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Abstract: Parametric granular computing classification algorithms lead to difficulties in terms
of parameter selection, the multiple performance times of algorithms, and increased algorithm
complexity in comparison with nonparametric algorithms. We present nonparametric hyperbox
granular computing classification algorithms (NPHBGrCs). Firstly, the granule has a hyperbox form,
with the beginning point and the endpoint induced by any two vectors in N-dimensional (N-D) space.
Secondly, the novel distance between the atomic hyperbox and the hyperbox granule is defined to
determine the joining process between the atomic hyperbox and the hyperbox. Thirdly, classification
problems are used to verify the designed NPHBGrC. The feasibility and superiority of NPHBGrC are
demonstrated by the benchmark datasets compared with parametric algorithms such as HBGrC.
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1. Introduction

The classification algorithm is a traditional data analysis method that is widely applied in many
fields, including computer vision [1], DNA analysis [2], and physical chemistry [3]. For classification
problems, the main method is the parameter-based learning method, whereby the relation between
the input and the output is found to predict the class label of an input with unknown class label.
The parameter-based learning method includes the analytic function method and the discrete inclusion
relation method. The analytic function method establishes the mapping relationship between the input
and output of the training datasets. The trained mapping is used to predict the class label of inputs
with unknown class labels. Support Vector Machine (SVM) and multilayer perceptron (MLP) are kinds
of methods by which linear or nonlinear mapping relationships are formed to predict the class label of
inputs without class labels. The discrete inclusion relation method estimates the class labels of inputs
based on the discrete inclusion relation between an input with a determined class label and an input
without a class label and includes techniques such as random forest (RF) and granular computing
(GrC). In this paper, we mainly study the classification algorithm using GrC, especially GrC with the
form of hyperbox granule, the superiority and feasibility of which are shown in references [4–11].

As a classification and clustering method, GrC involves a computationally intelligent theory and
method, and jumps back-and-forth between different granularity spaces [12–14]. Being fundamentally
a data analysis method, GrC is commonly studied from the perspectives of theory and application,
the latter of which includes pattern recognition, image processing, and industrial applications [12–19].
The main research issues of GrC include shape, operation, relation, granularity, etc.

A granule is a set of objects in which the elements are regarded to be objects with similar
properties [17]. Binary granular computing proposes a conventional binary relation between two
sets. Correspondingly, the operations between two sets are converted into the operation between
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two granules, such as the intersection operation and the union operation between two sets (granules).
Another research issue in GrC is how to define the distance between two granules. Chen and his
colleague introduced Hamming distance to understand distance measurements with respect to binary
granules for a rough set. Moreover, granule swarm distance is used to measure the uncertainty between
two granules [20].

Operations between two granules are expressed as the equivalent form of membership grades,
which are produced by the two triangular norms [15]. Kaburlasos defined the join operation and the meet
operation as inducing granules with different granularity in terms of the theory of lattice computing [5,6].
Kaburlasos defined the fuzzy inclusion measure between two granules on the basis of the defined join
operation and meet operation, and the fuzzy lattice reasoning classification algorithm was designed
based on the distance between the beginning point and the endpoint of the hyperbox granule [7].

The relation between two granules is mainly used to generate the rules of association between
inputs and outputs for classification problems and regression problems. A specialized version of
this general framework is proposed by GrC theory in order to mine the potential relations behind
data [21]. Kaburlasos and his colleague embed the lattice computing, including GrC, into a fuzzy
inference system (FIS), and preliminary industrial applications have demonstrated the advantages of
their proposed GrC methods [4].

Granularity is the index of measurement for the size of a granule and the means by which the
granularity of a granule can be measured is one of the foundational issues in GrC. Yao regarded
a granule as a set and defined the granularity as the cardinality of the set by a strictly monotonic
function [14]. As a classification algorithm, GrC is concerned with human information processing
procedures: the procedure includes both the data abstraction and the derivation of knowledge
from information. To induce and deduce knowledge from the data, parameters are introduced
to achieve suitable prior knowledge from the given data, such as the granularity threshold, the λ

of positive valuation function used for the construction of fuzzy inclusion measure between two
granules, and the maximal number of data belonging the granule, thus resulting in some redundant
granules during the training process. On one hand, these parameters improve the performance of GrC
classification algorithms and GrC clustering algorithms. On the other hand, these parameters also
have negative impacts, such as the higher time consumption required by parametric GrC compared
with nonparametric GrC algorithms.

The proposed nonparametric hyperbox GrC has two main advantages for classification tasks. First,
the nonparametric hyperbox GrC achieved better performance when compared with the parametric
hyperbox GrC. Second, compared with the nonparametric hyperbox GrC, the parametric hyperbox
GrC classification algorithms perform the algorithm multiple times, which is time-consuming for the
selection of parameters, such as the parameter for positive valuation function and the threshold of
granularity. The nonparametric hyperbox granular computing classification algorithm (NPHBGrC)
includes the following steps. First, the granule has a regular hyperbox shape, with the beginning point
and the endpoint that are induced by two vectors in N-dimensional (N-D) space; second, the distance
between two hyperbox granules is introduced to determine their join process; and third, the NPHBGrC
is designed and verified by the benchmark dataset compared with hyperbox granular computing
classification algorithms (HBGrCs).

2. Nonparametric Granular Computing

In this section, we discuss the nonparametric granular computing, including the representation of
granules, the operation between two granules, and the distance between two granules.

2.1. Representation of Hyperbox Granule

For granular computing in N-D space, we suppose a granule as a regular shape, such as a
hyperbox with the beginning point x and the endpoint y which satisfy the partial order relation x≺ y.
The beginning point x and the endpoint y are vectors in N-D space, and the hyperbox granule has
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the form G = [Bp, Ep], where Bp is the beginning point and Ep is the endpoint. For any two vectors
x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN), if the two vectors x and y satisfy the partial order relation
x≺ y, then Bp = x and Ep = y, otherwise Bp = x ∧ y and Ep = x ∨ y. The partial order relation
between two vectors in N-D space is defined as follows

x≺ y⇔ x1 ≤ y1, x2 ≤ y2, . . . , xN ≤ yN

The operation ∧ and operation ∨ between two vectors are defined as follows

x ∧ y = (x1 ∧ y1, x2 ∧ y2, . . . , xN ∧ yN)

x ∨ y = (x1 ∨ y1, x2 ∨ y2, . . . , xN ∨ yN)

where the operation ∧ and operation ∨ between two scalars are a ∧ b = min{a, b} and a ∨ b =

max{a, b}.
Obviously, for two vectors x and y in N-D space, we form the hyperbox granule with the form

of vector G = [Bp, Ep], where Bp is the beginning point and Ep is the endpoint of the granule.
In the following sections, we represent hyperbox granule by G = [x, y] for N-D space. In 2-D space,
the granule G = [x, y] is box, and in N-D space, the granule G = [x, y] is a hyperbox.

2.2. Operations between Two Hyperbox Granules

For two hyperbox granules G1 = [x1, y1] and G2 = [x2, y2], the join hyperbox granule is the
following form by the join operation

G1 ∨ G2 = [x1 ∧ x2, y1 ∨ y2] (1)

where x1 = (x11, x12, . . . , x1N) and y1 = (y11, y12, . . . , y1N) are vectors, x1 ∧ x2 = (x11 ∧ x21, x12 ∧
x22, . . . , x1N ∧ x2N), y1 ∨ y2 = (y11 ∨ y21, y12 ∨ y22, . . . , y1N ∨ y2N).

The join hyperbox granule has greater granularity than the original hyperbox granules.
The original hyperbox granules and the join hyperbox granule have the following relations.

G1 ⊆ G1 ∨ G2

G2 ⊆ G1 ∨ G2.

The meet hyperbox granule has the following form by the meet operation

G1 ∧ G2 =

{
[x1 ∨ x2, y1 ∧ y2] x1 ∨ x2≺ y1 ∧ y2

∅ otherwise
. (2)

The meet hyperbox granule has less granularity than the original hyperbox granules. The meet
hyperbox granule and the original hyperbox granules have the following relations.

G1 ∧ G2 ⊆ G1

G2 ⊆ G1 ∨ G2.

For example, in 2-D space, G1 = [0.05, 0.15, 0.48, 0.68] and G2 = [0.1, 0.2, 0.5, 0.7] are two hyperbox
granules, and their join hyperbox granule is G1 ∨ G2 = [0.05, 0.15, 0.5, 0.7], which is induced by the
aforementioned join operation. These three hyperboxes are shown in Figure 1.
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2.3. Novel Distance between Two Hyperbox Granules

The atomic hyperbox granule is a point in N-D space and is represented as the hyperbox with a
beginning point and an endpoint which are identical. We can measure the distance relation between
the point and the hyperbox granule.

For N-D space, the distance function is the mapping between N-D vector space and 1-D real space.
From a visual point of view, distance is a numerical description of how far two objects are from one
another. The distance function between two hyperbox granules is the mapping between hyperbox
granule space and 1-D space, and a larger distance means that there is a smaller overlap area between
the two hyperbox granules. The distance function between two hyperbox granules in granule space S
is a function:

d : S× S→ R

where R denotes the set of real numbers. We define the distance between two hyperbox granules
G1 = [Bp1, Ep1] and G2 = [Bp2, Ep2] as follows.

Definition 1. The distance between point P and hyperbox granule G = [Bp, Ep] is defined as

D(P, G) = d(P, Bp) + d(P, Ep)− d(Bp, Ep)

where Bp is the beginning point and is denoted as Bp = (x1, x2, . . . , xN), Ep is the endpoint and is denoted as
Ep = (y1, y2, . . . , yN), and d(·, ·) is the Manhattan distance between two points:

d(Bp, Ep) = ‖Bp− Ep‖1 =|x1 − y1|+ . . .+|xN − yN |.

Suppose P = (p1, p2, . . . , pN) is a point in N-D space, G is a hyperbox granule in granule space,
the distance between P and G is the mapping between the granule space and the real space which
satisfies the following non-negativity property.

D(P, G) = d(P, Bp) + d(P, Ep)
=|p1 − x1|+ . . .+|pN − xN |+|y1 − p1|+ . . .+|yN − pN |−(|y1 − x1|+ . . .+|yN − xN |).
= (|p1 − x1|+|p1 − y1|−|y1 − x1|) + . . . + (|pN − xN |+|pN − yN |−|yN − xN |) ≥ 0

The distance between the point and hyperbox granule G is explained in 2-D space. For G =

[0.1, 0.2, 0.4, 0.3] and the point P(0.3, 0.4), d(P, Bp) = 0.4, d(P, Ep) = 0.2, d(Bp, Ep) = 0.4, D(P, G) =
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0.2 > 0. The location of P and G is shown in Figure 2. As shown in Figure 2, the point P is outside the
hyperbox granule G.
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Theorem 1. In N-D space, the point P is inside the hyperbox granule G if and only if D(P, G) = 0.

Proof: Suppose Bp = (x1, x2, . . . , xN), Ep = (y1, y2, . . . , yN), and P = (p1, p2, . . . , pN).
If the point P is inside the hyperbox granule G = [Bp, Ep], then Bp≺ P and P≺ Ep, d(P, Bp) =

p1 − x1 + p2 − x2 + . . . + pN − xN and d(P, Ep) = y1 − p1 + y2 − p2 + . . . + yN − pN :

d(P, Bp) + d(p, Ep)
= p1 − x1 + p2 − x2 + . . . + pN − xN + y1 − p1 + y2 − p2 + . . . + yN − pN
= y1 − x1 + y2 − x2 + . . . + yN − xN
= d(Bp, Ep)

.

Namely, D(P, G) = d(P, Bp) + d(p, Ep)− d(Bp, Ep) = 0
If D(p, G) = 0, then

D(P, G) = d(P, Bp) + d(p, Ep)− d(Bp, Ep)
=|p1 − x1|+|p2 − x2|+ . . .+|pN − xN |
+|y1 − p1|+|y2 − p2|+ . . .+|yN − pN |
−(|y1 − x1|+|y2 − x2|+ . . .+|yN − xN |)
= (|y1 − p1|+|x1 − p1|−|y1 − x1|)
+(|y2 − p2|+|x2 − p2|−|y2 − x2|)
+ . . .
+(|yN − pN |+|xN − pN |−|yN − xN |)
= 0

.

Because (|yi − pi|+|xi − pi|−|yi − xi|) ≥ 0 and D(P, G) = 0, |yi − pi|+|xi − pi|−|yi − xi|= 0 .
We discuss the relation between xi and pi and the relation between yi and pi in two situations.

When pi < xi, pi < yi owing to xi ≤ yi,

|yi − pi|+|xi − pi|−|yi − xi|= yi − pi + xi − pi − yi + xi = 2(xi − pi) > 0
|yi − pi|+|xi − pi|−|yi − xi|= yi − pi + xi − pi − yi + xi = 2(xi − pi) > 0.
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Namely, D(P, G) > 0. This is obviously not in agreement with D(P, G) = 0, namely xi ≤ pi.
When pi > yi, pi > xi owing to xi ≤ yi,

|yi − pi|+|xi − pi|−|yi − xi|= pi − yi + pi − xi − yi + xi = 2(pi − yi) > 0.

Namely, D(P, G) > 0. This is obviously not in agreement with D(P, G) = 0, namely pi ≤ yi.
Therefore, xi ≤ pi and pi ≤ yi, namely, P is included in G. �

Definition 2. The distance between two hyperbox granules G1 = [Bp1, Ep1] and G2 = [Bp2, Ep2] is defined as

D(G1, G2) = max{D(Bp1, G2), D(Ep1, G2)}.

Obviously, D(G1, G2) ≥ 0 and the distance between two hyperbox granules have the following properties.

Theorem 2. D(G1, G2) = 0 if G1 ⊆ G2.

Proof: Because D(G1, G2) ≥ 0 and D(G1, G2) = max{D(Bp1, G2), D(Ep1, G2)} = 0,
D(Bp1, G2) = D(Ep1, G2) = 0, according to Theorem 1, Bp1 is inside the hyperbox granule G2

and Ep1 is inside the hyperbox granule G2, namely Bp1 ∈ G2 and Ep1 ∈ G2. So G1 ⊆ G2.
If G1 ⊆ G2, both Bp1 and Ep1 are inside the hyperbox granule G2. According to Theorem 1,

D(Bp1, G2) = 0 and D(Ep1, G2) = 0, the maximum of D(Bp1, G2) and D(Ep1, G2) = 0 is zero, namely,

D(G1, G2) = max{D(Bp1, G2), D(Ep1, G2)} = 0.

�

Theorem 3. D(G1, G2) 6= D(G2, G1).

Proof:
D(G1, G2) = max{D(Bp1, G2), D(Ep1, G2)}
= max{d(Bp1, Bp2) + d(Bp1, Ep2)− d(Bp2, Ep2),
d(Ep1, Bp2) + d(Ep1, Ep2)− d(Bp2, Ep2)}

D(G2, G1) = max{D(Bp2, G1), D(Ep2, G1)}
= max{d(Bp2, Bp1) + d(Bp2, Ep1)− d(Bp1, Ep1),
d(Ep2, Bp1) + d(Ep2, Ep1)− d(Bp1, Ep1)}

Owing to d(Bp1, Ep1) 6= d(Bp2, Ep2), D(G1, G2) 6= D(G2, G1). �

2.4. Nonparametric Granular Computing Classification Algorithms

For classification problem, the training set is the set S and the NPHBGrC are proposed by the
following steps to form the granule set GS, which is composed of hyperbox granules. First, the sample
is selected to form the atomic hyperbox granule randomly. Second, the other sample with the same
class label as the hyperbox granule in GS is selected to form the join hyperbox by join operation. Third,
the hyperbox granule is updated if the join hyperbox granule does not include the sample with the
other class label. The NPHBGrC algorithms include training process and testing process, which are
listed as Algorithms 1 and 2.
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Algorithm 1: Training process

Input: Training set S
Output: Hyperbox granule set GS, the class label lab corresponding to GS

S1. Initialize the hyperbox granule set GS = ∅, lab = ∅;
S2. i = 1;
S3. Select the samples with class labels i, and generate set X;
S4. Initialize the hyperbox granule set GSt = ∅;
S5. If GSt = ∅, the sample xj in X is selected to construct the corresponding atomic hyperbox granule Gj, xj

is removed from X, otherwise j = 1;
S6. The sample xk is selected from X and forms the hyperbox granule Gk;
S7. If the join hyperbox granule Gj ∨ Gk between Gj and Gk does not include the other class sample, the Gj is

replaced by the join hyperbox granule Gj ∨ Gk and the samples included in Gj ∨ Gk with the class labels i are
removed from X, namely, Gj = Gj ∨ Gk, otherwise GS and lab are updated, GS = GS ∪ {Gk}, lab = lab ∪ {i};

S8. j = j + 1;
S9. If i = n, output GS and class label lab, otherwise i = i + 1.

Algorithm 2: Testing process

Input: inputs of unknown datum x, the trained hyperbox granule set GS and class label lab
Output: class label of x

S1. For i = 1 :|GS|;
S2. Compute the distance D(x, Gi) between x and G in GS;
S3. Find the minimal distance D(x, Gi);
S4. Find the corresponding class label of the Gi as the label of x.

We take the training set including 10 training data for example to explain the training algorithm.
Suppose the training set is

S = {(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8), (x9, y9), (x10, y10)}.

where the inputs of data are

x1 = (4, 7), x2 = (7, 6), x3 = (8, 2), x4 = (2, 4), x5 = (5, 5),
x6 = (5, 9), x7 = (6, 4), x8 = (5, 7), x9 = (7, 3), x10 = (3, 7)

The corresponding class label is

y1 = 1, y2 = 1, y3 = 2, y4 = 2, y5 = 2, y6 = 1, y7 = 2, y8 = 1, y9 = 2, y10 = 2.

We explain the generation of GS by Algorithm 1. The x1 = (4, 7) is selected to form the atomic
hyperbox granule G1 = [4, 7, 4, 7] with the granularity 0 and the class label 1 shown in Figure 3a.
The second datum x2 = (7, 6) with the same class label as G1 is selected to generate the atomic hyperbox
granule [7 6 7 6] which is joined with G1 and forms the join hyperbox granule [x2, x2] ∨ G1 = [4, 6, 7, 7].
Since there are no data with the other class label lying in the join hyperbox granule [x2, x2] ∨ G1 =

[4, 6, 7, 7], the G1 is replaced by the join hyperbox granule, namely G1 = [x2, x2] ∨ G1 = [4, 6, 7, 7],
as shown in Figure 3b. The third datum x6 with the same class label with G1 is selected to generate
atomic hyperbox granule [x6, x6] = [5, 9, 5, 9], which is joined with G1 and forms the join hyperbox
granule [x6, x6] ∨ G1 = [4, 6, 7, 9]. As there are no data with the other class label lying in the join
hyperbox granule [x6, x6] ∨ G1 = [4, 6, 7, 9], G1 is replaced by [x6, x6] ∨ G1 = [4, 6, 7, 9], namely G1 =

[4, 6, 7, 9], as shown in Figure 3c. During the join process, the datum with the class label with the
hyperbox granule lies in the hyperbox granule is not considered the join process, such as datum x8
with the class label 1. In this way, the hyperbox granule G1 = [4, 6, 7, 9] with the blue lines is generated
for the data with the class label 1. The same strategy is adopted for the data with the class label 2;
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two hyperbox granules G2 = [2, 2, 8, 5] and G3 = [3, 7, 3, 7] are generated and are shown in Figure 3d.
For the training set S, the achieved granule set is GS = {G1, G2, G3} and the corresponding class label
is lab = {1, 2, 2}. The granules in GS are shown in Figure 3d; the granule marked with the blue lines is
the granule with class label 1, and the granules with the red lines are the granules with class label 2.
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3. Experiments

The effectiveness of the NPHBGrC is evaluated with a series of empirical studies including the
classification problems in 2-D space and classification problems in N-D space. We compare NPHBGrC
with GrC with parameters, such as the HBGrC [22], and evaluate the performance of classification
algorithms by the threshold of granularity of HBGrC(Par.), the number of hyperbox granules (Ng),
time cost (T(s)) including the training and testing processes, training accuracy (TAC), and testing
accuracy (AC).

3.1. Classification Problems in 2-D Space

In the first benchmark study, the two spiral curve classification problem [23], Ripley classification
problem [24], and sensor2 classification problem (wall—following robot navigation data) from the
websites http://archive.ics.uci.edu/ml/datasets.html, which were created in two dimensions, were used
to assess the efficacy of classification algorithms and to visualize the boundary of classification.
The details of the datasets and classification performance are summarized in Table 1. The number
of training data (#Tr), the number of testing data (#Ts), and the performances of NPHBGrC and HBGrC
are shown in Table 1. From Table 1, it can be seen that NPHBGrC has greater or equal testing accuracies
and less time cost compared with HBGrC. NPHBGrC has less time cost than HBGrC due to the fact

http://archive.ics.uci.edu/ml/datasets.html
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that HBGrC produces some redundant hyperbox granules. Figures 4 and 5 show the boundaries of
NPHBGrC and HBGrC for the Ripley dataset.

Table 1. The classification problems and their performances in 2-D space.

Dataset #Tr #Ts Algorithms Par. Ng TAC AC T(s)

Spiral 970 194 NPHBGrC
HBGrC

–
0.08

58
161

100
100

99.48
99.48

0.6864
1.6380

Ripley 250 1000 NPHBGrC
HBGrC

–
0.27

32
67

100
96

90.2
90.1

0.0625
0.1159

Sensor2 4487 569 NPHBGrC
HBGrC

–
4

4
8

100
100

99.47
99.47

1.0764
1.365
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3.2. Classification Problems in N-dimensional (N-D) Space

In this section, we verify the performance of the proposed classification algorithms which are
extended to N-D space compared with the HBGrC by the selected benchmark datasets from the website,
http://archive.ics.uci.edu/ml/. These datasets are the most popular datasets since 2007, and the
characteristics and the performance of the datasets are listed in Tables 2 and 3.

Table 2. The classification problems in N-dimensional (N-D) space.

Datasets N Classes Samples

Iris 4 3 150

Wine 13 3 178

Phoneme 5 2 5404

Sensor4 4 4 5456

Car 6 5 1728

Cancer2 30 2 532

Semeion 256 10 1593

For the parametric algorithm, in order to facilitate the selection of parameters of thresholds of
granularities, the RN space is normalized into the [0,1]N space, the granularity parameters are set to
between 0 and 0.5 with steps of 0.01 for the n-class classification problems performed by HBGrC.

A 10-fold cross-validation is used to evaluate the parametric and nonparametric classification
algorithms. For each dataset, the nonparametric and parametric algorithms are performed for each
fold, and the parametric algorithms are performed 51 times for each fold due to the selection of
granularity threshold parameters.

The performances of classification algorithms include the maximal testing accuracies, the mean
testing accuracies, the minimal testing accuracies, and the standard deviation of testing accuracies.

http://archive.ics.uci.edu/ml/
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The superiority of algorithms is evaluated by the mean testing accuracies and the stability of algorithms
is verified by the standard deviation of testing accuracies, which are shown in Table 3. From the
Table 3, it can be seen that NPHBGrC algorithms are superior to HBGrC algorithms regardless of the
maximum testing accuracy (max), the mean testing accuracy (mean), or the minimum testing accuracy
(min). On the other hand, it can also be seen from Table 3 that the standard deviations of 10-fold
cross-validation by NPHBGrC are less than those of HBGrC, which shows that NPHBGrC algorithms
are more stable than HBGrC algorithms.

The testing accuracies are the main evaluation indices for the classification algorithms. A t-test
was used to verify the testing accuracies by nonparametric algorithms and parametric algorithms
statistically. If h = 0, then the testing accuracies achieved by NPHBGrC and HBGrC have no significant
difference statistically, although h = 0, but p is relatively small, close to 0.05, we regard the achieved
testing accuracies have significant difference. If h = 1, then the testing accuracies achieved by NPHBGrC
and HBGrC are significantly different, and we can illustrate the superiority of the algorithm by the
mean testing accuracy, especially, although h = 1, but p is relatively small, close to 0.05, we regard the
achieved testing accuracies as having no significant difference.

For the datasets Iris, Wine, Cancer1, Sensor4, and Cancer2, h = 0, as shown in Table 4. Statistically,
the testing accuracies obtained by NPHBGrC and HBGrC have no significant difference from the h
values of t-test listed in Table 3, and the testing accuracies of NPHBGrC are slightly higher than those
of HBGrC in terms of maximal testing accuracies, mean testing accuracies, and the minimal testing
accuracies listed in Table 3.

For the datasets Phoneme, Car, and Semeion, h = 1, as shown in Table 4. Statistically, the testing
accuracies by NPHBGrC and HBGrC are significantly different, and we determine which is the
better classification algorithm for NPHBGrC and HBGrC from the mean testing accuracies in Table 3.
NPHBGrC algorithms are better than HBGrC algorithms, since the mean testing accuracies obtained
by NPHBGrC are greater than those obtained by HBGrC, as shown in Table 3.

The computational complexities are evaluated by the time cost, including the training and testing
time cost. Obviously, NPHBGrC algorithms have lower computational complexities compared with
HBGrC due to the redundant hyperbox granules and the parameter selection for HBGrC.

Table 3. The performances in N-D space.

Dataset Algorithms Testing Accuracy
T(s)

max mean min std

Iris NPHBGrC 100 98.6667 93.3333 3.4427 0.0265
HBGrC 100 97.3333 93.3333 2.8109 1.1560

Wine NPHBGrC 100 96.8750 93.7500 3.2940 0.0406
HBGrC 100 96.2500 87.5000 4.3700 1.0140

Phoneme NPHBGrC 91.6512 89.8236 88.3117 1.1098 22.4844
HBGrC 87.5696 85.9350 83.1169 1.3704 422.3009

Cancer1 NPHBGrC 100 98.5075 95.5224 1.7234 0.9064
HBGrC 100 97.6362 92.5373 2.6615 69.8214

Sensor4 NPHBGrC 100 99.4551 97.4217 0.8621 1.0670
HBGrC 100 99.2157 96.6851 0.9944 71.8509

Car NPHBGrC 97.6608 91.1445 81.8713 5.3834 8.7532
HBGrC 94.7368 85.9593 77.7778 5.5027 1166.5

Cancer2 NPHBGrC 100 98.0769 92.3077 2.3985 0.4602
HBGrC 100 97.4159 94.2308 1.9107 7.5676

Semeion NPHBGrC 100 98.7512 97.4026 0.7177 6.7127
HBGrC 97.4026 94.9881 92.2078 1.4397 533.2691
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Table 4. The t-test values of comparison of NPHBGrC and HBGrC.

Algorithms Iris Wine Phoneme Cancer1

h-value p-value h-value p-value h-value p-value h-value p-value

NPHBGrC-HBGrC 0 0.3553 0 0.7222 1 0 0 0.3963

Algorithms Sensor4 Car Cancer2 Semeion

h-value p-value h-value p-value h-value p-value h-value p-value

NPHBGrC-HBGrC 0 0.5722 1 0.0472 0 0.5041 1 0

3.3. Classification for Imbalanced Datasets

For the imbalanced datasets, an imbalanced dataset called yeast, including 1484 data, was used to
verify the performance of the proposed algorithm, where the positive data belong to class NUC (class
label 1 in the paper) and the negative data belong to the rest (class label 2 in the paper). The dataset can
be downloaded from the website http://keel.es/. Five-fold cross-validation was used to evaluate the
performance of NPHBGrC and HBGrC, such as the testing accuracy and class-based testing accuracy.
The accuracies are listed in Table 5, and the histogram of accuracies is shown in Figure 6. For the
testing set, AC is the total accuracy, C1AC is the accuracy of data with class label 1, and C2AC is the
accuracy of data with class label 2. For the five tests, named Test 1, Test 2, Test 3, Test 4, and Test 5,
NPHBGrC achieved better total accuracies (AC) than HBGrC for the imbalanced class problem yeast.
The geometric mean (GM) of the true rates is defined in [22] and attempts to maximize the accuracy of
each of the two classes with a good balance. From Table 5, it can be seen that the GM of NPHBGrC is
74.2023, which is superior to the GM of HBGrC (64.8344), and to the fuzzy rule-based classification
systems (69.66) by Fernández [25] and the weighted extreme learning machine (73.19) by Akbulut [26].

Table 5. Performance of NPHBGrC and HBGrC for the imbalanced dataset “yeast”.

Tests
AC (%) C1AC (%) C2AC (%) G (%)

NPHBGrC HBGrC NPHBGrC HBGrC NPHBGrC HBGrC NPHBGrC HBGrC

Test 1 78.7879 76.4310 58.1395 54.6512 87.2038 85.3081 75.4026 68.2802
Test 2 74.0741 73.7374 48.8372 44.1860 84.3602 85.7820 72.8299 61.5659
Test 3 76.7677 74.0741 55.8140 54.6512 85.3081 81.9905 74.7530 66.9394
Test 4 74.0741 73.4007 51.1628 47.6744 83.4123 83.8863 74.7382 63.2395
Test 5 76.0135 74.6622 57.6471 48.2353 83.4123 85.3081 73.2875 64.1472
mean 75.9435 74.4611 54.3201 49.8796 84.7393 84.4550 74.2023 64.8344
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4. Conclusions

According to the computational complexity produced the redundant hyperbox granules,
we presented the NPHBGrC. The novel distance was introduced to measure the distance between two
hyperbox granules and to determine the join process between two hyperbox granules. The feasibility
and superiority of NPHBGrC were demonstrated by the benchmark datasets compared with HBGrC.
There are some improvements in the NPHBGrC, for example, relating to the overfitting problem and
the effect of the data order on the classification accuracy. The purpose of using distance in this paper
was to determine the positional relationship between points (such as the points inside and outside
the hyperbox) and the hyperbox. For the interval set and the fuzzy set, the operations between two
granules were designed based on the fuzzy relation between two granules. For the fuzzy set, further
research is needed in the future to determine how to use the proposed distance between two granules
to design classification algorithms. For the classification of imbalanced datasets, the superiority of
NPHBGrC was verified by the yeast dataset. In the future, the superiority and feasibility of GrC need
to be verified using more metrics—such as the receiver operating curve (ROC), usually known as area
under curve (AUC)—by more imbalanced datasets, and the computing theory of GrC needs further
study for imbalanced datasets to achieve a better performance.
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