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Abstract: This article addresses the task of inferring elements in the attributes of data. Extracting data
related to our interests is a challenging task. Although data on the web can be accessed through free
text queries, it is difficult to obtain results that accurately correspond to user intentions because users
might not express their objects of interest using exact terms (variables, outlines of data, etc.) found in
the data. In other words, users do not always have sufficient knowledge of the data to formulate an
effective query. Hence, we propose a method that enables the type, format, and variable elements to
be inferred as attributes of data when a natural language summary of the data is provided as a free
text query. To evaluate the proposed method, we used the Data Jacket’s datasets whose metadata is
written in natural language. The experimental results indicate that our method outperforms those
obtained from string matching and word embedding. Applications based on this study can support
users who wish to retrieve or acquire new data.

Keywords: data jacket; variable label; metadata; natural language processing; market of data;
vector space model

1. Introduction

The global trends of big data and artificial intelligence (AI) have introduced various types of data
that cannot be handled by the existing analytical technologies; thus, attention on areas not centered
on AI technologies has increased. Rather than relying on a single data source, methods have been
proposed to solve such problems and obtain new values in data through the distribution, exchange,
and linking of the data across various fields. With improvements in catalogs and portal sites available
in the data markets, opportunities for users to obtain data from data holders and providers have
increased. Therefore, a data market has been developed in which various stakeholders exchange data
and information about the data across different fields [1,2]. In particular, the developments of the
Internet of things and cloud computing, and the privilege of mobile, digital markets for data have
emerged [3,4]. Various stakeholders have discussed the potential benefits of reusing and analyzing
massive amounts of data [5,6]. However, these typically affect data privacy and security [7–10].
Moreover, it is often difficult to obtain and utilize data that are specifically related to our interests.
Even if relevant information is available publicly on the web, users may find it challenging to specify
areas of interest owing to information overload. From the perspective of limited human cognition, it
has been observed that excessive information renders it difficult for human decision makers to derive
the necessary information and discover useful knowledge [11]. Therefore, a support system is required
to obtain information related to user interests.

Another related issue is the difficulty encountered by users in obtaining data that accurately
correspond to their intentions because users might not express their objects of interest using the exact
terms (names of variables, outlines, etc.) used in the relevant data [12]. A user wishing to obtain
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new data for a business focusing on foreign tourists, for example, may obtain street interviews and
questionnaires completed by foreigners. However, if specific information of interest, specifically the
nationality of foreigners, is missing from the acquired data, the procedure may have to be repeated.
Owing to the costs involved in obtaining data, a reworking procedure should be avoided after data
acquisition. In product management, reworking in the latter stage of a product design has been
recognized as a serious risk [13]. To avoid this risk in data design and management, it is important to
specify the exact data that should be obtained to implement effective decision making.

Hayashi and Ohsawa [14,15] proposed a method called a Variable Quest (VQ) for inferring
variables from a data outline when information on the variables are missing or unknown. Here,
variables refer to one of the attributes of the data; for example, “latitude” or “longitude” are elements
in the variables. The proposed method infers variables that may be present in the data by inputting
the summary of the data presented in natural language. Information on the variables and data outline
is extracted from the Data Jacket’s dataset. A data jacket (DJ) is a technique for sharing information on
data without exposing the data itself by describing a summary of the data in natural language [16].
The idea of a DJ is to share a “summary of the data” as metadata while reducing the data management
cost and privacy risk. Information regarding the variables is included through variable labels (VLs)
in a DJ; VL is the name and/or meaning of the variables in the data. The variables and values in the
data in a DJ are summarized as VLs. For example, the dataset on the “UNHCR Refugee Population
Statistics” obtained from the Humanitarian Data Exchange (https://data.humdata.org/) includes the
variables “country,” “origin,” “population type,” “year,” and “population,” each of which contains
values (Figure 1). Even if the data are not publicly available, we can learn and evaluate whether the
data would be useful for our purposes using the data summary described in a DJ. Some data include
private information, that is, values and variables such as “name,” “age,” or “address.” The description
framework of a DJ allows stakeholders to learn a summary of the data from the attributes mentioned in
the DJ, thus, reducing the risks inherent to data management and privacy. The DJ has been introduced
to support cross-disciplinary data exchange and collaboration in the creative workshop method, i.e.,
Innovators Marketplace on Data Jackets (IMDJ). For further details regarding the methodology and
results of the IMDJ, see references [1,12,16].Information 2019, 10, x FOR PEER REVIEW  3 of 12 
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between ODs is high, the elements in each attribute are similar. For example, “the location data of 
elementary schools in Tokyo” and “the location data of the streetlights’ installation in Tokyo” share 
the terms “location” and “Tokyo,” and the data may share the same variables “latitude,” “longitude,” 
and “address.” In addition, the variables may be of the same type, for example “latitude” and 
“longitude” are “numbers,” and an “address” is a “text.” The data might, therefore, be stored in the 
same format, CSV. An important assumption in this study is that when the descriptive texts of a pair 
of datasets contain similar terms, they will have similar elements in each data attribute. 

Table 2. Example elements in each attribute. 

Attribute Example Elements 
variable latitude, longitude, address, weather, time, year 

type number, text, image, table 
format CSV, PDF, JSON, TXT, MOV 

Figure 1. An example dataset and its corresponding data jacket (DJ).

VQ, however, focuses only on the variables in the data. The data possess other important
attributes, namely, the types and formats. In the dataset on the “UNHCR Refugee Population Statistics,”
the data format is presented as a “CSV,” whereas data types are “number” and “text,” which are
important attributes for stakeholders when considering data combinations. In this study, we extend
the matrix-based method for the inference of variables to a method for inferring the data attributes.
The motivation and the objective of our study are to infer the related attributes of the data (types,
formats, and variables) from the data outlines presented as free text. We used a dataset of DJs as the
training data. The significance of our approach and the contributions of our study can be summarized
as follows: The proposed method is the first approach for inferring the data attributes while focusing
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on the similarities of datasets using a data outline. Our method can infer the related data attributes
from free text queries. In particular, it can be used not only for knowledge discovery from the data
but also for decision-makers who wish to acquire new data. Our method can support the search for a
useful set of variables, types, and formats used as data for decision making. Note that the definition of
data in this study is a set of described abstracted events in the world. That is, as shown in Figure 1, the
data consist of sets of variables with values. In contrast, the DJs in this study are the summary of the
data consisting of attributes (types, formats, and variables) with elements.

The remainder of this paper is organized as follows: In Section 2, we briefly review the previous
matrix-based method for inferring VLs and subsequently, formulate the proposed method and its
inference procedures. In Section 3, we demonstrate the effectiveness of the proposed method by
comparing its performance to other methods used for this purpose. Furthermore, we analyze the
characteristics of the DJs and their attributes. In Section 4, we discuss the results obtained from the
experiment. Finally, we provide some concluding remarks and discuss the areas of future work in
Section 5. The notations used herein are summarized in Table 1.

Table 1. Notations.

Symbol Description

DJ Summary of data in natural language (data jacket)
OD Outline of data described in DJs (data outline)
VL Name/meaning of variables in data (variable label)
D # DJs
V # VLs
W # terms in ODs
L Set of elements
|L| # elements

2. Proposed Method

2.1. Models

The purpose of our method is to infer the possible attributes of data, namely, the types, formats,
and variables, from free text queries. Let us define the meaning of the attributes and elements.
The data attributes are the metadata characteristics of the data. In this study, we used variables,
types, and formats as the attributes. The elements are the substances of the attributes. Table 2 shows
some examples.

Table 2. Example elements in each attribute.

Attribute Example Elements

variable latitude, longitude, address, weather, time, year
type number, text, image, table

format CSV, PDF, JSON, TXT, MOV

The objective is to obtain sets of likely elements of attributes
{

lattr ∈ Lattr
∣∣ fn
(
lattr, ODx

)}
stored

in the training data by inputting ODs (ODx) as queries. Here, fn
(
lattr, ODx

)
represents a condition

in which a set of the top n elements (lattr) are associated with ODx. In addition, Lattr is the set of
elements and attr ∈ {type, f ormat, variable}. We assume that the datasets are similar when the
types of information used to explain the data (OD) are similar. In other words, when the similarity
between ODs is high, the elements in each attribute are similar. For example, “the location data of
elementary schools in Tokyo” and “the location data of the streetlights’ installation in Tokyo” share the
terms “location” and “Tokyo,” and the data may share the same variables “latitude,” “longitude,” and
“address.” In addition, the variables may be of the same type, for example “latitude” and “longitude”
are “numbers,” and an “address” is a “text.” The data might, therefore, be stored in the same format,
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CSV. An important assumption in this study is that when the descriptive texts of a pair of datasets
contain similar terms, they will have similar elements in each data attribute.

2.2. Preprocessing Steps

We used the bag-of-words and vector space model [17,18] to create a term-document matrix.
In the preprocessing steps, we conducted a morphological analysis of the OD text by (1) extracting
words, (2) removing stop words, and (3) restoring words to their original forms.

2.3. Similarity of Data from ODs (Term-Element Matrix)

We considered an algorithm that calculates the similarity between the training data of ODs.
After conducting preprocessing for each OD, the ODs are converted into a term-OD matrix, M = {vik}
(W × D), where M comprises D-dimensional term vectors as rows, and W-dimensional OD vectors
as columns. Each element vik in an OD vector (odk) corresponds to the frequency at which a term
(row i) occurs in an OD (column k). It is noteworthy that the subscript T at the upper-right corner of
the vectors represents the transposition, and the matrices and vectors are highlighted in bold.

In the second step, a set of elements is converted into an element-OD matrix R. In the training
data, ODs and elements in the attributes are linked when they appear in the same data. An element-OD
matrix R =

{
rjk

}
(|L| × D) consists of |L|-dimensional element vectors as rows and D-dimensional

OD vectors as columns. Each element rjk in the kth OD vector corresponds to the frequency (0 or 1) at
which the jth element is included in the kth OD.

In the third step, we create a term-element matrix E = MRT (W × |L|) from the term-OD matrix
M (W × D) and element-OD matrix R (|L| × D) obtained in the second step. This process is equivalent
to mapping the ith (1 ≤ i ≤ |L|) D-dimensional element vector in the OD space into a W-dimensional
term space using the term-OD matrix M. The elements of the term-element matrix E are represented
as eij = ∑D

k=1 vik rkj. In other words, the term-element matrix E is equivalent to the adjacency matrix of
a three-partite graph that consists of three disjoint sets of nodes, namely, terms, ODs, and elements
(Figure 2). The element eij of the term-element matrix E represents the number of paths from the ith
term (ti) to the jth element (lj) according to the OD nodes.
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Figure 2. Adjacency matrix of the three-partite graph obtained by transforming DJs linked with data
outlines (ODs) and elements.

The process above implements a function collectively to obtain a set of elements from free
text queries as the term-element matrix E. Using this matrix, a scored set of the elements of the
attributes is obtained by considering the similarity between ODs in the matrices E and ODx whose
elements are unknown. When ODx is given, a W-dimensional feature vector of ODx (odx) is obtained
after the preprocessing of the morphological analysis. By comparing the similarity of odx and each
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W-dimensional feature vector of elements (lj (1 ≤ j ≤ |L|)) in matrix E, a scored set of elements
is obtained.

2.4. Co-Occurrence of Elements (Term-Element Matrix)

We implemented an algorithm to calculate the co-occurrence of elements. A co-occurrence
is a feature in which a highly frequent pair of elements appear simultaneously in the attributes.
For example, “year” and “day,” or “latitude” and “longitude,” appear together frequently in the
variable attributes. Moreover, in the type data attribute, “time series” and “number” appear together
in the same data. Assuming that all pairs of elements in the same data occur once, we express the
element co-occurrence matrix as C =

{
cij
} (

= RRT)(|L| × |L|). The element cij represents the number
of DJs that include a pair of elements li and lj, which is calculated as cij = ∑D

k=1 rikrkj.
Finally, we obtain a term-element matrix EC as a product of the term-element matrix E and the

element co-occurrence matrix C. The term-element matrix EC consists of V-dimensional term vectors
as rows, and W-dimensional element vectors as columns; this is the same structure as that of the
term-element matrix E. The element gij of matrix EC is given as follows:

gij =
|L|

∑
m=1

(
D

∑
k=1

vik rkm

)(
D

∑
l=1

rml rl j

)
. (1)

This represents a value that considers the similarities of the ODs and queries (the function
of matrix E), and the co-occurrence of elements (the function of matrix C). The structure of the
term-element matrix EC is equivalent to the adjacency matrix of the five-partite graph. If two elements
co-occur frequently, their weight in EC will be increased by the matrix C, thereby increasing the final
scores and ranks. When ODx, whose elements of the attribute are unknown, is given, we obtain
a W-dimensional feature vector of ODx (odx) from the corpus. By comparing the similarity of odx

and each W-dimensional feature vector of elements (lj) in the matrix EC, a scored set of elements
is obtained.

3. Experimental Details

3.1. Purpose and Method

We evaluated the inference ability of elements in the attributes, namely, types, formats, and
variables of data from free text queries by conducting an experiment. We introduced the string
matching (TSM) and Doc2vec [19,20] as methods comparable to the proposed approach because a
method based on string matching with elements of the attributes can be applied to a situation in
which data are retrieved based on description. For example, when users search the related data from
the query “the location data of the police stations in CSV,” the string matching retrieves the variable
“location” and the format “CSV.” Therefore, the function of TSM ( f ′n

(
lattr, ODx

)
)) can be used to

obtain sets of elements (
{

lattr ∈ Lattr
∣∣ f ′n(lattr, ODx

)}
) stored in the training data that match the terms

included in the ODs by inputting an OD (ODx) as a query. The inputted ODs are converted into a
bag-of-words similarly as in our proposed method. The elements obtained are scored in the descending
order of the number of acquisitions.

Doc2vec is a paragraph vector model that learns a document representation by predicting the
words that appear. In this experiment, the function of Doc2vec is to return a set of highly similar
elements (lattr) by comparing the feature vectors of each element (lattr) in the attributes by inputting
an OD (ODx) as a query. The parameters used for Doc2vec are a window size of eight, dimension
of d = 400 and no downsampling. To create the learning model, we input each OD in the training
data as a paragraph and obtain the feature vector of the ODs in 400 dimensions, which is different
from matrices E and EC. The models of matrices E and EC are based on one-hot encoding, namely, the
dimensionality of the vectors is equivalent to the number of terms in the training data. The advantage
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of using the word embedding method is reduced dimensionality. In the inferring process of Doc2vec,
the query (ODx) is converted into a 400-dimensional feature vector (odx) by the learning model; feature
vectors of elements (lattr) of elements (lattr) are obtained from the description of the elements through
the learning model. We subsequently calculate the similarities of odx and lattr, and obtain the sets of
elements with similarity scores in the descending order.

The similarity scores of odx and lattr
j are calculated as cosine similarities given by sim

(
odx, lattr

j

)
=

odx·lattr
j /|odx|

∣∣∣lattr
j

∣∣∣, where lattr
j denotes the jth feature vector in the term-element matrix based on

the attributes (attr ∈ {type, f ormat, variable}). For weighing the discriminative terms in the DJs,
we introduce the term frequency–inverse document frequency (tf-idf) in the weighting scheme [21],
which identifies distinctive terms in each DJ. The term frequency (tf) represents the number of times a
term appears in a document, and the inverse document frequency (idf) diminishes the weight of the
frequent terms in all documents and increases the weight of terms that rarely appear.

We used leave-one-out cross-validation (LOOCV) for validation, and the precision, recall, and
F-measure for evaluation. We define precision as P = TP/(TP + FP) and recall as R = TP/(TP + FN)

using the top n elements returned as the inferred results scored based on the similarities, where
TP = true positives, FP = false positives, and FN = false negatives. The F-measure is defined as
F = 2PR/(P + R). Finally, by calculating the average F-measure of each query, we compared the
performances of our methods, string matching, and Doc2vec.

3.2. Attributes of Training Data (Corpus)

In this study, we used 1502 DJs collected from business persons, researchers, and data holders
who are interested in using data for training in various domains (http://160.16.227.37/sparql).
Twelve attributes were provided in the description of the DJs (e.g., title, outline, VLs, sharing policy,
format) to identify the datasets [16]. We extracted the data outlines, and the types, formats, and
variables of the data, from the DJ database using SPARQL queries (see Supplementary Materials).
Because the description rule of the DJs did not mandate that information on all data attributes must be
entered, a few DJs lacked some of the elements. Therefore, we could only use 1047 DJs including the
attributes of the formats for the training data to infer the format elements, 1149 DJs including the type
attributes to infer the elements of the types, and 1098 DJs including the variable attributes to infer the
elements of the variables.

The statistics of the training (corpus) data are shown in Table 3. The corpus and dictionary were
constructed using all words in the ODs. We removed punctuation marks and symbols in the texts,
restored words to their original forms, and extracted nouns, verbs, adverbs, and adjectives. For a
morphological analysis, we used MeCab [22], a typical tool for analyzing morphemes of Japanese texts,
and the Natural Language Toolkit (NLTK) (https://www.nltk.org/) for English texts. We removed
auxiliary verbs, symbols, and extremely frequent nouns, such as “data” and “information.” The title
descriptions of the DJs occasionally exhibited insufficient information on the data. We combined the
description of the titles and outlines of the DJs when the retrieval system searched the related data
using queries.

Table 3. Statistics of the training data.

Number of DJs 1502
Total number of terms in DJs 38,722
Unique terms in DJs 7886
Total number of formats in DJs 1421
Unique formats in DJs 48
Total number of types in DJs 2956
Unique types in DJs 18
Total number of VLs in DJs 7552
Unique VLs in DJs 5559

http://160.16.227.37/sparql
https://www.nltk.org/
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The format attribute comprised 48 elements. Figure 3 shows the number of DJs based on format.
Note that some data are provided in multiple formats; for example, official data are available in
PDF, CSV, or TXT files. Therefore, the numbers in the figures contain duplicates. Because the data
have 1.36 formats (maximum of 8, minimum of 1) on average, to calculate the precision, recall, and
F-measure, we used the top-five similar formats in this experiment. In contrast, the type attribute
comprises 18 elements. Figure 4 shows the number of DJs based on type. Because the data have
several types, the numbers in the figures also contain duplicates. Because the data have 2.57 formats
(maximum of 8, minimum of 1) on an average, to calculate the precision, recall, and F-measure, we
used the top-five similar types.

However, there were approximately 5600 variables in the training data. Figure 5 shows the
number for the top-15 VLs in the training data. The distribution of variables consisted of a few
extremely frequent variables and many variables with lower frequencies, which conforms to the power
law distribution (Figure 6). Therefore, we compared the performances of our method with that of
other methods based on the frequency of the VLs.
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4. Result and Discussion

Tables 4–6 show the evaluation results for each data attribute. With respect to the results related
to the formats and types, we listed the top-five elements returned as the inferred results scored based
on the similarities from each query. Furthermore, we present the top-ten VLs returned as the inferred
results scored based on similarities from each query using our proposed matrices E and EC, as well as
TSM and Doc2vec.

By comparing the F-measures calculated from the precision and recall of each method, we
observed that the results inferred using the matrices E and EC demonstrated a better performance
in inferring the type, format, and variable elements. In particular, the performance of matrix E was
the best in terms of the F-measure score. The results indicate that, although the data outline is an
important attribute for characterizing the data, it does not always include information regarding the
attributes. In other words, the string matching of ODs and each element in the attributes is insufficient
to infer the elements. The performance of Doc2vec is comparatively poor. A reason is that the ODs
contain few terms that describe the type, format, and variable elements. We compared the commonality
of terms derived from the ODs in the corpus of the training data with the VLs, formats, and types.
Subsequently, only 162 out of 7871 terms were in common with the VLs. That is, only 162 words in
the ODs contributed to the discovery of the VLs. If the commonality of the terms is low, we cannot
sufficiently compute the similarity even if the dimensionality of the word embedding is low compared
to the one-hot vectors. In contrast, the formats and types were both included in the ODs. Consequently,
the F-measures of the formats and types using TSM and Doc2vec are higher than those of the VLs.

According to Hayashi and Ohsawa [15], the performances of the term-element matrices E and EC
are almost the same. However, when comparing the F-measures of the results, we found significant
differences between the matrices E and EC for each attribute. Using a paired t-test, we obtained
t(2092) = 5.0, p < 0.01 for the format results; t(2296) = 15.9, p < 0.01 for the type results;
t(2194) = 7.28, p < 0.01 for the variable results. From this experiment, we concluded that a model
based on the idea that “a pair of datasets whose similarity of outlines is high are similar in terms
of having similar elements in the attributes,” namely, the effect of matrix E, is suitable for inferring
elements in the data attributes. In other words, the information on other datasets (the relationship
between the ODs and elements in each attribute) may compensate well for the missing terms in
explaining the data and may be suitable for discovering elements from the outlines of data whose
elements are missing in the attributes.
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The inferred examples using the co-occurrence model are exemplified in the study by Hayashi and
Ohsawa; the results are not contrary to human intuition. However, when evaluating the performance
mechanically, the model considering only the similarity of the ODs, which does not consider the
co-occurrence of elements, is better. It is thought that the frequency distribution of the elements is not
a Gaussian distribution but a power distribution. Although a few types of formats and types exist,
“CSV,” “TXT,” “number,” and “text” are relatively large compared to the other elements (Figures 3
and 4). Moreover, more types of VLs exist, and it is clear that the distribution influences performance.
Therefore, in this study, we conducted a detailed analysis with a threshold value for the VLs.

Table 4. Results of formats (average scores ± standard deviation).

F-Measure Precision Recall

Matrix E 0.266 ± 0.190 0.664 ± 0.443 0.174 ± 0.141
Matrix EC 0.250 ± 0.203 0.619 ± 0.463 0.164 ± 0.152

TSM 0.046 ± 0.162 0.034 ± 0.124 0.078 ± 0.281
Doc2vec 0.003 ± 0.104 0.089 ± 0.261 0.026 ± 0.071

Table 5. Results of types (average scores ± standard deviation).

F-Measure Precision Recall

Matrix E 0.530 ± 0.247 0.816 ± 0.304 0.423 ± 0.243
Matrix EC 0.463 ± 0.269 0.712 ± 0.364 0.371 ± 0.251

TSM 0.089 ± 0.203 0.079 ± 0.178 0.120 ± 0.313
Doc2vec 0.179 ± 0.182 0.276 ± 0.309 0.144 ± 0.151

Table 6. Results of variables (5559 types of variable labels (VLs)) (Average scores± standard deviation).

F-Measure Precision Recall

Matrix E 0.110 ± 0.210 0.165 ± 0.311 0.095 ± 0.191
Matrix EC 0.089 ± 0.180 0.131 ± 0.264 0.078 ± 0.169

TSM 0.041 ± 0.096 0.034 ± 0.078 0.060 ± 0.145
Doc2vec 0.001 ± 0.008 0.001 ± 0.013 0.001 ± 0.009

As shown in Table 3, approximately 5600 types of variables exist in the training data, and the
number of dimensions becomes extremely large when we create the term-VL matrices E and EC.
As discussed in the previous section, the distribution of variables consists of a few extremely frequent
variables and many variables with low frequencies. Therefore, we compare the performance based on
the threshold of the variable frequencies. Figures 7–11 show the boxplots of the F-measure using VLs
appearing once, more than once, twice, thrice, and four times. The dots represent the mean values,
and the lines inside each box represent the median. The top of the box is the first quartile, and the
bottom is the third quartile. The bar on the top is the maximum value, and the bar on the bottom is the
minimum value.
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The types of VLs decrease according to the power law shown in Figure 6. For all VLs (Figure 7),
the maximum F-measure is 0.947 for both matrices E and EC. Because the medians are zero, small
numbers of highly frequent VLs affect the performance, and the F-measures of most of the data are
low. This is because the types of VLs are diverse, and the low-frequency VLs occupy the majority.
Hence, the means and medians of the F-measures increase for all methods by setting the threshold and
adjusting the frequency VLs, as shown in Figures 8–11.

The results indicate that all performances improved by reducing the number of unique VLs; the
F-measures generally improved until the threshold reached two (Figures 8–10). When the threshold
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is three, however, almost no difference between matrices E and EC (t(1282) = 1.50, p = 0.070) are
shown, and the result of matrix EC increases to a higher level than that of matrix E. The results indicate
that the method considering the co-occurrence of VLs may be suitable when using VLs that appear
frequently with each other. A larger number of variables indicates that more noise may be included in
the training data, which affects the inference performance.

In contrast, when we set the threshold to four, the F-measures of all methods tend to decrease.
Reducing the number of variables represents a reduced amount of test data. In other words, although
the performance for some of the data improves, it may be difficult to infer the variables of data that
contain less frequent variables. These results suggest that using only 100 types of VLs is insufficient
for inferring the VLs when the threshold is five.

5. Conclusions

We herein proposed a matrix-based method for inferring the elements in the attributes of data from
the OD whose attribute elements (types, formats, and variables) are missing or unknown. We extended
a previously proposed method by adding other attributes to identify the data in the description of
the DJs, namely, the types, formats, and variables. When information is retrieved from data, string
matching using the elements in the data attributes can be considered. However, free text queries do
not always include terms corresponding to the data elements. Decision-makers who wish to acquire
new data cannot discover information regarding what types of data should be obtained for their
decision making. The proposed method will be helpful for encouraging data acquisition and for
knowledge discovery.

With the proposed method, natural language processing using bag-of-words and a vector space
model was used to calculate the similarity of the ODs. However, natural language processing was
not used for estimating the similarity of elements. The ODs were small but include a certain number
of terms; therefore, the similarities in the vector space model could be discussed and compared by
creating the term-document matrix. However, the type, format, and variable elements were small and
composed of one or several words. In future study, we aim to construct a model that considers the
meaning of the elements and synonyms, even if they contain brief descriptions.

Supplementary Materials: Data from Data Jacket with Variable Labels and the results used to support the findings
of this study were deposited in the Data Jacket Store repository in RDF/XML (http://160.16.227.37/sparql).
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