computationally infeasible for the attacker to list all the preimages.

It is believed in [23] that, if someone invents a knapsack cryptosystem that fully exploits the difficulty
of the knapsack problem, with a high density and a difficult-to-discover trapdoor, then it will be a system
better than those based on integer factorization and discrete logarithms. Can such a knapsack-type PKC
satisfying the requirements above be developed, or, in other words, may any efficient yet straightforward
constructions have been overlooked? In this paper, we will try to provide an affirmative answer.

Based on a new easy knapsack-type problem, a probabilistic knapsack public-key cryptosystem with
high density (PKCHD) is proposed, which has the following properties:

e  PKCHD is a probabilistic knapsack-type PKC.

e  The multivariate polynomial encryption function is nonlinear about the message vector, and its
degrees are controlled by the randomly-chosen small integers.

®  The secret key is disguised via Chinese remainder theorem (CRT) rather than the size conditions.
Thus, PKCHD is secure against simultaneous Diophantine approximation attacks.

®  The density of PKCHD is sufficiently high under the relinearization attack model. A cipher-text has
too many plaintexts for the attacker to enumerate all of them in polynomial time.

e  If its density evaluates the hardness of a knapsack instance, PKCHD can always use the hardest
knapsack vector as the public-key.

®  The attacker has to solve at least two hard number-theoretic problems, namely integer factorization
and simultaneous Diophantine approximation problems, to recover the trapdoor information.

e  PKCHD is more efficient than RSA [2] and ElGamal [3]. The encryption and the decryption of the
system only perform O(n?) bit operations.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries on concepts and
definitions about lattices, low-density subset sum attacks, and simultaneous Diophantine approximation.
The easy knapsack-type problems are presented in Section 3, as well as several examples to make the
problems more understandable. The detailed description of the proposed PKCHD is given in Section 4.
Section 5 discusses the performance related issues and specifies the parameter selection. Section 6 discusses
several attacks on our system including key-recovery attacks, low-density attacks, and simultaneous
Diophantine approximation attacks. The security of the system is carefully examined in this section.
Section 7 gives some concluding remarks.
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2. Preliminaries

Throughout this paper, the following notations will be used:

- R, the field of real numbers.

- Z, thering of integers; Z7T, the set of all positive integers.

- Z,={0,---,n—1}, the complete system of least nonnegative residues modulo 1; Z}, the reduced
residue system modulo #.

- gecd(a,b), the greatest common divisor of a and b; lem(a, b), the least common multiple of 2 and b.

- Ifged(a,b) = 1,a~! mod b denotes the inverse of a modulo b.

- alb,adivides b.

- amod p, the least nonnegative remainder of a divided by p.

- a=bmod N means that 4 is the least nonnegative remainder of b modulo N; a = b (mod N) means
that 2 and b are congruent modulo N.

- For (a,b) € (Z+)2, and an integer m, m mod (a, b) denotes the 2-tuple (m mod a, m mod b).

- u# v (mod (a,b)) means that u mod 4 # v mod a or u mod b # v mod b.

- |A]|, the cardinality of a set A.

- |a|y, the binary length of an integer a.

- [r], the smallest integer greater than or equal to .

Throughout this paper, we also adopt some customary parlance. For example, when we say a value is
negligible, we mean that the value is a negligible function v(k) : N — [0, 1], i.e., for any polynomial p(-),
there exists kg > 1 such that v(k) < 1/p(k) for any k > kq. The length of a vector means its norm (L, L,
or Le norm).

2.1. Lattice

A lattice is a discrete additive subgroup of R". An equivalent definition is that a lattice consists of all
integral linear combinations of a set of linearly independent vectors, i.e.,

d
L:{ z;b; ZZ'GZ},
i=1

where by, ---, b, are linearly independent over R. Such a set of vectors {b;} is called a lattice basis.

In the lattice theory, three important algorithmic problems are the shortest vector problem (SVP),
the closest vector problem (CVP) and the smallest basis problem (SBP). The SVP asks for the shortest
non-zero vector in a given lattice L. Given a lattice L and a vector v, the CVP is to find a lattice vector s
minimizing the length of the vector v — s. Then, the SBP aims at finding a lattice basis minimizing the

maximum of the lengths of its elements. The problems are of special significance in complexity theory
and cryptology. The SVP can be approximated by solving SBP. No polynomial-time algorithm is known
for the three problems. The best polynomial time algorithms to solve the SVP achieve only slightly
sub-exponential factors, and are based on the LLL algorithm [25].

Before 1996, the lattice theory only applies to cryptanalysis [14,18-22,26-29], especially in breaking
some knapsack cryptosystems. However, positive applications of the lattice theory in cryptology [30-33]
have been witnessed in the last ten years. Some cryptographers even introduce the knapsack cryptosystems
into the lattice-based cryptosystems due to the applications of lattice reduction algorithms in breaking
the knapsack-type cryptosystems. For example, Sakurai [34] viewed the lattice-based cryptosystems as
the revival of the knapsack trapdoors. More negative and positive applications of the lattice theory in
cryptology can be found in [34,35].
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The SVP and CVP are widely believed as difficult problems. However, interestingly, experimental
results showed that lattice reduction algorithms behave much more nicely, especially in the
low-dimensional (<300) lattices, than was expected from the worst-case proved bounds. When the
dimension of a lattice is low, the lattice reduction algorithms can serve as a lattice oracle (SVP or CVP
oracle). Therefore, to make a PKC invulnerable to lattice attacks, generally, the dimension is required
to be sufficiently high (>500) without reducing the practicability, e.g., NTRU [32]. In this paper, a new
method of constructing knapsack-type cryptosystem is presented. The dimension of the lattice underlying
the cryptosystem is low (about 150), and it is still secure against lattice attacks under some reasonable
assumptions.

2.2. Low-Density Subset Sum Attacks

Given a cargo vector A = (ay,- - - ,a,) and an integer s, the 0-1 knapsack problem or more precisely
the subset-sum problem is to determine a binary vector X = (x1, - - - , x,,) such that the scalar product of A
and X is s. More generally, we define the general knapsack problem or compact knapsack problem as to
find a vector X = (x1,- -+ ,x,) with x; € [0, 20— 1] such that

n
Zaixi =s. 1)
i=1

Note that Equation (1) is linear about the variable X. However, when the linearity restriction
is removed and a new function f quadratic about X is defined such that f(X) = s, ie,
XAXT =y, Y1 aijxixj = s, we call it a matrix cover problem. Especially when the matrix A is diagonal,
A = diag(ay, - - - ,a,), the matrix cover problem turns out to find the vector X = (x1,- -+, x,) subject to
" ,a;x? = s. This problem is called a quadratic knapsack problem. These problems had been used to
construct knapsack-type PKCs [4,7,12].

In a compact knapsack cryptosystem, the public key of the system is a cargo vector A = (ay,- -+ ,a,).

A message M = (my,- - - ,my) with m; € [0,k] is encrypted into
n
s = Z a;m;. 2)
i=1

An important characteristic of a knapsack cryptosystem is the density of the cryptosystem.
A cryptosystem’s density has a great effect on its security against lattice-based attacks such as low-density
subset-sum attack and on whether it can be used to generate digital signatures for data origin authentication
purposes. In a high density cryptosystem, almost all the messages can be signed. Informally, the density of
a knapsack cryptosystem is defined as the fraction of the signable messages among all the messages [36],
or the density is approximately the information rate, which is the ratio of the number of bits in plaintext
message over the average number of bits in cipher-text [23]. Now, we provide the formal definition
of density.

Definition 1 (Density [37]). The density d of the compact knapsack problem (2) is defined by

no
i=1 €i

- 1og,Crmax” ®)

where Comax = kY1 a; is the maximum value of the cipher-text in the system and e; = |m;|, = [log,(k +1)].
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We want to give two remarks about the definition here. Firstly, [log,(k + 1)] bits are needed to
represent the k + 1 integers in [0, k]. Thus, we set ¢; = [log, (k4 1)]. Secondly, some different definitions
can be found in the literature. For example, Orton [7] defined the density of Equation (2) as

n[log,(k+1)] '

d pr—
log,max a;

However, Ref. [37] gave a smaller density definition than that given in [7]. Thus, we adopt the
smaller definition.

When the density d of a knapsack problem is too low, there exists an efficient reduction from the
knapsack problem to the SVP over a lattice. Coster et al. [20] showed that, if 4 < 0.9408 - - -, which is the
improvement of the earlier bound 0.6463 - - - [19], then the knapsack problem can be easily solved in a
non-negligible probability with a single call to a lattice oracle.

Given a knapsack system A = (ay,- -+ ,a,) and asum s = } ;' ; a;x;; the basic idea of the low-density
attack [20] runs as follows. The attacker constructs a matrix

1 0 --- 0 Nal 01
o1 --- 0 NIZZ (%]
el e =
0 0 1 Nay Un
bd b N ) o
at first using the public key, where N > /n/2. The integral combinations of the row vectors v1, - -, ;41

of V form an (n + 1)-dimensional lattice L. Suppose that e = (e, - - ,e,) is a solution to s = Y1 ; a;x;.
Note that the vector

o fod) =@t e ]

5 2,0)23101+"'+€n0n+0n+1EL,

which contains enough information for the attacker to solve a solution to s = }_I" ; a;x;. The length of f is
relatively small. The short vector f can be found with non-negligible probability by using lattice basis
reduction algorithms.

In fact, even if we design a knapsack system with the density close to 1 and >0.9408 - - -, we cannot
claim that it is secure against low-density subset sum attacks. Let the length of the message vectors be
bounded by r and N (n, r) be the number of integral lattice points with length at most r in the n-dimensional
sphere of radius r centered at the origin. Assume that the lattice points in the sphere have the same length
and that the lattice reduction algorithms can find a lattice point in the sphere. Thus, the lattice point
output by the lattice reduction algorithm is exactly the message vector with a probability Pr = 1/N(n,r).
However, if the density is slightly greater than >0.9408. - -, N(n,r) is bounded by a constant O(1) or
a polynomial function O(p(n)). In such a case, the probability Pr = 1/N(n,r) is non-negligible. This
is why Omura et al. [26] showed that the low-density attack can be applied to Chor—Rivest [5] and
Okamoto-Tanaka—-Uchiyama cryptosystems [38].

2.3. Simultaneous Diophantine Approximation

The simultaneous Diophantine approximation problem is a basic problem in Diophantine
approximation theory, which has found uses both in cryptanalysis [22,28] and cryptography [39].
The problem is defined as follows.
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Definition 2 (Simultaneous Diophantine approximation). The simultaneous Diophantine approximation
problem is: given n + 1 real numbers rq,--- ,ty,€ > 0, and an integer Q > 0, find integers py,-- - , pn and

q:0< g < Q,such that

€
< =

_q'

pi
q

ri —

Informally speaking, this problem asks for a set of fractions with a common and relatively small
denominator approximating the given set of real numbers. There is a solution to the simultaneous
Diophantine approximation problem if Q > ¢7", but no efficient algorithm is found. However, when
viewed as a problem involving lattices, the problem can be approximated by lattice basis reduction
algorithms. Note that the integral linear combinations of the row vectors of the matrix

—_
o
(e}
EN)

[y

0 1 0 0 ap
A= : : S : = :
0 0o - 1 0 a

-1 —ry - —t, €/Q Apa1

form a lattice L. Lattice basis reduction algorithms can be applied to the lattice L to output a reduced
basis. The shortest vector b in the reduced basis can be used to approximate the simultaneous Diophantine
approximation problem. Since b € L, there exist integers py, - - - , pn and g such that

n
b= Zpi”i+q‘1n+1 = <P1 —4qr,c P —‘Vn/qQ€> .
i=1
Since b is short, each p; — gr; is small, which is equivalent to saying that |r; — p;/q| is also small.
Thus, {p;/q} is a set of fractions, with a common denominator g, approximating {r;}. This informal
demonstration reveals the relation between lattice reduction algorithms and the simultaneous Diophantine
approximation problem.

3. Easy Knapsack-Type Problems

Knapsack-type PKCs always follows a common design morphology [9], that is:

¢  Construct an easy instance P[easy] from an intractable problem P.

e  Shuffle Pleasy] to make the resultant problem P[shuffle] seemingly-hard and indistinguishable
from P.

®  P[shuffle] is published as the encryption key. The information s by means of which P[shuffle] is
reduced to Pleasy] is kept as the secret key.

¢ The authorized receiver knowing s solves P[easy] to recover a message, whereas the task for the
attacker is to solve P[shuffle].

In the knapsack public-key cryptography, several kinds of easy knapsack problems have been considered,
e.g., super-increasing sequences [4], the cargo vectors used in the Graham-Shamir cryptosystem [40] and
the knapsack sequences [41] used for attacking a knapsack-type cryptosystem [16] based on Diophantine
equations. In this section, we propose several new easy knapsack problems, which can be viewed as the
generalizations of those problems presented in [42,43].
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3.1. An Easy Compact Knapsack Problem

Simultaneous compact knapsack problem is considered in this section: given the sums (s1,s2) €
(Z*+)* and two cargo vectors A = (a,--- ,a,), B= (by, - ,by) € (Z*)", find a vector X = (x1,-- - ,xu),
such that s; = Y_I' ; a;x;, and s, = }_I' ; b;x;. The problem has a solution only if ged(ay, - - - ,a,)|s; and
ged(by, - -, by)|s2. Without loss of generality, in this paper, we always assume that ged(ay, - -+ ,a,) =
ged(by, -+ ,by) = 1. The following theorem gives an easy instance of the simultaneous compact
knapsack problem.

Theorem 1. Given two cargo vectors A = (ay,- -+ ,a,) and B = (by,- -+ ,by). Denote by c; and d; the gcd of
the first i components of A and B, respectively, i.e., ¢; = ged(ay, - -+ ,a;), d; = ged(by, -+ ,b;). If2 <k < A; =
Iem(ci—1/ci,di—1/4d;),i=2,--- ,n, the following simultaneous compact knapsack problem

n
Z aix; = si, (4)
i-1
n
Y bixi=s;, 0<x;<k-—1, @)
i=1

can be solved in polynomial (in n) time. Furthermore, the problem has at most one solution.

Proof. Note thatc,_1|a;,i =1,---,n —1, so Equation (4) mod c,_1 gives a,x, = s; (mod c,_1) . Thus, we
can invert a, and obtain x,, = sya, ' (mod c, 1) . Similarly, we get x,, = s»b;, ! (mod d,,_1). Then, we can
determine a unique x,, € Z,, according to CRT, where A; = lem(c,—1/cn, dp—1/dn) = lem(cy—1,dy—1) > k.
If the unique x, obtained is greater than k — 1, we can conclude that the simultaneous compact knapsack
problem has no solutions. Otherwise, we determine an x,,, 0 < x, <k —1.

Suppose that the values of x; 1, - ,x,,i =n—1,---,2 have been determined, then

i n
Y 4xi=s1— ), a4, ©)
j=1 j=it1
and ‘
1 n
Z b]X] = Sy — 2 b]x] (7)
j=1 j=i+1

Note that Equation (6) modulo ¢;_1 gives

n
aixj =s1— Y ajxj(modci_q).
=it

It is easy to verify that gcd(a;, ¢;—1) = ¢; and ged(a;/cj, ci1/¢;) = 1. If ¢; |sl — 27:i+1 ajxj, we have

a; 51— Lisit1 4 Ci—
By, = =T od 951, (8)
Ci Ci Ci
otherwise, the simultaneous compact knapsack problems (4) and (5) have no solutions. By inverting a;/c;,
we obtain according to Equation (8)

S1— Y 14X [ a; -1 Ci_
xiEW”(l mod S=1 ©)

Ci Ci
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Similarly, we can deduce that problems (4) and (5) have no solutions or have a congruence

Xi =

Sy — Z]r‘l:iJrl b]'x]' (bi ) -1 mod di_q . (10)

di d; d;

From (9) and (10), we can determine a unique x; € Z,, according to the CRT, where A; =

lem(c;_1/¢j,di—1/d;) > k. Thus, if (4) and (5) have solutions, we can determine a unique x;: 0 < x; <k — 1.
With the determined values of x, - - - , x,, we get

n def
a1xy =81 — ZIZ]X] =1,
j=2

and

L def
b1X1 = Sy — Z b]X] =T7.
j=2

If a|ry and by |ry, respectively, and the two quotients are identical, i.e.,

o<t o2 oy,
a b
we set x; = r; otherwise, we deduce that the problems (4) and (5) have no solutions. Even if the unique
values of x1,- -+, x; have been determined, we cannot claim that they are the solutions to (4) and (5).
We need to verify whether x1, - - - , x,, satisfy (4) and (5). If yes, then X = (x1,- -, xy) is a solution to (4)
and (5); otherwise, (4) and (5) have no solutions.

To determine each x;, we need to solve two modular equations by using CRT. This problem can be
solved only by computing 2n modular equations. Thus, the simultaneous compact knapsack problems (4)
and (5) can be solved in polynomial (in #) time. If the problem has solutions, each x; is uniquely determined
according to CRT. Thus, the simultaneous compact knapsack problem has at most one solution. O

However, a high-density knapsack-type cryptosystem can not be designed based on this easy knapsack
problem. It should be generalized in some other way.

3.2. Generalization of the Simultaneous Compact Knapsack Problem

Before generalizing the simultaneous compact knapsack problem, we first introduce some useful
notations to make the discussion more convenient. Given I C Z, K C Z" and | = {j = (j1,/2)|j.j € Z1},
we use IX to denote the set {i*|i € I,k € K}. Vj = (j1,j2) € ], and IX mod j represents the set {i* mod j =
(i* mod j1,i* mod jp)|i € I,k € K}. Generally speaking, we have the following inequalities:

Vi€, ’IKmodj‘ < m < |1] % |K|.

The second “<" holds in that it is possible for different i1,7, and ki, ky to give an identical 1']1<1 = Z-12<2,

for example, 22 = 41; of course, two different illCl and igz mod j also can give rise to the same value.
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Definition 3. IfVj € ], [IX mod j| = |IX| = |I| x |K|, we call set I a truly-distinguishable (T-DIST) modulo
the set | under the indices of K; if Vj € ], [IX mod j| = |IX| < |I| x |K|, we call the set I pseudo-distinguishable
(P-DIST) modulo the set | under the indices of K; If 3j € ], |1X mod j | < ]IK , we call the set I indistinguishable
(IND) modulo the set | under the indices of K. If different (i1, k1) and (i, ky) result in the same ilfl = isz (mod j),
we call the 3-tuples ((i1,k1), (i2,k2),j) a collision. In particular, the collisions in the case of P-DIST are called
trivial collisions; The collisions in the case of IND are called non-trivial collisions.

Theorem 2. A set I is T-DIST (P-DIST, or IND respectively) modulo the set | under the indices of K iff I is T-DIST
(P-DIST, or IND respectively) modulo the set ]T under the indices of K, where T = {(j2,j1)|(j1, j2) € J}-

Proof. It suffices to note that Vj = (ji,ja) € J, i mod (j1,j2) = ix? mod (ji, j2) iff i mod (jp, j1) =
%2 mod (jp,j1). O

Consider the definitions, in the case of T-DIST, no collisions occur. Thus, given the i* mod j, we can
uniquely determine the corresponding (i, k). In the case of P-DIST, when a collision occurs, we only can
determine a unique value r from i mod j. However, there exist at least two integer pairs (i1, k;) and
(i3,k2) such that illCl = igz = r. A collision occurs in the case of IND iff (i1,ky) # (i, k2), illcl + igz and

.y R )
i;' mod j = i,> mod j.

Theorem 3. Given two cargo vectors A = (ay,- -+ ,a,), B= (by,- -+ ,by) and two sets I, K C Z" with |I|, |K| =
O(1). Let ¢; and d; respectively denote the gcd of the first i components of Aand B, and | = {(c;_1/¢;, di_1/d;)|i =
2,---,n}. If Iis T-DIST modulo the set | under the indices of K, the simultaneous Diophantine equations

n n
Yoali=s;, Y bl =s, (11)
i=1 i=1

with x; € I and k; € K, can be solved in polynomial (in n) time. Furthermore, the problem has at most one solution
inX = (xy, - ,xn).

Proof. Note that |I|, |K| = O(1), and we can construct a table of I Modulo | under the Indices of K in
polynomial time. Its query operations can be carried out in polynomial time.

The proof of the theorem is analogous to that of Theorem 1. The only distinction is: in Theorem 1,
we use CRT to determine a unique x; € Z,; whereas, in Theorem 3, when we obtain a unique
xi.(i mod (¢;_1/c;,d;_1/d;), we look up the table to construct and determine a unique x; and x?i.

It can be concluded that, if the simultaneous Diophantine equations have solutions, there exists only
one solution. The problem can be solved in polynomial (in #) time. O

Algorithm 1 formalizes the computational method of solving the simultaneous Diophantine
Equation (11).

The requirement “T-DIST" is not necessary. In fact, if I is P-DIST modulo the set | under the indices of
K, Theorem 3 and hence Algorithm 1 also work. In such a case, each xfi is uniquely determined, whereas
some values of x; are not uniquely determined. Now, we give the following theorem.
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Algorithm 1. Solving the simultaneous Diophantine equations

1  Construct a table 7 showing that I is T-DIST modulo | under the indices of K and store the table.
2 Compute Iy, = sja; ' (mod ¢, 1), Iy = spb; ! (mod dy,_1).

1) Look up 7, decide an entry matching (11, lo ).

2) If no, output “No Solutions" and exit;

3) Otherwise, determine and store the values of x, and x’,;”.
3 Fori=n-1,---,2

. .. ki ki .
1) Decide whether ¢; and d; divide ry; = s1 — 27:i+1 a]-xj’ and ry; = sp — Z}“:iH bjxj], respectively.

2) If no, output “No Solutions" and exit;

-1 ) At .
3) Otherwise, calculate l;; = %’ (%’ mod C‘C—f, L =% (%) mod %.
If no entries in 7 match (Iy;, lp;), exit with “No Solutions";

Otherwise, determine and store the unique x; and x;{".

.. ki .. ki
4 Check whether ¢; = aq divides 11 = s1 — 27:2 ajx].’ and dy = by divides rp; = sp — 7:2 bjxj]

and r11 /a1 =771 /bl
1) If yes, set xll(1 = % = %‘;
2) Otherwise, output “No Solutions" and exit.
3) Solve x1 from xllc1 , and store x1 and xllﬁ.
5  Decide whether }_1' , aixi.(" =syand 1 4 bixi.(" = .
1) If yes, output X = (x1,-- -, x,) and exit;
2) Otherwise, output “No Solutions" and exit.

Theorem 4. Given two cargo vectors A = (ay,--- ,an), B = (by, -+ ,by) and two sets I, K C Z* with
|I|,|K| = O(1). Denote by c; and d; the gcd of the first i components of A and B, respectively. Let | =
{(ci—1/¢i,di—1/d;)|i = 2,---,n}. If I is P-DIST modulo the set | under the indices of K, the simultaneous
Diophantine equations

n n
k: k:
Yomx;'=s1, ) by =s,
i=1 i=1

with x; € I and k; € K, can be solved in polynomial (in n) time. Furthermore, it has at most one solution in

k k
xlll. . ,xn”"

4. The Proposed PKCHD Cryptosystem

This section derives the proposed PKCHD, a probabilistic knapsack-type cryptosystem. The public
information consists of two sets I, K C Z+, |I|,|K| = O(1), and n € Z™, the dimension of a message vector. Let

p=maxi*, iclandkeK. (12)
The cryptographic algorithm consists of three sub-algorithms: key generation, encryption and decryption.

4.1. Key Generation

Randomly choose two cargo vectors A = (ay,- -+ ,a,) and B = (by,--- ,b,) € (Z*)", and denote by c;
and d; the ged of the first i components of A and B, respectively. Let | = {(c;_1/¢;, di_1/d;)|i =2, ,n}.
The randomly-chosen A and B must satisfy the following condition:

Con: [ is T-DIST modulo the set | under the indices of K.
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Randomly choose two prime numbers p # g such that

n
p>uY a, q>p) b (13)
i=1 i=1

Let N = pg. Compute the vector E = (ey, - - -, e,) according to CRT,
e; =a;(mod p), e = b;(modq). (14)
Compute w = e, ' (mod N). The public encrypting vectoris F = (f1, -, fu) = (f1, -+, fu_1,1) with each
fi = we;(mod N). (15)
The secret key consists of p, g and e,,. When decrypting a cipher-text, the receiver stores the values of ¢;, d;.

4.2. Encryption

Let M = (my,---,my), m; € I be the message to be encrypted, and G = (g1, ,4n), g&i € Kbe a
randomly chosen index vector. Using the public key F, cipher-text ¢ is computed by

C =

M-

Il
-

fims'. (16)

4.3. Decryption

To decipher a cipher-text ¢, the receiver firstly computes s, and s, by

sp=enc= Y eimlg’ =YY", aimlgi (modp), a7
sg=enc= Y emt = YL bm$' (mody) .
From Equations (12) and (13), we know that
Sp = Zaing’, sq = Zbim;g’. (18)
i=1 i=1

According to the key generation algorithm and Theorem 3, we know that Equation (18) are easy
simultaneous Diophantine equations. The receiver can recover the message M by solving Equation (18)
according to Algorithm 1.

4.4. Remarks

Even though the parameter N is not an RSA integer, the system works. The “T-DIST” requirement for
the cargo vectors A and B in Con is not necessary. In fact, if A and B meet the following requirement,

Con*: [ is P-DIST modulo the set ] under the indices of K.

The cipher-text will not be uniquely deciphered. The sender can add some redundant information to the
message vector so that the receiver can pick out the exact message from all the plaintexts he deciphers.
Alternatively, both of them can agree on an encoding method by means of which the messages are encoded as
plaintext vectors so that no collision occurs in all the encoded plaintext vectors.
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4.5. A Practical Implementation

To implement the PKCHD in real-life practice, we choose I = {0,1,---,7}, K= {1,2,3} and n = 150.
Thus, ¢ = max i¥ = 73 = 343. Let W be a set consisting of the following pairs (w1, w,) € (Z)%: (1,51),
(1,65), (1,66), (2,33), (2,37), (2,39), (2,41), (2,43), (2,47), (3,17), (3,22), (3,25), (3,26), (3,29), (3,32), (4,23), (5,13),
(5,16), (5,19), (6,11), (6,13), (7,11), (8,11), (9,11). We have the following theorem.

Theorem 5. I is P-DIST modulo the set ] = W U WT under the indices of K.

Proof. According to Theorem 2, we only need to show that I is P-DIST modulo the set W under the indices
of K, which can be proved by verifying that for every (wy, w;) € W,

|II< mod (w1, wp)| = |IK| < |I] x |K|.
Take (1,51) as an example,
X mod (1,51) = {(o, i)‘i =0,---,9,16,25,27,36,49,13,23,12,37}.

Thus, [IX mod (1,51)| = |IX| =19 < |I| x |K| =24. O

In fact, | gives all the 48 integer pairs j = (1, v) with uv < 100 such that I is P-DIST modulo the set
{(u,v)} under the indices of K = {1,2,3}.
We randomly choose two cargo vectors A = (a1, - ,a,) and B = (by, - - -, by) such that

(ciiq/ci,dii/d)) €] =WUWT, i=2,...,n

where ¢; = ged(ay, - ,a;) and d; = ged(by, - -+, b;). According to Theorem 5, the generated vectors
A and B meet the requirement of Con*. We also generate RSA integers N = pg with p, q primes and
p>343Y" 1 a;, q > 343Y" | b;. We compute the public vector F according to Equations (14) and (15).

The message M is split into n = 150 blocks with each block m; € I. When generating G = (g1, -+ ,gn),
we should note that, if m; = 2, the corresponding g; # 2. The cipher-text is computed as

n
c=Y fim¥, mie€landg €K (19)
i=1

The decryption is the same as Equations (17) and (18). However, if we compute m3' = 4, we should
decipher m; into 4 rather than 2. When confronted with some m5' = 0 or 1, we can uniquely determine
m; = 0 or 1 (Of course, g; is not uniquely determined). Thus, the message can be uniquely recovered.

One observation that we also want to point out here is that the proposed implementation can be
modified as a deterministic encryption algorithm. We can develop an encoding algorithm which encodes
messages into an n-dimensional vector Y = (1, -+ ,y») with every y; € M® = {m$'|0 < m; <7, 1 <
gi < 3}. In such a case, the decryption also works. After deciphering a cipher-text intoa Y € (M%)",
the receiver can decode Y to recover the message. Of course, the modification is of no special significance
both in efficiency and for security. However, it will be very useful for us to discuss the low-density attacks
on our system.
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5. Performance and Parameter Specifications

This section specifies the parameter selection, analyzes the performance related issues, i.e., the key
generation, the computational complexity of the encryption and decryption algorithms, the public key
size and the information rate.

5.1. Parameter Specifications

p and g should be slightly greater than ! ;a; and p Y} ; b;, respectively. When generating the
public and secret keys, |I|, |K| = O(1) is not necessarily required. However, this requirement does improve
the efficiency of decryption. To decrypt a cipher-text, n table-query operations are needed by the receiver.
If |I], |K| = O(1), the table only includes |I| x |K| = O(1) rows, which makes the table-query operations
more efficient. In order to make the data sizes of the public and secret keys acceptable, we should require
that Vi € Ik € K, |i|, |k|], = O(1). From Equations (12) and (13), we know that, if the lengths of i and k
are relatively large, then the length of N and hence the lengths of the public and secret keys will be very
large. It makes the proposed PKCHD system impractical.

If factoring the generated modulus N is hard, N can be published without compromising the security.
However, if the sender knows N, he can encrypt a message vector M by

c= f fim$(mod N), (20)
i=1

1

which results in the reduction of the bit-length of the cipher-text. The public vector F can be permuted and
re-indexed for increased security.

Remark. The public key size of the proposed system is about (n — 1)|N|,. Thus, the considerable
public data size may be a burden for realizing the PKC. In fact, the public key of a PKC is stored in a
certificate issued by the trusted third party. However, if the public key is too large, at the certificate, we can
save a hashed value instead of the public key. To encrypt a message, the sender asks the intended receiver
for the public key F. If the public key F’ sent by the receiver matches the hashed value stored at the
receiver’s certificate, the sender conceives that the vector F’ is exactly the public key F of the receiver and
then uses it to encrypt the message. This method is suggested in [4] to compress the public key data size.

5.2. On Generating the Keys

Algorithm 2 generates the secret cargo vectors A = (ay,- - - ,a,) and B = (by, - - - , b,) subject to Con*.

Algorithm 2. Generating the secret cargo vectors A, B

1 Given I and K, compute a set | C (ZJr)2 such that I is P-DIST modulo K under the indices of J.
Randomly choose n-1 integer pairs (1;,v;) € J,i =1,-- -, n-1 with repetition permitted.
3 1) Randomly choose 2(n-1) numbers sy, - - - ,s, and fp, - - - , ty
) = ) =1
with ged(sj, uj) = ged(t;, v)) forie2,.  nl
ged(si, sit1) = ged(t tizg) =1
Dlfsy=H=uy, =v,=1,fori=1,---,n,wecalculate g; = s; H;?:i uj, bi=t; H]’»l:i v;
4 Output A= (ay,---,an),B= (b1, - ,bn).

Given I and K, the set | consisting of integer pairs can be generated by doing exhaustive computation
for all the integer pairs (1, v) with the product uv bounded by a small constant (for example, 100). On the
basis of Theorem 6, the generated vectors A and B really satisfy the requirement of Con*.
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Theorem 6. Generated by Algorithm 2, the secret cargo vectors A and B are subject to Con*.

Proof. Let c; and d; denote the gcd of the first i components of A and B, respectively. To prove that A and
B are subject to Con*, we only need to show that, for eachi = 2,-- -, n, the (c;_1/c¢;, d;_1/d;) belong to the
generated set J.

It is easy to verify that
ci=ged (ag, -, a;)
n n
=gcd 511—[141-,- .- ,siHuJ-
j=1 j=i
n n n
= ng Hu]-,~ s ,Huj = Hu]
j=1 j=i j=i
Similarly,
n
dl' = ng (bl, s /bi) = H?}]
j=i
Therefore,

as desired. [

In Algorithm 2, s; and t; should be carefully chosen to guarantee that the generated a; and b; are not
too large and always have the same binary length. For example, we can choose those s; and ¢; with lengths

n n
|Si|2: HM] — Hu] ,
j=1 2 ]=t 2
and
n n
|ti‘2: HZJ] — HZJ] .
=1y =
Thus,
n—1
|ajl2 = |bjlz & |b1]2 ~ |ar]y ~ | ] w (21)
i=1 2

Note that p and g are slightly greater than p Y ' ;a; = 343Y" ja;and p Y { b; = 343Y" ; b;, and
that u;v; < 100. Then, for each f;, the length is

|fl|2 ~ |N|2 ~ |p‘2 . ‘q|2 ~ ‘3431’1(11|2 . |3431’lb1|2
n—1

H Uiv;

i=1

~ |343%n2ay - by|p ~ 2|343n|, +

) (22)
< 2|343n|, + (100" 1|,

~ 2|343n|y + (n — 1)[100|5,
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which is bounded by O(n). If the selected (u;,v;) is uniformly distributed over the set ] = WU WT,
the expected value of u; - v; is

Ui -0 = 45 H UD = o4 H wwy ~ 76.1.
(up)ej] (wq,wp)EW

fi~ N ~343%.1n2.76.1"" 1, (23)

Thus,

The two estimations from Equations (22) and (23) are critical for examining the effects of the
low-density subset sum attacks on the implementation of the proposed cryptosystem.

To defend against multiple transmission attacks, one way is frequently changing the secret/public
keys. However, since the proposed PKCHD cryptosystem requires an RSA modulus, we prefer a slight
modification to it in practical use. Here, we can randomly choose two coprime numbers p and g, calculate
the modulus N = pg and keep it secret. Notice that p and g are not necessarily primes.

5.3. Computational Complexity

In this section, we evaluate the computational complexity of the proposed PKCHD cryptosystem by
analyzing the costs for encrypting a message and decrypting a cipher-text. Since the length of f; is bounded
by O(n) (see Equation (22)), encrypting a message (Equation (16)) needs n — 1 multiplications and additions,
and n exponentiations. (1) Generally, the computation for the n — 1 additions is inexpensive; (2) as pointed
out earlier, the lengths of m; € I and g; € K are bounded by O(1). It takes O(n) bit operations to perform
the n exponentiations. Naturally, the binary length of m‘?i is also O(1). (3) Meanwhile, O(|f;|2 % |m‘lg’ l2) =
O(n) bit operations are required to do the multiplication f; x m;g’ Thus, the computational complexity for
carrying out the n — 1 multiplications is given by O(n?). Consequently, the computational complexity for
message encryption is O(n?).

To decrypt a cipher-text, the receiver should do a modular multiplication in (17) and solve the
easy simultaneous Diophantine equations in (18). For the modular multiplication, O((|N|3)?) =
O(n?) bit operations are required. To solve the Diophantine Equations (18) for M, the receiver only
needs O(n) division, subtraction, multiplication and table-query operations. Generally, the O(n)
divisions and multiplications are the most costly. The bit lengths of the two integers involved in a
division (or a multiplication) are respectively bounded by O(n) and O(1). Thus, the computational
complexity for doing the O(n) division, subtraction, multiplication and table-query operations is O(n?).
Thence, the computational complexity of the decryption algorithm is also O(n?).

Compared with the traditional asymmetric encryption primitives RSA [2] and El Gamal [3],
the proposed PKCHD cryptosystem has improvement in efficiency. For instance, both the encryption
and decryption of the proposed PKCHD cryptosystem are only of quadratic bit complexity, whereas
RSA [2] and El Gamal [3] reach cubic regarding the security parameter (If the length of the encryption
exponentiation e of RSA is bounded by O(1), for example, e = 3 or 217 + 1, the encryption only performs
O(log%N ) bit operations). To make the comparison more concrete, we take the encryption of the proposed
implementation, for example. If n = 150, from (23), we have

fila ~ [3432 -2 76,17 , = 963.

Thus, about (n —1) |fi|, ’m?i ‘2 = 149-963 -9 = 1.3 x 10° bit operations are required to finish the encryption.

The computational cost is only about 1.3 x 10°/1024? ~ 1.24 times that of a standard RSA-1024 modular
multiplication.
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5.4. Information Rate

The information rate p of a cryptosystem is defined as the ratio of the binary length of the message to
that of the cipher-text. In the proposed PKCHD cryptosystem, the information rate turns out to be

3n

0= log,Crmax

We need to evaluate the binary length of Chax. Note that

Cmax = 343 1~ 343 -1 1
i;f [(n—1) f1+1] 29

~343 (n—1) f; ~ 343% - (n — 1)n* - 76.1" L,
Thus, the information rate is evaluated by

3n
P og, 3433 - (n— 1)n2 - 7617 1]

When n = 150, the information rate p is about 0.46.

6. Security Analysis

Suppose that the attacker is trying to cryptanalyze the proposed PKCHD cryptosystem. Given a
ciphertext ¢, the attacker has two methods to attack the proposed cryptosystem. The one is to solve the
cracking problem [44], that is, determine the unique message vector M = (my, - - - ,m,) according to his
knowledge about the public information and the enciphering function (16) such that (16) is satisfied for
some small integers g1, - - - ,gn. The other method is to solve the trapdoor problem, that is, reverse the
basic mathematical construction of the trapdoor in a PKC. If the attacker finds an efficient algorithm for the
trapdoor problem, he will also have an algorithm for the cracking problem. This section investigates the
hardness for the attacker to solve the cracking problem and the trapdoor problem. To make our discussion
more concrete, we only consider the attacks on the implementation described in Section 4.

6.1. On Solving the Cracking Problem

6.1.1. Brute Force Attacks

One straightforward way to attack the system is to solve (19) for M = (my, - - - ,my) directly. Let M® =
{mlgi ]O <m; <7,1<g; <3}. To determine whether (19) has a solution, and if so, to find it, the attacker
can compute all the } /" ; flmf’ " with ng;‘ € MC. However, note that ‘MG] =19, so the brute force attack
will take on the order of 19" steps. A better method is to compute and sort each of the sets

n/2 )
S1=19 ) fim!
i=1

m?f c MG}

and

n
Sy = {c Y. fim

i=n/2+1

m?" S MG},
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and then scan S1 and S, looking for a common element. If a common element s = Zl”:/ f imlgi =

c— YL, /o fim is found, then ¢ = Y, fim{'. The entire procedure takes on n19"/2 steps [24]. For the
proper parameters 7, the attack is computationally infeasible.

6.1.2. Low-Density Attack

Low-density subset sum attacks only apply to a linear multivariate equation. Note that the encryption
function (19) is nonlinear about the message vector M, so the low-density attacks cannot be used to
cryptanalyze the proposed cryptosystem directly. The attacker can re-linearize the encryption function. By
setting y; = mlgi € MC, the attacker obtains a linear function from the encryption function (19),

n
c=Y fyi, vyieMC. (25)
i=1

Notice that the problem (25) is not a standard compact knapsack problem. Analogous to the case of the
standard knapsack problem, the known best method for solving the problem (25) seems to be the “Brute
Force Attacks” given by Ref. [24]. However, if the attacker wants to use low-density attacks to recover the
corresponding message from a given cipher-text ¢, he cannot ensure that the solution to (25) belongs to
ME. The attacker can solve the problem (25) by solving the compact knapsack problem defined below,

n
c=Y fiyi, 0<y; <343 (26)
i=1

The attacker looks forward to finding a solution Y = (y1,- - ,y») to (26) using the low-density attacks.
Now we assume that the attacker has found such a solution Y to the compact knapsack problem (26).
If every y; € MC, then the attacker can simply solve 1 equations y; = mlgi to recover the message M.
Thus, we call the vector Y a message plaintext since it contains enough information about the message
M. On the contrary, if there exists a y; ¢ MC, then Y contains little information about M and hence is
useless for the attacker to decipher the cipher-text. Because the vector Y is also a solution to (26), we call
the vector Y a plaintext vector. In other words, in the relinearization attack model, we view the plaintext
space as {0, - - - ,343}" and the message plaintext space as (M%)". The difference between the two sets
{0,---,343}" — (MG)” is the redundant information added to the messages, or, equivalently, we pick out
some elements as the message plaintexts from the whole plaintext space. This method has been used in
the Chor—Rivest [5] and Okamoto-Tanaka—Uchiyama [38] schemes. In their schemes, only those vectors
whose Hamming weight is exactly & are the message plaintexts.

Now, we begin to investigate the effects of the powerful low-density attacks on the security of the
proposed PKCHD. When applied to a specific knapsack instance, the low-density attacks depend on the
density of the knapsack. To estimate the density of the compact knapsack problem (26) using the definition
of (3), we must evaluate all the ¢; = |m;|, and Cmax. The estimation of Cpax is given in (24) and each
ej = |mj|, = [log, (343 +1)] =9, so the density is

In In

d= R~ .
log,Cmax  log, [3433 - (n — 1)n? - 76.1"71]

27)

If we choose n = 150, the density is about 1.38 > 0.9408 - - -.
If the public vector F is evaluated via (22), we can give the lower bound of the density. According to
(22) and (24), we can evaluate

Cimax ~ 343 (n — 1) f < 343%(n — 1)n?100" 1,
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Thus, the density is lower-bounded by

In

d .
~ log, [343%(n — 1)n?100"7]

In the case of n = 150, the lower bound is about 1.3 > 0.9408 - - - . If we adopt the definition of density
given in [7], the estimation will be ever larger.

With an appropriate choice of the parameters, the PKCHD can obtain a high density even under the
worst case scenario. However, we cannot claim its security against low-density subset-sum attacks only
by an argument based on density. In the knapsack-type cryptographic history, so many cryptosystems
have been broken by the powerful low-density attacks. Even those cryptosystems with high density such
as Chor-Rivest [5] and Okamoto-Tanaka-Uchiyama [38] schemes were also shown to be vulnerable to
low-density attacks [26,27]. Thus, we must be cautious to claim the proposed PKCHD’s security against
the low-density attacks. Other lattice-based attacks on the system also need to be well examined. If we
have shown that the proposed cryptosystem is invulnerable to the known lattice attacks, we think that the
security of the cryptosystem against the lattice-reduction-based attacks should be convincing.

6.1.3. On the Number of Plaintext Vectors That a Cipher-Text Has

The low-density subset-sum attacks always assume that the practical lattice reduction algorithms
can serve as an SVP oracle at least in the cases of low-dimensional lattices. In fact, lattice reduction
algorithms perform well in practice, and some current experimental records can be found in [27]. Thus,
we assume that lattice reduction algorithms can obtain the shortest vector in a lattice with low dimension.
Meanwhile, another fact is that the encryption function of the proposed PKCHD is non-injective under
the relinearization attack model. Thence, for a given cipher-text ¢, 0 < ¢ < 343) " ; f;, there are many
preimages Y such that (26) is satisfied. The lengths of the preimages are bounded by the length r of the
vector Ymax = (343, - - - ,343). Thus, all the preimages are the lattice points in the n-dimensional sphere of
radius r centered at the origin. The number N(#,r) of the lattice points in the sphere is exactly the number
of the preimages corresponding to a given cipher-text c. Furthermore, all the preimages almost have the
same length. No evidence shows that the message is the shortest vector among all the plaintext vectors.
In fact, Refs. [42,43] have given a small example in which the message plaintext is not the shortest vector
no matter what norms are used. Thus, the lattice reduction algorithms just find a random vector in the
N(n,r) preimages. We use an assumption to formalize what we have discussed.

Unif: Given a cipher-text ¢, the vector output by the lattice reduction algorithms is uniformly distributed
over the N(n, r) plaintext vectors.

Theorem 7. Under the assumption Unif, the probability J of the lattice algorithms finding out the message vector
is negligible.

Proof. Based on the assumption Unif, we can conclude that =1/N (n,r). Therefore, N (n,7) needs to be
evaluated. Since Ref. [27] presented the estimation of the upper bound of N(#,r), to complete this proof,
the lower bound is required. Notice that the expected number N(#,r) should be the ratio of the number of
all the plaintext vectors to that of the possible cipher-texts, i.e.,

~ 344" 3447
~ 3432?:1 fi +1 ~ Crax
~ 344"

73433 (n—1)n2 - 76,111

N(n,r)

> 2"
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for sufficiently large n. Obviously,

is negligible. O

The evaluation of the number of the preimages that a cipher-text has is somewhat rough. However,
it suffices to show the non-injectivity of the encryption function under the relinearization attack model.
Thence, another way of evaluating the number of the preimages is presented. Note that any vector Y €
{0,1,---,---,343}" satisfying (26) must be a solution to the modular knapsack problem defined below,

n
c=Y fyi(modN), 0<y, <343.
i=1

It is easy to verify that this problem is equivalent to the following simultaneous compact
knapsack problem,

ce, (mod p) Z a;yi, ce, (mod q) Z biy;.

To solve the problem, the method given in Theorem 1 is preferred. According to CRT, a unique
y; modulo A; = lem(¢;_1/¢;,d;_1/d;) can be determined. However, since A; = lem(c;_1/¢;, d;_1/d;) =
lem(u;_q,v;—1) < u;_1v;—1 < 100 and 0 < y; < 343, we can determine at least three values for each y;.
Finally, there are at least 3" vectors Y = (y1,- - - ,y») for which a given cipher-text ¢ can be determined.
Of course, not all the vectors are the solutions to (26). However, even if a small amount of the vectors
satisfy (26), it suffices to show that a given cipher-text c has exponentially many plaintext vectors.

Now, a small example (see Table 1) is used to illustrate what we have discussed. To simplify the
discussion, we set I = {0,1,2,3}, K = {1,2,3}, and n = 9. In this case, the cipher-text c = 44190990551868
has ten preimages Y's under the relinearization attack model. However, there exists only one message
plaintext vector Y1 = (4,27,3,27,2,27,0,1,4) amongst all the ten preimages. The left nine preimages
Y,, -+, Yqp are the plaintext vectors. Thus, we conclude that the low-density subset sum attack will find
the message plaintext vector Y; with a probability § = % under the assumption Unif. Additionally,
the message plaintext vector Y; is not the shortest non-zero vector in the lattice involved in the
low-density subset sum attack no matter what norms are used. If we use (20) to encrypt the message,
the encryption function

9
c=Y fyi (mod N) = 192662536160, 0 < y; < 27
i=1

even has 237 preimages in all, which are not listed in Table 1 for space limitations. In this case, the parameter
n is too small to achieve practical security. However, if a relatively large n (e.g., 150) is chosen, the number

of the preimages of a given cipher-text will be very large. This is what we have claimed in the proof of
Theorem 7.
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Table 1. The non-injectivity of the encryption function under the relinearization attack model.

{0,1,2,3}

{1,2,3}

27

9

10000, 6000, 7000, 5800, 5300, 5840, 8210, 6662, 5113
10000, 5000, 8000, 5500, 5100, 6150, 5830, 5335, 6007
999979

999983

999962000357

10000, 250000750, 999712012607, 75004225, 50004250,
499903507646, 594995715, 750303249963, 499757509985
759237254392

661037209656, 7824090728, 451539481682,
866739311295, 192593114076, 586570143338,
753328582077, 356431315295, 1

(2,3,3,3,2,3,0,1,2)

(2,3,1,3,1,3,2,3,2)

44190990551868

(4,27,3,27,2,27,0,1,4), (10,5,12,19,19,7,10,1,4)
(5,12,9,13,9,27,10,1,4), (18,6,4,25,13,4,0,11,4)
(13,13,1,19,3,24,0,11,4), (5,8,19,27,4,1,0,21,4)
(2,0,15,27,24,1,0,21,4), (1,0,22,7,1,21,10,21,4)
(2,3,16,8,1,21,21,1,14), (3,2,5,23,0,12,12,11,24)

MZo < W™ N —

x
o
N =

< a Qg

6.1.4. On Reducing to the CVP

Nguyen and Stern [27] found that the knapsack problem also can be reduced to the CVP. Note that
the solutions of

i zifi =0 (28)
i=1

form an (n — 1)-dimensional linear space over R. Thus, the integral solutions of (28) form an (n — 1)-
dimensional lattice L. Given a cipher-text ¢, we can compute by using an extended Euclidean algorithm
integers xq,- - -, x, such thatc = Y1 | x;f;. Let Y = (y1,- - - ,yx) be a plaintext vector (not necessarily the
message plaintext vector). Then the vector u = (x; —y1,- -+, X» — yn) belongs to L such that

n

(xi —yi)fi = infi—é}/jf[—C—C—O.

i=1

1=

I
—

In addition, u is fairly close to the vector X = (x1,---,x,). Thus, the closest vector u € L to X is
expected to be found by accessing the CVP-oracle. Thus, X — u is a plaintext vector. However, we should
observe that the success probability of the reduction depends on the number N(#, r) of integer points in
the (n — 1)-dimensional spheres. According to Theorem 7, we can conclude that the closest vector output
by the CVP-oracle is the exact message plaintext vector with a negligible probability.

Furthermore, the cryptanalysis of low-weight knapsacks [26,27] does not compromise the security
of the system in which the low-weight vectors are not selected as message vectors. Until now, it is safe
to claim the security of the cryptosystem against the known lattice-based attacks including low-density
subset-sum attacks.
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6.2. On Solving the Trapdoor Problem

When we discuss the cracking problem, we only consider the infeasibility of the attacker’s solving (19)
regardless of the structure of the public vector F = (f1,---, fu). In other words, the public vector
F = (fi,---, fun) is considered to be indistinguishable from a randomly generated n-dimensional vector.
However, (19) is only a seemingly-hard compact knapsack problem. If the public key reveals enough
information for the attacker to reverse the basic mathematical construction of the trapdoor in the proposed
PKCHD system, then he also can serve as an authorized receiver to decipher any cipher-text. Thus, the key
recovery attacks on the cryptographic scheme also need to be carefully studied.

6.2.1. Simultaneous Diophantine Approximation Attack

Most of the knapsack-type cryptosystems use size conditions to disguise an easy knapsack problem.
The designer randomly generates an easy knapsack problem, y = Y7, a;x;, x; € [0,2% — 1], and chooses
a modulus m and a multiplier w, ged(m,w) = 1. He uses the size condition m > (2 — 1) Y, a; to
disguise the easy cargo vector A = (ay,-- - ,a,) as a seemingly-hard knapsack sequence B = (by,- - -, by),
b; = wa;(mod m). The size condition can be utilized by the simultaneous Diophantine approximation
attack to obtain some useful information about (w,m). See [22,28] for more information about the
relationship between the simultaneous Diophantine approximation problem and cryptanalytics.

The trapdoor of the proposed PKCHD system is disguised using CRT, which involves no size
conditions. Thus, launching a simultaneous Diophantine approximation attack cannot find valuable
information about the trapdoor. Even though the size condition has been used in (13), the attacker
must peel off the outmost shuffle in (14) and (15) if he wants to launch a simultaneous Diophantine
approximation attack. Unfortunately, it is also a difficult task.

6.2.2. Known N Attack

The exact value of N is assumed to be known by the attacker, and he wants to learn some information
about the secret key. A straightforward way is to search for e, and factor N to recover the trapdoor
information. To evaluate to what extent the attacker can succeed, we must decide whether the public key
F=(f1, -, fs) and N provide the attacker with enough information to compromise the cryptosystem. If
the public vector F is indistinguishable from a random-chosen n-dimensional vector F* over Zy (In fact,
only the first n — 1 components of F* are randomly chosen, and the last components of F* must be 1.
Otherwise, it makes no sense to say that the public vector F is indistinguishable from a random-chosen
n-dimensional vector in that f, = 1). We can conclude that the public key F and N provide no useful
information for the attacker to recover the secret key. In other words, it is impossible for the attacker to
retrieve the integer e, € Zy from a random n-dimensional vector F.

According to Algorithm 2, the only distinction between the generated 4;, b; and a random integer
with the same binary length is: when i is small enough, the generated g;, b; are smooth integers (i.e., it
only contains small prime factors), whereas a random integer may not be. However, the public vector F is
scrambled by (14) and (15). At the same time, the smoothness of the two vectors A and B is also disguised.
After the two shulffles (14) and (15), the only distinction disappears. Then, the generated vector F must be
indistinguishable from those random n-dimensional vectors over Zy. Thus, the publication of N will not
affect the security of the system. On the contrary, it will reduce the length of the cipher-text and improve
on the transmitting efficiency.

The attacker cannot expect to recover the secret key by searching for the integer e, to make all the
a; = fie;(mod p) and b; = fie;(mod q) smooth simultaneously, where i < # is a relatively small integer.
In fact, the best way of retrieving the trapdoor seems to factor N at first and then recover the secret vectors
A and B. It is easy to verify that a,w = 1(mod p) and b,w = 1(mod q), where w = e;;!(mod N). If
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we write a, ! and b, ! for the inverse of a,(mod p) and b,(mod q) respectively, and set f;, = f;(mod p),
fig = filmod q),i=1,--- ,n—1,(15) modulo p and g result in

fir = a;lai(mod p), fig = b;lbi(mod q)-

Note that the vectors A and B are of some special structure. Therefore, if the modulus N is factored,
the attackers will get some useful information from the integers f;, and f;,. To examine the potential
threats against the proposed PKCHD cryptosystem, we consider a stronger assumption, that is, the attacker
had factorized the modulus N.

6.2.3. Known p and q Attack

Now, we consider such a scenario that the attacker has factorized the modulus N = pgq. It is easy for
the attacker to compute the f;,’s and f;;s. Then, for the attacker, the left task is just to recover a, and by, in
that other 4; and b; can be easily reconstructed via

a; = anfip(mod p),  b; = byfiz(mod q).

In addition, the gcd’s ¢; and d; are easily determined by using the Euclidean algorithm. Thus, the secret
key is recovered.

(a) Structural attack: In fact, if the attacker obtains two pairs (a;, fi,) and (b}, fj;), he can determine the
exact values of 4, and b,,. Note that a; and b; have special structures (See Algorithm 2). If the attacker
wants to launch a structural attack, i.e., he does exhaustive search for all the possible integer pairs (a1, by).
Assume n = 150, the n — 1 integer pairs (u;, v;) are randomly chosen with repetition permitted such that
(u;,v;) € ] = WUWT. For each i, (u;,v;) takes 48 possible values. Then, the number of possible choices
for the pair (a1, by) is given in the following theorem.

Theorem 8. When n = 150, the number t of choices for generating (a1, by) is t = 04977).

Proof. If we denote the set ] = {ji|li = 1,-- - ,48} and look at each j; as an apple with color 7, then we are
confronted with such an “apple” probability model: choose n = 150 apples from the 48 color of apples
with repetition permitted.

Now, we consider a line on which 197 dots are scattered. We choose 47 dots among the 197 dots and
view them as boards. We denote the 47 boards as b;, i =1, - - - ,47 from left to right. The dots on the left
of by are the apples with color 1, and the dots on the right of b,y are the apples with color 48. These dots
between board i and board 7 + 1 are the apples with colori + 1, fori =1, - - - ,46. Thus, every choice of the
47 board corresponds to a choice of the integer pair (a1, by). We have t = (%7 ) choices in total. Thus, we

complete the proof. [
Sincet = (%f;) ~ 21025 apparently, it is computationally infeasible for the attacker to try all the possibilities.

(b) Simultaneous Diophantine approximation attack: Without loss of generality, we let
anfip —lip=a;, i=1,---,n—1 (29)
Divide the both sides of (29) by pa,;, and we obtain

fip i a4
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Note that p ~ 343 Z]V-’zl a; ~ 343na; ~ 343nv/76.1"~1. Thus, we have

fip ki
p an

o a; NlN 1
pan P 343nv76.17-1

from (21), (23) and (30). If we note again that a, ~ p/(343n), we can claim that {I;/a,} is a set of fractions
with a common and relatively small denominator a, approximating the set of fractions {f;,/p}. More
formally, we can assume that these fractions /; /a,, are the simultaneous Diophantine approximations of the
fractions f;,/ p. If there is an efficient algorithm to solve the problem, the attacker can retrieve the secret
vector A = (ay,--- ,a,). Using a similar method, he also can recover the vector B = (b, - ,b,). Thus,
the gcd’s ¢; and d; are also obtained.

Since the simultaneous Diophantine approximation problem is a widely-believed intractable problem,
no efficient algorithm has been found for it. From the discussion above, it can be deduced that,
to reconstruct the secret key, the attacker must search for the modulus N and then solve two hard
number-theoretic problems, namely the integer factorization problem and the simultaneous Diophantine
approximation problem. This is a property shared with the scheme presented in [39].

6.3. Generating the Hardest Knapsack Instances

It is general knowledge that the whole public key cryptography is based on the computational
complexity theory. We may hope that the PKCs based on proven intractability assumptions, e.g.,
the knapsack problem, are unbreakable super-codes. However, the fact is not the case; many PKCs
based on the NP-complete problems such as the knapsack problem and the multivariate quadratic
polynomials [45] had been shown insecure. Fortunately, some PKCs based on unproven mathematics’
assumptions remain unbroken. Following the work of [45], this phenomena can be explained as follows.
The security of some of the integer-factorization-based PKCs or the discrete-logarithm-based PKCs is based
not only on the hardness of factoring an integer or solving the discrete logarithm problem defined over
some cyclic groups, but also on the key generation algorithms. For example, it may not be a difficult thing
for factoring a randomly-chosen large integer in that the integer always contains some small prime factors.
However, the RSA system does not use such easy-to-factor integers, and it always can select the hardest
factorization problem as the basis for its security. The knapsack problem is shown to be NP-complete,
but the computational complexity only deals with the worst-case complexity. If the use of the hardest
knapsack instances is excluded in public key cryptography, we cannot expect a knapsack cryptosystem
to be an unbreakable super-code. In fact, the knapsack problems with density <0.9408 - - - is shown easy
to solve [20]. Many cryptographers have pointed out that the knapsack instances with density greater
than 1 cannot be used in public key cryptography in that the cipher-texts are not uniquely decipherable.
Relatively, the room left for designing a secure knapsack cryptosystem is narrow. Further discussion about
the relationship between knapsack cryptography and computational complexity refers to [36].

Schnorr and Euchner [29] had shown that the hardest knapsack instances are those with density
d ~ 1+ 1log,(n/2)/n, which is slightly larger than 1. The density of the proposed PKCHD is given in (27).
When n approaches infinity,

lim on = 2
n—oo log, [3433 - (n — 1)n2 - 76.1"1]  log,76.1

lim (1+1°gz(n"/2)> —1.

~ 1.44,

and

n—o0
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Thus, for a sufficiently large 1, we always have

9n log,(n/2)
log, [3433 - (n — 1)n? - 76.1"—1] > 1+ no

In other words, the proposed PKCHD cryptosystem always can use a knapsack problem with
density d > 14 1log,(n/2)/n as the encryption function. To generate the hardest knapsack problem,
the cryptosystem can generate two larger primes p and q to make the density d ~ 1 + log,(n/2)/n.

To make a knapsack problem be the hardest, the cargo vector should be indistinguishable from the
random vectors. In fact, we have shown that the public vector of the PKCHD system is indistinguishable
from a randomly-chosen vector. Consequently, if the hardness of a knapsack instance is evaluated by its
density, the PKCHD system always can use the hardest knapsack vector as the public key.

6.4. Provable Security Remarks

In public key cryptography, two typical methods are employed for security analysis. One is the
provable security theory [46], the basic idea is to reduce the security of a PKC under some attack model to
a mathematical hard problem. The other is to deliver the PKC to the cryptological community for attacks
that is called enumerative security. Provable security has been widely accepted as a standard method for
the security analysis of PKCs. However, due to the following considerations, in this study, we do not prefer
provable security results about the proposed PKCHD cryptosystem. Firstly, we should note that almost all
the provably secure PKCs are constructed from the number-theoretic problems, i.e., integer factorization
and discrete logarithm problems. Secondly, provable security theory is not suitable for analyzing the
security of those PKCs based on NP-complete problems. These PKCs are always constructed from an easy
problem. Actually, the problem of reversing the encryption functions is only a seemingly-hard rather than
a truly hard problem. It makes no sense to reduce the security of a PKC to a seemingly-hard problem.
Thirdly, security analysis for a newly-designed trapdoor one-way function should be centered on the
estimation of the hardness of reversing the encryption function and retrieving the trapdoor information.
If no efficient algorithms have been found for a long time to compromise its security, we can assume its
one-wayness and begin to consider adding paddings to it to make it obtain provable security objectives.

It will be a significant theoretical result if one can prove that reversing the encryption function is
equivalent to solving the mathematical problems used in constructing the PKC. However, this is an
extremely tough task [44].

7. Conclusions

Due to the performance advantages over other cryptosystems, the knapsack cryptosystems, as a
typical class of PKCs, plays an important role in the wide variety of available cryptosystems. Especially,
new knapsack-type cryptographic primitives have been developed in recent years, e.g., the non-injective
knapsack cryptosystems [47], the knapsack Diffie-Hellman problem [48], and elliptic curve discrete
logarithm based knapsack public-key cryptosystem [49].

In this paper, a probabilistic knapsack-type PKC, namely PKCHD, which uses CRT to disguise the
easy knapsack sequence has been constructed with careful security analysis. Fortunately, no practical
attacks have been found to comprise the PKCHD’s security. However, the history that almost all additive
knapsack-type cryptosystems were shown to be vulnerable to some attacks makes the designers confident.
Thus, some novel attacks are to be investigated to make it more secure.
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