
 information

Article

Hierarchical Clustering Approach for Selecting
Representative Skylines

Lkhagvadorj Battulga 1 and Aziz Nasridinov 2,*
1 Department of Mathematics and Computer Science, Eindhoven University of Technology,

5612 AZ Eindhoven, The Netherlands; l.battulga@tue.nl
2 Department of Computer Science, Chungbuk National University, Cheongju 28644, Korea
* Correspondence: aziz@chungbuk.ac.kr

Received: 3 January 2019; Accepted: 26 February 2019; Published: 5 March 2019
����������
�������

Abstract: Recently, the skyline query has attracted interest in a wide range of applications from
recommendation systems to computer networks. The skyline query is useful to obtain the dominant
data points from the given dataset. In the low-dimensional dataset, the skyline query may return a
small number of skyline points. However, as the dimensionality of the dataset increases, the number of
skyline points also increases. In other words, depending on the data distribution and dimensionality,
most of the data points may become skyline points. With the emergence of big data applications,
where the data distribution and dimensionality are a significant problem, obtaining representative
skyline points among resulting skyline points is necessary. There have been several methods that
focused on extracting representative skyline points with various success. However, existing methods
have a problem of re-computation when the global threshold changes. Moreover, in certain cases,
the resulting representative skyline points may not satisfy a user with multiple preferences. Thus,
in this paper, we propose a new representative skyline query processing method, called representative
skyline cluster (RSC), which solves the problems of the existing methods. Our method utilizes the
hierarchical agglomerative clustering method to find the exact representative skyline points, which
enable us to reduce the re-computation time significantly. We show the superiority of our proposed
method over the existing state-of-the-art methods with various types of experiments.

Keywords: skyline query; representative skyline query; hierarchical clustering

1. Introduction

In data mining and data analysis, a multi-criteria analysis is a conventional method to address
the problems of real-life applications from recommendation systems to decision making. One of
the commonly used multi-criteria analysis methods is the skyline query. The skyline query enables
obtaining of interesting and dominant data points from the given dataset [1]. For example, consider a
hotel recommendation system. Assume that a system has information regarding the various hotels
in a particular location with attributes, including price and distance (i.e., distance from the beach).
In most cases, the user would prefer hotels with a low price and those closest to the beach. Here,
the skyline query returns the hotels that satisfy user preferences. Due to its usefulness, the skyline
query is extensively studied in many fields [2].

Formally, the skyline query can be defined as follows. Data point pi of a d-dimensional set of data
points P with the attribute value of pi.vj dominates data point pk (1 ≤ (i, k) ≤ |P|, 1 ≤ j ≤ d, i 6= k),
if every attribute value of pi is equal or less than pk’s (pi.vj ≤ pk.vj), and if there exists an attribute value,
which is less than pk’s (pi.vj < pk.vj), then pi dominates the pk (pi < pk).

Figure 1 illustrates an example of finding skyline points in two-dimensional space. Here, Figure 1a
visualizes the input data set in two-dimensional space, which contains 16 data points. Figure 1b shows

Information 2019, 10, 96; doi:10.3390/info10030096 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/10/3/96?type=check_update&version=1
http://dx.doi.org/10.3390/info10030096
http://www.mdpi.com/journal/information

Information 2019, 10, 96 2 of 26

skyline points obtained from Figure 1a. Assume that Figure 1 depicts the hotels mentioned earlier.
In this case, A1 indicates the distance from the beach and A0 indicates hotel prices. From Figure 1b,
it is easy to see that the highlighted points represent hotels with a low price and a distance closest to
the beach.

Information 2019, 10, x FOR PEER REVIEW 2 of 26

shows skyline points obtained from Figure 1a. Assume that Figure 1 depicts the hotels mentioned
earlier. In this case, A1 indicates the distance from the beach and A0 indicates hotel prices. From
Figure 1b, it is easy to see that the highlighted points represent hotels with a low price and a distance
closest to the beach.

Figure 1. An example of computing skyline points.

Generally, in the low-dimensional dataset, the skyline query returns a small number of skyline
points. However, as the dimensionality of the dataset increases, the number of skyline points also
increases. Depending on data distribution and dimensionality, most of the data points may become
skyline points. Koizumi et al. [3] introduced a skyline query processing technique, called BJR-Tree.
In the research, the authors conducted extensive experiments that show the skyline points’ ratio in
various dimensionality and three different data distribution, namely uniform, correlated, and
anti-correlated. Specifically, the experiment results for uniform and correlated datasets demonstrate
that more data points become skyline points from fifteen to the twenty-five-dimensional dataset.
The situation worsens for the anti-correlated dataset, where more data points become skyline points
starting from eight dimensions. This study demonstrates the lack of skyline query processing
methods when the dataset is high-dimensional. With the emergence of big data applications, where
the data distribution and dimensionality is a significant problem, obtaining representative skyline
points among resulting skyline points is necessary.

There have been several methods that focused on extracting representative skyline points with
various success [4–6]. These methods utilize a specific global threshold value. However, without
prior knowledge of the given dataset, the user must guess or iteratively increase the global threshold
value, which leads to a problem of re-computation. In other words, once the global threshold value
for representative skyline points changes, most of the existing methods reset the whole process and
begin over again. As a result, it increases the overall processing time required for finding
representative skyline points.

This problem can become significant in real-world applications as well. For example, assume
that a hotel recommendation system that recommends the k representative hotels depending on the
user given value. Suppose that the system stores hotels with low prices and distance closest to the
beach, as shown in Figure 1b. Let us assume that user1, user2, and user3 connected to the system
concurrently requested k = 3, k = 1, and k = 5 hotels, respectively. The system recommends three
representative hotels (k = 3) first and returns the result to the user1. Further, the system must begin a
new process and re-compute a single representative hotel for user2. Finally, the system re-computes
once again to show the five representative hotels to the user3. The overall computational time of
these methods increases as the number of requests increases. Moreover, certain existing
representative skyline query processing methods [4, 5] find an approximate result when d ≥ 3.

In this paper, we propose a new representative skyline query processing method, which solves
the problems of existing methods. More specifically, our contributions are as follows:

 We propose a method for selecting the representative skyline points that uses the hierarchical
agglomerative clustering structure. Here, we define a new distance measurement called θ
distance that enables us to obtain a set of top and diverse representative skyline points by
configuring the hierarchical agglomerative clustering structure.

Figure 1. An example of computing skyline points.

Generally, in the low-dimensional dataset, the skyline query returns a small number of skyline
points. However, as the dimensionality of the dataset increases, the number of skyline points
also increases. Depending on data distribution and dimensionality, most of the data points may
become skyline points. Koizumi et al. [3] introduced a skyline query processing technique, called
BJR-Tree. In the research, the authors conducted extensive experiments that show the skyline
points’ ratio in various dimensionality and three different data distribution, namely uniform,
correlated, and anti-correlated. Specifically, the experiment results for uniform and correlated datasets
demonstrate that more data points become skyline points from fifteen to the twenty-five-dimensional
dataset. The situation worsens for the anti-correlated dataset, where more data points become skyline
points starting from eight dimensions. This study demonstrates the lack of skyline query processing
methods when the dataset is high-dimensional. With the emergence of big data applications, where
the data distribution and dimensionality is a significant problem, obtaining representative skyline
points among resulting skyline points is necessary.

There have been several methods that focused on extracting representative skyline points with
various success [4–6]. These methods utilize a specific global threshold value. However, without
prior knowledge of the given dataset, the user must guess or iteratively increase the global threshold
value, which leads to a problem of re-computation. In other words, once the global threshold value for
representative skyline points changes, most of the existing methods reset the whole process and begin
over again. As a result, it increases the overall processing time required for finding representative
skyline points.

This problem can become significant in real-world applications as well. For example, assume that
a hotel recommendation system that recommends the k representative hotels depending on the user
given value. Suppose that the system stores hotels with low prices and distance closest to the beach,
as shown in Figure 1b. Let us assume that user1, user2, and user3 connected to the system concurrently
requested k = 3, k = 1, and k = 5 hotels, respectively. The system recommends three representative
hotels (k = 3) first and returns the result to the user1. Further, the system must begin a new process
and re-compute a single representative hotel for user2. Finally, the system re-computes once again
to show the five representative hotels to the user3. The overall computational time of these methods
increases as the number of requests increases. Moreover, certain existing representative skyline query
processing methods [4,5] find an approximate result when d ≥ 3.

In this paper, we propose a new representative skyline query processing method, which solves
the problems of existing methods. More specifically, our contributions are as follows:

• We propose a method for selecting the representative skyline points that uses the hierarchical
agglomerative clustering structure. Here, we define a new distance measurement called θ distance

Information 2019, 10, 96 3 of 26

that enables us to obtain a set of top and diverse representative skyline points by configuring the
hierarchical agglomerative clustering structure.

• We also show the correctness and efficiency of our proposed method through a comprehensive
experimental study.

The rest of the paper is organized as follows. In Section 2, we first review the skyline query
processing methods and then discuss the previous work on representative skyline query processing.
Further, in Section 3, we describe the proposed method for selecting the representative skyline query
processing, which utilizes the hierarchical agglomerative clustering. In Section 4, we demonstrate the
result of experiments on both synthetic and real datasets. Finally, in Section 5, we conclude the paper
and discuss future work.

2. Related Work

In this section, we first review the skyline query processing methods in Section 2.1 and the
representative skyline query processing methods in Section 2.2.

2.1. Skyline Query Processing Methods

There have been numerous methods proposed to process the skyline query efficiently. After
Borzsony and Kossmann [7] proposed a naive method of skyline query processing, called
Block-Nested-Loops (BNL), several other efficient skyline query processing methods were introduced.
We can summarize these methods into three categories: sort, partition, and index-based methods.

Chomicki et al. [8] proposed a method, called Sort-Filter-Skyline (SFS). It uses the same algorithmic
pattern as the BNL with an extra preprocessing step. In this preprocessing step, data points P are
scored by the monotone scoring function and sorted in ascending order. Unlike the BNL, the SFS
algorithm finds the skyline points with less CPU and I/O cost. Godfrey et al. [9] proposed an
alternative sort-based skyline query processing method, called Linear-Elimination-Sort-for-Skyline
(LESS). This method improves the SFS by introducing an elimination filter. This elimination filter is
used during the sorting process to reduce the number of pairwise comparisons of the SFS. On the other
hand, Bartolini et al. [10] proposed another extension of the SFS method, which uses stop pointers and
reduces the search space.

Partition-based skyline query processing methods divide the whole data space into smaller chunks.
Thus, the data can fit into the main memory. Borzsony and Kossmann [7] proposed two different
partition-based skyline query processing methods, called D&C and M-Way. The D&C method uses a
conventional median split to partition the d-dimensional dataset into 2d partitions. On the other hand,
M-Way uses a quantile split to divide the dataset into more specific partitions. Here, both methods
first find the local skyline points in each partition, and then, merge the skyline points. This method
can reduce the computational time and can be useful in the distributed environments. However,
Vlachou et al. [11] argued that such partitioning methods produce empty spaces. To solve the problem,
the authors proposed the angle-based skyline query processing method to remove the empty spaces
from the search space. Here, to partition the data points according to the certain angular threshold,
the algorithm turns the Cartesian coordinates of the data points into hyper-spherical coordinates.

Unlike previous skyline query processing methods, index-based skyline query processing
methods utilize the indexing structure to find the skyline points efficiently. Tan et al. [12] proposed to
use the Bitmap index to find skyline points. The efficiency of the bitmap relies on the speed of bit-wise
operations. However, due to the number of distinct values, a large amount of space is required to
create a Bitmap index. Thus, Papadias et al. [13] proposed to use the R-Tree indexing structure to
process the skyline query efficiently, called Branch-and-Bound-Skyline (BBS). The R-Tree index creates
minimum bounding rectangles (MBR) that contain m to M points. Thus, if any other point dominates
the lower left edge of the MBR, then BBS discards the whole MBR. Unlike conventional methods based
on the pair-wise comparison, this method enables us to perform a region-wise comparison and find
the skyline points efficiently. A different skyline query processing method, which is called Z-Sky,

Information 2019, 10, 96 4 of 26

was proposed in [14]. Here, the authors argued that even with the region-wise comparison, BBS still
suffers from empty space and overlapping MBR problems. To solve these problems, Z-Sky uses a
space-filling Z-curve with B+-Tree that reduces the computational time.

2.2. Representative Skyline Query Processing Methods

There have been numerous representative skyline query processing methods that focused on
obtaining the representative skyline point set. We can categorize them into two major groups,
namely dominance and distance-based methods. In Section 2.2.1, we review the dominance-based
representative skyline query processing methods, and in Section 2.2.2, we discuss the distance-based
methods. Finally, in Section 2.2.3, we provide an in-depth analysis of current representative skyline
query processing methods.

2.2.1. Dominance-Based Methods

Tao et al. [5] proposed a method, called Maximum-dominance (Max-Dom), to find the top-k
dominant representative skyline points from the skyline set S. For that, the authors first find the skyline
points S from the data points P. Further, they count the number of dominated data points of each
skyline point and store them in corresponding lists in descending order. Finally, k skyline points (p′1
. . . p′k) from the list is selected as the top-k representative skyline points. On the other hand, Huang
et al. [15] proposed a method, to find the representative skyline points, that utilizes the subspace
skyline points and called it as δ-Skyline (δ-Sky). Here, if the user given threshold δ is less than the
cardinality of skyline points (δ < |S|), then δ-Sky calculates the subspace skyline points recursively
until the number of skyline points is less or equal to δ (δ ≥ |S|). In the performance evaluation of the
proposed method, the authors demonstrated that the δ-Sky method is more efficient if the input is a
pre-built skycube [16], instead of skyline points S.

Xia et al. [17] proposed a ε-Sky method. In this method, instead of making the comparison on
the skyline points or the data points, the authors perform the skyline region partitioning based on the
ε value. The range of ε value is [−1.0, 1.0]. There is a special case when the ε = 0 (i.e., all the skyline
points become representative skyline points). Thus, depending on the ε value, the ε-Sky moves the
skyline region towards the origin of the data space or maximum value. Suppose that the data point
values are in the unit range [0.0, 1.0]d, then ε < 0, it moves the skyline region towards the [0.0, 0.0]d.
On the other hand, when ε > 0, it moves the skyline region towards the [1.0, 1.0]d, and returns the
data points on the left side of the skyline region as the representative skyline points. Koltun et al. [18]
used the same notation ε to find the representative skyline points, called approximately dominating
representatives (ADR). The proposed method is similar to the density-based clustering method (i.e.,
DBSCAN), which creates a number of circles with the radius of ε on the skyline points. In this method,
the center of the circles become the representative skyline points.

2.2.2. Distance-Based Methods

Most of the distance-based methods create the groups of similar skyline points and sample the
representative skyline points from each group. Nanongkai et al. [19] proposed the method of finding
representative skyline points using a distance-based measurement (e.g., Greedy). In their research,
the authors have discovered that dominance-based methods, such as Max-Dom, cannot guarantee to
show the full contour of the skyline points. Thus, the authors proposed a number of algorithms that
choose the k representative skyline points. These k representative skyline points are the skyline points
that minimize the maximum distance between the skyline points. However, their method only finds
exact representatives in d = 2. When d ≥ 3, the algorithm becomes NP-hard, and thus, only finds the
approximate representative skyline points.

Zhao et al. [6] proposed an alternative distance-based method, which utilizes the k-medoids
clustering algorithm to find the representative skyline points, called Call-to-Order. Based on the
user preferences, the method samples the skyline points using the TA algorithm and creates k

Information 2019, 10, 96 5 of 26

clusters. However, it still suffers from re-computation time whenever the user preference k changes.
Another clustering based method is proposed in [20], called the similarity-based representative skyline
algorithm (SBRSA). The authors create similarity clusters of the service recommendation systems.
The proposed method measures the distance between all the skyline points to create similarity based
clusters. Here, it stores the minimum and maximum distance values as the similarity measurement

Information 2019, 10, x FOR PEER REVIEW 5 of 26

However, it still suffers from re-computation time whenever the user preference k changes. Another 184
clustering based method is proposed in [20], called the similarity-based representative skyline 185
algorithm (SBRSA). The authors create similarity clusters of the service recommendation systems. 186
The proposed method measures the distance between all the skyline points to create similarity based 187
clusters. Here, it stores the minimum and maximum distance values as the similarity measurement ƛ. 188
The algorithm creates similarity based clusters and samples representative of skyline points using 189
the ƛ. 190

On the other hand, Asudeh et al. [21] claimed that representative skyline could be used for 191
convex-hull calculation. Thus, the authors have used a regret-ratio minimization algorithm that 192
maximizes the representation (RRMS). The proposed algorithm first calculates the weight of each 193
skyline point and then estimates the weight loss between the skyline points. Finally, it chooses the 194
skyline points, which lose the minimum amount of weight. Magnani et al. [22] proposed a method, 195
which finds the k most significant, yet diverse representative skyline points (simply, Big Picture). For 196
that, the proposed method calculates the diversity of each skyline point by measuring the number of 197
skyline points between the two skyline points. Initially, the significant value to the skyline points is 198
0.5. However, users can modify the significance values according to their preferences. 199

2.2.3. Analysis 200
In this section, we analyze the representative skyline query processing methods. As 201

representative skyline points mainly reflect the user preference, it is important to model the selection 202
methods for both, the top and diverse representative skyline points. Figure 2 shows the example of 203
the three diverse and three top representative skyline points for the skyline points depicted in Figure 204
1b. Note that this example is a general illustration of the selection methods for both, top and diverse 205
representative skyline points. The goal of diverse representative skyline points is to show the 206
contour of the overall skyline points with the minimum amount of skyline points. On the other hand, 207
the top representatives show the skyline points, which are more dominant than the other skyline 208
points based on specific criteria. 209

 210

Figure 2. Example of 3 diverse and 3 top representative skyline points. 211

Based on top and diverse representativeness, we analyzed the state-of-the-art representative 212
skyline query processing methods mentioned in Section 2. As listed in Table 1, most of the current 213
representative skyline query processing methods cannot show top and diverse representative 214
skyline points at the same time. Moreover, most of the methods have the re-computation problem, 215
when we change the global threshold value. The RMMS method does not have a re-computation 216
problem as it finds the skyline points to create the convex hull. However, the number of 217
representative skyline points returned from the RMMS method is unstable. 218

Table 1. Analysis of current representative skyline query processing methods. 219
Method Name Re-Computation Diverse Representative Top Representative

Max-Dom √ - √

. The algorithm creates similarity based clusters and samples representative of skyline points using
the

Information 2019, 10, x FOR PEER REVIEW 5 of 26

However, it still suffers from re-computation time whenever the user preference k changes. Another 184
clustering based method is proposed in [20], called the similarity-based representative skyline 185
algorithm (SBRSA). The authors create similarity clusters of the service recommendation systems. 186
The proposed method measures the distance between all the skyline points to create similarity based 187
clusters. Here, it stores the minimum and maximum distance values as the similarity measurement ƛ. 188
The algorithm creates similarity based clusters and samples representative of skyline points using 189
the ƛ. 190

On the other hand, Asudeh et al. [21] claimed that representative skyline could be used for 191
convex-hull calculation. Thus, the authors have used a regret-ratio minimization algorithm that 192
maximizes the representation (RRMS). The proposed algorithm first calculates the weight of each 193
skyline point and then estimates the weight loss between the skyline points. Finally, it chooses the 194
skyline points, which lose the minimum amount of weight. Magnani et al. [22] proposed a method, 195
which finds the k most significant, yet diverse representative skyline points (simply, Big Picture). For 196
that, the proposed method calculates the diversity of each skyline point by measuring the number of 197
skyline points between the two skyline points. Initially, the significant value to the skyline points is 198
0.5. However, users can modify the significance values according to their preferences. 199

2.2.3. Analysis 200
In this section, we analyze the representative skyline query processing methods. As 201

representative skyline points mainly reflect the user preference, it is important to model the selection 202
methods for both, the top and diverse representative skyline points. Figure 2 shows the example of 203
the three diverse and three top representative skyline points for the skyline points depicted in Figure 204
1b. Note that this example is a general illustration of the selection methods for both, top and diverse 205
representative skyline points. The goal of diverse representative skyline points is to show the 206
contour of the overall skyline points with the minimum amount of skyline points. On the other hand, 207
the top representatives show the skyline points, which are more dominant than the other skyline 208
points based on specific criteria. 209

 210

Figure 2. Example of 3 diverse and 3 top representative skyline points. 211

Based on top and diverse representativeness, we analyzed the state-of-the-art representative 212
skyline query processing methods mentioned in Section 2. As listed in Table 1, most of the current 213
representative skyline query processing methods cannot show top and diverse representative 214
skyline points at the same time. Moreover, most of the methods have the re-computation problem, 215
when we change the global threshold value. The RMMS method does not have a re-computation 216
problem as it finds the skyline points to create the convex hull. However, the number of 217
representative skyline points returned from the RMMS method is unstable. 218

Table 1. Analysis of current representative skyline query processing methods. 219
Method Name Re-Computation Diverse Representative Top Representative

Max-Dom √ - √

.
On the other hand, Asudeh et al. [21] claimed that representative skyline could be used for

convex-hull calculation. Thus, the authors have used a regret-ratio minimization algorithm that
maximizes the representation (RRMS). The proposed algorithm first calculates the weight of each
skyline point and then estimates the weight loss between the skyline points. Finally, it chooses the
skyline points, which lose the minimum amount of weight. Magnani et al. [22] proposed a method,
which finds the k most significant, yet diverse representative skyline points (simply, Big Picture).
For that, the proposed method calculates the diversity of each skyline point by measuring the number
of skyline points between the two skyline points. Initially, the significant value to the skyline points is
0.5. However, users can modify the significance values according to their preferences.

2.2.3. Analysis

In this section, we analyze the representative skyline query processing methods. As representative
skyline points mainly reflect the user preference, it is important to model the selection methods for
both, the top and diverse representative skyline points. Figure 2 shows the example of the three
diverse and three top representative skyline points for the skyline points depicted in Figure 1b.
Note that this example is a general illustration of the selection methods for both, top and diverse
representative skyline points. The goal of diverse representative skyline points is to show the contour
of the overall skyline points with the minimum amount of skyline points. On the other hand, the top
representatives show the skyline points, which are more dominant than the other skyline points based
on specific criteria.

Information 2019, 10, x FOR PEER REVIEW 5 of 26

However, it still suffers from re-computation time whenever the user preference k changes. Another
clustering based method is proposed in [20], called the similarity-based representative skyline
algorithm (SBRSA). The authors create similarity clusters of the service recommendation systems.
The proposed method measures the distance between all the skyline points to create similarity based
clusters. Here, it stores the minimum and maximum distance values as the similarity measurement ƛ.
The algorithm creates similarity based clusters and samples representative of skyline points using
the ƛ.

On the other hand, Asudeh et al. [21] claimed that representative skyline could be used for
convex-hull calculation. Thus, the authors have used a regret-ratio minimization algorithm that
maximizes the representation (RRMS). The proposed algorithm first calculates the weight of each
skyline point and then estimates the weight loss between the skyline points. Finally, it chooses the
skyline points, which lose the minimum amount of weight. Magnani et al. [22] proposed a method,
which finds the k most significant, yet diverse representative skyline points (simply, Big Picture). For
that, the proposed method calculates the diversity of each skyline point by measuring the number of
skyline points between the two skyline points. Initially, the significant value to the skyline points is
0.5. However, users can modify the significance values according to their preferences.

2.2.3. Analysis

In this section, we analyze the representative skyline query processing methods. As
representative skyline points mainly reflect the user preference, it is important to model the selection
methods for both, the top and diverse representative skyline points. Figure 2 shows the example of
the three diverse and three top representative skyline points for the skyline points depicted in Figure
1b. Note that this example is a general illustration of the selection methods for both, top and diverse
representative skyline points. The goal of diverse representative skyline points is to show the
contour of the overall skyline points with the minimum amount of skyline points. On the other hand,
the top representatives show the skyline points, which are more dominant than the other skyline
points based on specific criteria.

Figure 2. Example of 3 diverse and 3 top representative skyline points.

Based on top and diverse representativeness, we analyzed the state-of-the-art representative
skyline query processing methods mentioned in Section 2. As listed in Table 1, most of the current
representative skyline query processing methods cannot show top and diverse representative
skyline points at the same time. Moreover, most of the methods have the re-computation problem,
when we change the global threshold value. The RMMS method does not have a re-computation
problem as it finds the skyline points to create the convex hull. However, the number of
representative skyline points returned from the RMMS method is unstable.

Table 1. Analysis of current representative skyline query processing methods.

Method Name Re-Computation Diverse Representative Top Representative
Max-Dom √ - √

Figure 2. Example of 3 diverse and 3 top representative skyline points.

Based on top and diverse representativeness, we analyzed the state-of-the-art representative
skyline query processing methods mentioned in Section 2. As listed in Table 1, most of the current
representative skyline query processing methods cannot show top and diverse representative skyline
points at the same time. Moreover, most of the methods have the re-computation problem, when we
change the global threshold value. The RMMS method does not have a re-computation problem as
it finds the skyline points to create the convex hull. However, the number of representative skyline
points returned from the RMMS method is unstable.

Information 2019, 10, 96 6 of 26

Table 1. Analysis of current representative skyline query processing methods.

Method Name Re-Computation Diverse Representative Top Representative

Max-Dom
√

-
√

δ-Sky
√

-
√

ε-Sky
√

-
√

ADR
√ √

-
Greedy

√ √
-

Call-to-Order
√

- -
SBRSA

√ √
-

RRMS -
√

-
Big Picture

√ √
-

3. Proposed Method

In this section, we describe our proposed method, called the representative skyline cluster
(RSC). Recall from previous sections that the skyline query processor may result in a large number
of skyline points based on the data distribution and dimensionality. Thus, users tend to value
representative skyline points over actual skyline points. However, most of the current representative
skyline query processing methods return the approximate representatives, when the input dataset
has d ≥ 3. Moreover, these methods must re-compute the whole process once we change the global
threshold for representation. Thus, we propose a novel method that uses the hierarchical agglomerative
clustering. It enables us to create a dendrogram for finding the exact representative skyline points
more efficiently.

We first provide an overview of the proposed method in Section 3.1. Further, in Section 3.2,
we demonstrate how we find the skyline points. In Section 3.3, we describe the hierarchical
agglomerative clustering method with examples. In Section 3.4, we explain the configuration step in
detail. Finally, in Section 3.5, we provide a theoretical analysis of the proposed method.

3.1. Overview

To find the exact representative skyline points efficiently, RSC has the following three steps,
namely skylining step, clustering step, and configuration step. Figure 3 illustrates the RSC steps in the
two-dimensional dataset with 16 data points. Here, Figure 3a shows the skylining step. We compute
the skyline points from the input dataset. The highlighted eight points are the result of the skylining
step. Further, in Figure 3b, we create a dendrogram based on the highlighted skyline points using the
hierarchical agglomerative clustering method. While clustering, we store extra information on the
representative skyline points in each newly formed cluster. Finally, in Figure 3c, we configure and find
the representative skyline points by utilizing the dendrogram that we created in the clustering step.

Unlike other representative skyline query processing methods, the RSC finds the exact
representative skyline points even in high-dimensional data. An essential property of representative
skyline points is to show the characteristics of the overall skyline points. However, we believe
that limiting the number of representations by using k is improper. Thus, the RSC uses distance
measurement instead of using the k number measurement. In addition, the RSC method finds
two different representative skyline points depending on the input value, which are diverse and
top representatives.

Information 2019, 10, 96 7 of 26
Information 2019, 10, x FOR PEER REVIEW 7 of 26

Figure 3. Overall process of RSC.

3.2. Skylining Step

To find the representative skyline points, we first find the overall skyline points S from the
given dataset P. In the skylining step, we use the SFS algorithm [8] described in Section 2. SFS
algorithm uses the same calculation steps as the BNL algorithm with an extra preprocessing step.
First, SFS scores input data points P using monotone scoring function and sorts them back in
ascending order. Equation (1) shows the entropy calculation of the given data point pi.

𝐸(𝑝) = ln 1 + 𝑝 . 𝑣 (1)

SFS guarantees that data point with smaller entropy value E(pi) < E(pj) (i ≠ j) is not likely to be
dominated by the other points, which have greater entropy value in dominance check pi ⊀ pj. This
notion significantly reduces the computation time to find skyline points.

3.3. Clustering Step

In the clustering step, we cluster the obtained skyline points from the skylining step into |C| =
2|S| - 1 clusters. For that, we use the hierarchical agglomerative clustering method. The hierarchical
agglomerative clustering considers all the skyline points as singleton clusters and merges two closest
clusters until every cluster is merged into one. Each time two clusters are merged, we calculate
centroid and representative skyline points. The representative skyline point is a skyline point, which
is the closest to the centroid of the newly formed cluster. Any distance measurement L∞ can calculate
the measurement of closeness. For the sake of simplicity, we use L2 Euclidean Distance measurement.
Equation (2) shows the Euclidean Distance calculation between two clusters.

𝑑 𝑐 , 𝑐 = 𝑐 . 𝑐𝑟. 𝑣 − 𝑐 . 𝑐𝑟. 𝑣 (𝑖 ≠ 𝑗) (2)

Algorithm 1 shows a procedure for the clustering step. In Example 1, we show the working
process of the clustering step in two-dimensional space. The algorithm receives skyline set S as an
input and outputs the root cluster of the dendrogram C. On line 1, the algorithm initializes the

Figure 3. Overall process of RSC.

3.2. Skylining Step

To find the representative skyline points, we first find the overall skyline points S from the given
dataset P. In the skylining step, we use the SFS algorithm [8] described in Section 2. SFS algorithm uses
the same calculation steps as the BNL algorithm with an extra preprocessing step. First, SFS scores
input data points P using monotone scoring function and sorts them back in ascending order. Equation
(1) shows the entropy calculation of the given data point pi.

E(pi) =
d

∑
j=1

ln
(
1 + pi.vj

)
(1)

SFS guarantees that data point with smaller entropy value E(pi) < E(pj) (i 6= j) is not likely to
be dominated by the other points, which have greater entropy value in dominance check pi 6≺ pj.
This notion significantly reduces the computation time to find skyline points.

3.3. Clustering Step

In the clustering step, we cluster the obtained skyline points from the skylining step into |C| =
2|S| − 1 clusters. For that, we use the hierarchical agglomerative clustering method. The hierarchical
agglomerative clustering considers all the skyline points as singleton clusters and merges two closest
clusters until every cluster is merged into one. Each time two clusters are merged, we calculate centroid
and representative skyline points. The representative skyline point is a skyline point, which is the
closest to the centroid of the newly formed cluster. Any distance measurement L∞ can calculate the
measurement of closeness. For the sake of simplicity, we use L2 Euclidean Distance measurement.
Equation (2) shows the Euclidean Distance calculation between two clusters.

d
(
ci, cj

)
=

√√√√ d

∑
k=1

(
ci.cr.v2

k − cj.cr.v2
k
)
(i 6= j) (2)

Algorithm 1 shows a procedure for the clustering step. In Example 1, we show the working
process of the clustering step in two-dimensional space. The algorithm receives skyline set S as an

Information 2019, 10, 96 8 of 26

input and outputs the root cluster of the dendrogram C. On line 1, the algorithm initializes the empty
list of the clusters C. From line 2 to 5, it iterates through the input skyline set S and creates the singleton
clusters and stores them in C. Further, on lines 6–11, the algorithm calculates the distance matrix of
the current clusters stored in C and merges the two closest clusters together until |C| = 1. When two
clusters are merged, centroid and the representative skyline points are also calculated. Finally, on line
12, the algorithm returns the C that contains a single cluster, which is the root of the dendrogram.

Algorithm 1.: Clustering step

Input:
(1) S = {s1, s2, s3 . . . s|S|} /*Skyline set*/
Ouput:
(1) C /*Root of the dendrogram*/
Algorithm:
1. initialize C = {}
2. FOR i = 0 TO |S| DO
3. Create new cluster ci with ci.dist = 0, ci.rp = si, ci.cr = si, ci.S = {si}
4. C.add(ci)
5. END FOR
6. WHILE |C| > 1 DO
7. DMatrix = Calculate distance matrix of C
8. Sort(DMatrix) in ascending order.
9. cnew = Merge(DMatrix[0])
10. Remove C[DMatrix[0][0]] and C[DMatrix[0][1]] from C
11. C.add(cnew)
12. RETURN C

Example 1. Figure 4 illustrates the example of the clustering step in two-dimensional space with 8 skyline
points. Here, the input skyline points are labeled from a–h along the axis A0. First, the algorithm receives the set
of skyline points S in Figure 4a and initializes the list of clusters C = {a, b, c, d, e, f, g, h}. As shown in Figure 4b,
the closest clusters are a and b, and thus, they are merged, where cluster i is formed. Further, the cluster a and b
are removed from C, and i is inserted into the C = {i, c, d, e, f, g, h}. In Figure 4c–h, the algorithm repeats the
merging process until C has a single cluster. Finally, in Figure 4i, it returns the resulting list of clusters that
contain the root of the dendrogram.

Information 2019, 10, 96 9 of 26
Information 2019, 10, x FOR PEER REVIEW 9 of 26

Figure 4. An example of clustering step.

3.4. Configuration Step

In this step, we demonstrate how we configure and select the diverse and top representative
skyline points from the dendrogram. In Section 3.4.1, we define the θ distance followed by the
explanation of the selection method for representative skyline points in Section 3.4.2. Finally, in
Section 3.4.3, we explain the LMethod to find the appropriate θ distance.

3.4.1. θ Distance

Depending on the number of dimensions d of the input skyline points S, the distance between
clusters can range [0.0, √𝑑], where the values of the skyline points range [0.0, 1.0]d. To enable direct
access to the dendrogram, we normalize the cluster distance values.

Definition 1: (θ distance). We define θ distance as the normalized distance value of the cluster, which can be
calculated by Equation (3). 𝑐 . 𝜃 = 𝑐 . 𝑑𝑖𝑠𝑡𝑐 . 𝑑𝑖𝑠𝑡 (3)

Figure 4. An example of clustering step.

3.4. Configuration Step

In this step, we demonstrate how we configure and select the diverse and top representative
skyline points from the dendrogram. In Section 3.4.1, we define the θ distance followed by the
explanation of the selection method for representative skyline points in Section 3.4.2. Finally,
in Section 3.4.3, we explain the LMethod to find the appropriate θ distance.

3.4.1. θ Distance

Depending on the number of dimensions d of the input skyline points S, the distance between
clusters can range [0.0,

√
d], where the values of the skyline points range [0.0, 1.0]d. To enable direct

access to the dendrogram, we normalize the cluster distance values.

Information 2019, 10, 96 10 of 26

Definition 1 (θ distance). We define θ distance as the normalized distance value of the cluster, which can be
calculated by Equation (3).

ci.θ =
ci.dist

croot.dist
(3)

Considering that the clusters are created by merging two closest pair of clusters, croot should have
the maximum distance value among the other created clusters. Thus, dividing the distance value of
the clusters by the croot.dist normalizes them to [0.0, 1.0].

3.4.2. Representative Skyline Points Selection

In this section, we explain a selection process of the representative skyline points. To select the
representatives, we should efficiently access the dendrogram that we created from the clustering step.
As we mentioned in Section 2, based on the user’s preference, we can find two different representative
skyline points, namely top and diverse.

Definition 2 (Diverse representative skyline points). Let DE be the dendrogram that is created by using
hierarchical agglomerative clustering and input.θ be the user given input. Diverse representative skyline points
are the representative points ci. rp of the clusters that have the following feature ci.θ ≤ input.θ < ci.parent.θ
(0 < i < |C|).

Definition 3 (Top representative skyline points). Let DE be the dendrogram that has been created by using
hierarchical agglomerative clustering and input.θ be the user given input. The top representative skyline points
are the set of skyline points that are included in the cluster ci and have the following feature ci.θ ≤ input.θ and
c.S ⊇ croot.rp (0 < i < |C|).

In Algorithm 2, we present a procedure for selecting the representative skyline points from the
dendrogram. The algorithm receives the dendrogram DE, input.θ and flag as inputs. It outputs a list
of representative skyline points RepSP depending on the flag value. The flag has a value of either
“top” or “diverse”. On line 1, the algorithm initializes the empty list of representative skyline points
RepSP. On line 2–4, it checks the value of the flag and proceeds to a procedure to find the diverse
representative skyline points, which is shown in Algorithm 3. If the flag value is not diverse then,
on line 5, the algorithm proceeds to a procedure to find the top representative skyline points, which is
shown in Algorithm 4. Finally, on line 6, it returns the list of representative skyline points RepSP.

Algorithm 2.: Representative skyline point selection

Input:
(1) DE /*Dendrogram that has been created in the clustering step*/
(2) input.θ /*User given input value in the unit range [0.0, 1.0]*/
(3) flag /*User given input flag either with value of top or diverse*/
Ouput:
(1) RepSP /*List of representative skyline points*/
Algorithm:
1. initialize RepSP = {}
2. IF flag = diverse THEN
3. RepSP = DiverseRepresentative(DE, input.θ)
4. ELSE
5. RepSP = TopRepresentative(DE, input.θ)
6. RETURN RepSP

In Algorithm 3, we show a procedure for selecting the diverse representative skyline points.
It receives the dendrogram DE and input.θ as input and outputs the list of diverse representative
skyline points, DivREP. On line 1, the algorithm initializes the empty list of diverse representative

Information 2019, 10, 96 11 of 26

skyline points DivREP, and on line 2, it initializes the currentCluster as the root of the dendrogram DE.
On line 3–13, the algorithm traverses through the dendrogram DE recursively until it finds the diverse
representative skyline points, which satisfy the user given threshold. Finally, on line 14, the algorithm
returns the list of diverse representative skyline points DivREP.

In Example 2, we show a step-by-step process of selecting the diverse representative. Moreover,
we use three different input.θ values to show how the representation changes.

Algorithm 3. Diverse Representative Selection

Input:
(1) DE /*Dendrogram that has been created in the clustering step*/
(2) input.θ /*User given input value in unit range [0.0, 1.0]*/
Ouput:
(1) DivREP /*List of diverse representative skyline points*/
Algorithm:
1. initialize DivREP = {}
2. currentCluster = DE.getRoot()
3. TreeTraversal(currentCluster, input.θ, DivREP)
4. leftCluster = currentCluster.leftChild
5. rightCluster = currentCluster.rightChild
6. IF leftCluster.θ > input.θ THEN
7. TreeTraversal(leftCluster, input.θ, DivREP)
8. IF rightCluster.θ > input.θ THEN
9. TreeTraversal(rightCluster, input.θ, DivREP)
10. IF leftCluster.θ ≤ input.θ THEN
11. DivREP.add(leftCluster.rp)
12. IF rightCluster.θ ≤ input.θ THEN
13. DivREP.add(rightCluster.rp)
14. RETURN DivREP

Example 2. Figure 5 illustrates the working process of a diverse representative selection algorithm in
two-dimensional space with 8 skyline points. We assume that dendrogram DE of the input skyline points
is created beforehand. Figure 5a–c illustrates the example of choosing the diverse representative skyline points,
where the input.θ = 0.8, Figure 5d–f illustrates the example of choosing the diverse representative skyline points,
where the input.θ = 0.5 and Figure 5g–i illustrates the example of choosing the diverse representative skyline
points where the input.θ = 0.2. In Figure 5a, the algorithm receives the dendrogram DE and the input.θ = 0.8 as
inputs. Given that the input.θ = 0.8 is higher than the θ distance value of most clusters, we only must expand
the croot, which is the cluster o. Thus, both o.leftChild and o.rightChild, which are n and h respectively have the θ

distance value smaller than 0.8. Thus, the algorithm chooses the representative skyline points n.rp and h.rp as
the diverse representative skyline points. Figure 5c illustrates the diverse skyline points, which are selected by the
algorithm when the input.θ = 0.8. On the other hand, Figure 5d illustrates the dendrogram DE, when input.θ
value changes to 0.5. In this case, the algorithm must expand several clusters before reaching the desired clusters.
For that, the algorithm first expands the root cluster, which is o and adds h.rp into the DivREP. However, the θ

distance value of cluster n is greater than the input.θ (n.θ > input.θ). Thus, the algorithm expands the cluster n.
Once the cluster n expands, both n.leftChild and n.rightChild clusters have θ distance value smaller than the 0.5.
Thus, the representative skyline points m.rp and l.rp are added to the DivREP. Figure 5f illustrates the diverse
representative skyline points, which are selected by the algorithm when the input.θ = 0.5. Finally, in Figure 5g,
the input.θ changes to 0.2. As shown in previous steps, the algorithm expands the necessary clusters and adds
the desired representative skyline points into DivREP. Figure 5i illustrates the diverse representative skyline
points which are selected by the algorithm when the input.θ = 0.2.

Information 2019, 10, 96 12 of 26
Information 2019, 10, x FOR PEER REVIEW 12 of 26

Figure 5. An example of diverse representative skyline points selection.

In Algorithm 4, we show a procedure for selecting the top representative skyline points. The
algorithm receives the dendrogram DE and input.θ as inputs and outputs the list of top
representative skyline points TopREP. On line 1, it initializes the empty list of the top representative
skyline points TopREP. On line 2, the algorithm gets the croot.rp as topPoint, and on line 3, it finds the
singleton cluster of the corresponding topPoint. On line 4–6, the algorithm iterates through the
clusters and finds the top representative skyline points. Finally, on line 7, the algorithm outputs the
result.

Algorithm 4. Top Representative Selection
Input:
(1) DE /*Dendrogram that has been created in the clustering step*/
(2) input.θ /*User given input value in unit range [0.0, 1.0]*/
Ouput:
(1) TopREP /*List of top representative skyline points*/
Algorithm:
1. initialize TopREP = {}
2. topPoint = DE.getRoot().rp

Figure 5. An example of diverse representative skyline points selection.

In Algorithm 4, we show a procedure for selecting the top representative skyline points.
The algorithm receives the dendrogram DE and input.θ as inputs and outputs the list of top
representative skyline points TopREP. On line 1, it initializes the empty list of the top representative
skyline points TopREP. On line 2, the algorithm gets the croot.rp as topPoint, and on line 3, it finds the
singleton cluster of the corresponding topPoint. On line 4–6, the algorithm iterates through the clusters
and finds the top representative skyline points. Finally, on line 7, the algorithm outputs the result.

Information 2019, 10, 96 13 of 26

Algorithm 4. Top Representative Selection

Input:
(1) DE /*Dendrogram that has been created in the clustering step*/
(2) input.θ /*User given input value in unit range [0.0, 1.0]*/
Ouput:
(1) TopREP /*List of top representative skyline points*/
Algorithm:
1. initialize TopREP = {}
2. topPoint = DE.getRoot().rp
3. topCluster = findSingleton(topPoint) /*Singleton cluster of topPoint*/
4. WHILE topCluster.parent.θ <= input.θ DO
5. TopREP = topCluster.S /*Skyline points of the cluster*/
6. topCluster = topCluster.parent
7. RETURN TopREP

Example 3. Figure 6 illustrates the working process of the top representative selection algorithm in
two-dimensional space with 8 skyline points. We assume that dendrogram DE of the input skyline points
is created beforehand. Figure 6a–c illustrates the example of choosing the top representative skyline points, where
the input.θ = 0.1, Figure 6d–f illustrates the example of choosing the top representative skyline points, where the
input.θ = 0.4 and Figure 6g–i illustrates the example of choosing the top representative skyline points where
the input.θ = 1.0. In Figure 6a the algorithm receives the dendrogram DE and the input.θ = 0.1 as inputs.
Except for singleton clusters, the θ distance value of the clusters is less than 0.1, and thus, skyline points S of
cluster e are chosen as the top representative skyline points. Figure 6b illustrates a selection process of the top
representative skyline point in the dendrogram and Figure 6c illustrates the top representative skyline points in
two-dimensional space. The highlighted point is returned as a top representative skyline point, which is preferred
by the user. On the other hand, in Figure 6d, we increase input.θ value to 0.4. In this case, the algorithm reaches
out to the parent clusters, which have the θ distance value smaller or equal to the input.θ. Therefore, as top
representative skyline points the skyline points S of the cluster l are selected. Figure 6f illustrates the list of
top representative skyline points TopREP. When the input.θ = 1.0, all the skyline points are selected as the top
representative skyline points. This process is shown in Figure 6h,i.

It is important to note that for both cases (i.e., top and diverse representative selection), we do not
need to re-compute the whole process over again. Instead, we simply change input.θ that, unlike most
of the existing methods, results in on-the-fly selection of the number of representative skyline points.
This procedure enables a significant reduction of the overall processing time required for finding
representative skyline points.

Information 2019, 10, 96 14 of 26

Information 2019, 10, x FOR PEER REVIEW 14 of 26

Figure 6. An example of top representative skyline points selection.

3.4.3. Finding Appropriate input.θ

In previous sections, we explained the θ distance and the representative skyline points selection
algorithms. Depending on the input.θ, our proposed algorithm can find the representative skyline
points. However, finding an appropriate input.θ is a significant problem. We use LMethod proposed
by Salvador et al. [23] to solve the problem. It is a simple and efficient method to find the appropriate
number of clusters when the clustering method is hierarchical.

The LMethod creates a so-called evaluation graph, which has two axes. The Y-axis is the
distance value; in our case, it is the θ distance value of the clusters. In addition, the X-axis is the
number of clusters. The LMethod is similar to the other knee-based method and is used to minimize
the root mean squared error (RMSE).

Figure 6. An example of top representative skyline points selection.

3.4.3. Finding Appropriate input.θ

In previous sections, we explained the θ distance and the representative skyline points selection
algorithms. Depending on the input.θ, our proposed algorithm can find the representative skyline
points. However, finding an appropriate input.θ is a significant problem. We use LMethod proposed
by Salvador et al. [23] to solve the problem. It is a simple and efficient method to find the appropriate
number of clusters when the clustering method is hierarchical.

The LMethod creates a so-called evaluation graph, which has two axes. The Y-axis is the distance
value; in our case, it is the θ distance value of the clusters. In addition, the X-axis is the number of

Information 2019, 10, 96 15 of 26

clusters. The LMethod is similar to the other knee-based method and is used to minimize the root
mean squared error (RMSE).

Figure 7 illustrates the evaluation graph and the RMSE calculation of the example used in
Section 3.1. As shown in Figure 7a, the evaluation graph is the two-dimensional dataset, which has
the same number of data points as |S|. Thus, we can store them in the list PE = {pe1, pe2, . . . pe|S|}.
In order to find the appropriate number of clusters, LMethod applies linear regression in two different
parts of the data points, which are partitioned at the pei (1 ≤ i ≤ |S| − 1). First, it applies linear
regression on the evaluation points from pe1 to pei, calculates the RMSE, and stores it as RMSEL.
Further, it performs the same procedure, but on different evaluation points, which are from pei + 1 to
pe|S| and stores it as RMSER. Finally, it calculates the overall RMSE of evaluation point pei into RMSEi
by using the following Equation (4).

RMSEi =
i− 1
|S| − 1

RMSEL +
|S| − i
|S| − 1

RMSER (4)

Information 2019, 10, x FOR PEER REVIEW 15 of 26

Figure 7 illustrates the evaluation graph and the RMSE calculation of the example used in
Section 3.1. As shown in Figure 7a, the evaluation graph is the two-dimensional dataset, which has
the same number of data points as |S|. Thus, we can store them in the list PE = {pe1, pe2, ... pe|S|}. In
order to find the appropriate number of clusters, LMethod applies linear regression in two different
parts of the data points, which are partitioned at the pei (1 ≤ i ≤ |S| − 1). First, it applies linear
regression on the evaluation points from pe1 to pei, calculates the RMSE, and stores it as RMSEL.
Further, it performs the same procedure, but on different evaluation points, which are from pei+1 to
pe|S| and stores it as RMSER. Finally, it calculates the overall RMSE of evaluation point pei into 𝑅𝑀𝑆𝐸
by using the following Equation (4).

Figure 7. Working process of LMethod.

𝑅𝑀𝑆𝐸 = 𝑖 − 1|𝑆| − 1 𝑅𝑀𝑆𝐸 + |𝑆| − 𝑖|𝑆| − 1 𝑅𝑀𝑆𝐸 (4)

Finally, the LMethod chooses the RMSEi with the minimum value as the appropriate one and
returns the θ distance value. In Figure 7b, we illustrated the result of the LMethod by using the
example skyline set we have shown in Section 3.1.

3.5. Theoretical Analysis

In this section, we analyze the time complexity of the RSC. The time for finding representative
skyline points of the proposed method is affected by the number of objects n and the dimension of
the universe d. As mentioned in Section 3.1, the proposed method proceeds in three steps, namely
the skylining step, clustering step, and configuration step. Thus, the time complexity of the
proposed method consists of those three steps.

First, in the skyline step, we use the SFS algorithm. When the cardinality of the input set is n
and the dimensions of the universe in d, the time complexity (TC) of finding the skyline points 𝑇𝐶 is shown in Equation (5) [7,8].

 𝑇𝐶 = 𝒪(𝑛𝑙𝑜𝑔𝑛), if 𝑑 = 2,3𝒪(𝑛𝑙𝑜𝑔 𝑛), if 𝑑 ≥ 4 (5)

Next, in the clustering step, we use the hierarchical agglomerative clustering algorithm. The
worst case time complexity of the traditional hierarchical agglomerative clustering algorithm
is 𝒪(𝑛) . However, in this paper, we use an efficient hierarchical agglomerative clustering
algorithm that uses a heap. The algorithm first computes the distance between clusters in 𝒪(𝑛)
time, and then uses the heap for searching the nearest pair of clusters and merging them in 𝒪(𝑙𝑜𝑔𝑛)
time. Thus, the time complexity 𝑇𝐶 of clustering step is shown in Equation (6) [24].

 𝑇𝐶 = 𝒪(𝑛 𝑙𝑜𝑔𝑛) (6)

Lastly, in the configuration step, we select top or diverse representative skyline points from the
dendrogram created in the clustering step. The proposed method obtains top or diverse
representative skyline points by checking the distance value of the clusters with the user given

Figure 7. Working process of LMethod.

Finally, the LMethod chooses the RMSEi with the minimum value as the appropriate one and
returns the θ distance value. In Figure 7b, we illustrated the result of the LMethod by using the
example skyline set we have shown in Section 3.1.

3.5. Theoretical Analysis

In this section, we analyze the time complexity of the RSC. The time for finding representative
skyline points of the proposed method is affected by the number of objects n and the dimension of
the universe d. As mentioned in Section 3.1, the proposed method proceeds in three steps, namely
the skylining step, clustering step, and configuration step. Thus, the time complexity of the proposed
method consists of those three steps.

First, in the skyline step, we use the SFS algorithm. When the cardinality of the input set is n and
the dimensions of the universe in d, the time complexity (TC) of finding the skyline points TCskyline is
shown in Equation (5) [7,8].

TCskyline =

{
O(nlogn), if d = 2, 3

O
(

nlogd−2n
)

, if d ≥ 4
(5)

Next, in the clustering step, we use the hierarchical agglomerative clustering algorithm. The worst
case time complexity of the traditional hierarchical agglomerative clustering algorithm is O

(
n3).

However, in this paper, we use an efficient hierarchical agglomerative clustering algorithm that uses a
heap. The algorithm first computes the distance between clusters in O

(
n2) time, and then uses the

heap for searching the nearest pair of clusters and merging them in O(logn) time. Thus, the time
complexity TCclustering of clustering step is shown in Equation (6) [24].

Information 2019, 10, 96 16 of 26

TCclustering = O
(

n2logn
)

(6)

Lastly, in the configuration step, we select top or diverse representative skyline points from the
dendrogram created in the clustering step. The proposed method obtains top or diverse representative
skyline points by checking the distance value of the clusters with the user given value. This process
is typically performed in O(logn) time. However, in the worst case, as is shown in Figure 8, all the
skyline points are selected as the top representative skyline points when input.θ = 1.0. In this case,
the time complexity TCcon f iguration of the configuration step is shown Equation (7).

TCcon f iguration = O(n) (7)

Information 2019, 10, x FOR PEER REVIEW 16 of 26

value. This process is typically performed in 𝒪(𝑙𝑜𝑔𝑛) time. However, in the worst case, as is
shown in Figure 8, all the skyline points are selected as the top representative skyline points when
input.θ = 1.0. In this case, the time complexity 𝑇𝐶 of the configuration step is shown
Equation (7). 𝑇𝐶 = 𝒪(𝑛) (7)

Thus, the time complexity of the proposed method 𝑇𝐶 is composed of 𝑇𝐶 , 𝑇𝐶 , and 𝑇𝐶 , as shown in Equation (8). 𝑇𝐶 = 𝑇𝐶 + 𝑇𝐶 + 𝑇𝐶 𝑇𝐶 = 𝒪(𝑛𝑙𝑜𝑔𝑛) + 𝒪(𝑛 𝑙𝑜𝑔𝑛) + 𝒪(𝑛), if 𝑑 = 2,3𝒪(𝑛𝑙𝑜𝑔 𝑛) + 𝒪(𝑛 𝑙𝑜𝑔𝑛) + 𝒪(𝑛), if 𝑑 ≥ 4 (8)

In summary, we note that the existing methods suffer from the re-computation problem, as
explained in Section 1. That is, once the global threshold value given by a user for representative
skyline points changes, most of the existing methods reset the whole process and start again. In
contrast, with the proposed method, once the hierarchical clustering structure is created, changing
the global threshold does not trigger the re-computation problem. Thus, the proposed method has
the time complexity of 𝒪(𝑙𝑜𝑔𝑛) in the average case and 𝒪(𝑛) in the worst case.

4. Performance Evaluation

This section shows the results of performance evaluation. In this section, we first explain the
experimental datasets and experimental environment that are used for conducting the experiments
in Section 4.1. In Section 4.2, we show various experiments conducted using the proposed method.

Specifically, we demonstrate the efficiency of the proposed method in terms of re-computation
time consumption and quality of the representation. We first demonstrate that our method finds
both diverse and top representative skyline points more efficiently in any dimension. Further, we
reveal that our method selects top and diverse representative skyline points with less error rate
compared with the existing methods. Finally, we show that our method scales well even when the
global threshold changes. In other words, considering that our method proceeds in a
post-processing manner, it does not suffer from the re-computation problem even when the global
threshold value (input.θ) given by the user changes.

4.1. Experimental Datasets and Environment

Our experiments are mainly conducted on the synthetic dataset, Anisotropic, and real dataset,
NBA. The Anisotropic dataset has two dimensions, 65,534 data points, and 148 skyline points. Figure
8a shows the visualization of the Anisotropic dataset. In addition, Figure 8b illustrates the skyline
points of the Anisotropic dataset.

Figure 8. Visualization of the Anisotropic dataset.
Figure 8. Visualization of the Anisotropic dataset.

Thus, the time complexity of the proposed method TCRSC is composed of TCskyline, TCclustering,
and TCcon f iguration, as shown in Equation (8).

TCRSC = TCskyline + TCclustering + TCcon f iguration

TCRSC =

{
O(nlogn) +O(n2logn) +O(n), if d = 2, 3
O(nlogd−2n) +O(n2logn) +O(n), if d ≥ 4

(8)

In summary, we note that the existing methods suffer from the re-computation problem, as
explained in Section 1. That is, once the global threshold value given by a user for representative
skyline points changes, most of the existing methods reset the whole process and start again. In contrast,
with the proposed method, once the hierarchical clustering structure is created, changing the global
threshold does not trigger the re-computation problem. Thus, the proposed method has the time
complexity of O(logn) in the average case and O(n) in the worst case.

4. Performance Evaluation

This section shows the results of performance evaluation. In this section, we first explain the
experimental datasets and experimental environment that are used for conducting the experiments in
Section 4.1. In Section 4.2, we show various experiments conducted using the proposed method.

Specifically, we demonstrate the efficiency of the proposed method in terms of re-computation
time consumption and quality of the representation. We first demonstrate that our method finds both
diverse and top representative skyline points more efficiently in any dimension. Further, we reveal that
our method selects top and diverse representative skyline points with less error rate compared with
the existing methods. Finally, we show that our method scales well even when the global threshold
changes. In other words, considering that our method proceeds in a post-processing manner, it does
not suffer from the re-computation problem even when the global threshold value (input.θ) given by
the user changes.

Information 2019, 10, 96 17 of 26

4.1. Experimental Datasets and Environment

Our experiments are mainly conducted on the synthetic dataset, Anisotropic, and real dataset,
NBA. The Anisotropic dataset has two dimensions, 65,534 data points, and 148 skyline points. Figure 8a
shows the visualization of the Anisotropic dataset. In addition, Figure 8b illustrates the skyline points
of the Anisotropic dataset.

NBA dataset is a well-known dataset used in skyline query research. This dataset has five
dimensions, 17,264 data points, and 496 skyline points. In addition, we created various numbers of
synthetic anti-correlated datasets using the algorithm described in [7].

For the experiments, we implemented our proposed method RSC in Python 3. To find the skyline
points, we also implemented the SFS algorithm in Python 3. Table 2 summarizes the properties of
the experimental environment. The default settings and value ranges of the input parameters are
summarized in Table 3

Table 2. Detailed properties of experimental environment.

Property Value

CPU 4 x Intel(R) Core(TM) i5-4570 (3.20 GHz)

RAM Samsung PC3-12800 8 GB

OS Ubuntu 16.04.3 LTS

HDD Seageate ATA ST500D 500 GB(7200 RPM)

Table 3. Parameter settings.

Parameter Value Range Default Settings

Dataset cardinality 200 K, 400 K, 600 K, 800 K, 1 M 600 K
input.θ 0.01, 0.05, 0.1, 0.5, 1.0 0.1

Dataset dimension 2, 3, 4 2
k 2, 4, 6, 8, 10 6

4.2. Experiment Results

In this section, we perform comparison experiments on various synthetic datasets and the real
NBA dataset. Specifically, we conduct seven different experiments to show the superiority of the
proposed method over the current state-of-the-art representative skyline query processing methods.
In addition, we perform experiments to show how the proposed method performs on different datasets.

4.2.1. Experiment 1. Representative Skyline Points of Anisotropic Dataset

In Experiment 1, we observe how the representative skyline points of our proposed method and
the state-of-the-art methods change in the synthetic Anisotropic dataset.

Figure 9 shows the diverse and top representative skyline points, which are selected by our
proposed method from the Anisotropic dataset with varied input.θ value and representative skyline
points of the Max-Dom and Greedy methods with varied k value. Specifically, Figure 9a–c shows the
diverse representative skyline points, which are selected by our proposed RSC method. Figure 9d–f
shows the top representative skyline points, which are selected by our proposed RSC method.
Figure 9g–i shows the representative skyline points, which are selected by the Max-Dom method.
Finally, Figure 9i–l illustrates the representative skyline points of the Greedy method, which utilizes the
distance measurement to find the representative skyline points. If we observe Figure 8b, we can divide
the skyline points into four major groups. It is important to note that the input.θ value we used for
Figure 9a,d is the input.θ value calculated by the LMethod, which is described in Section 3.4.3. As shown
in Figure 9a, by using the input.θ = 0.4, we captured the full contour of the skyline points, which is

Information 2019, 10, 96 18 of 26

shown in Figure 8b. Figure 9b shows the diverse representative skyline points of the Anisotropic
dataset when the input.θ = 0.2.

Information 2019, 10, x FOR PEER REVIEW 18 of 26

user. Finally, Figure 9e–f depicts the result of top representative skyline selection with input.θ = 0.02
and input.θ = 0.4, respectively. Figure 9g illustrates two representative skyline points chosen by the
Greedy method. This method chooses the initial representative point in random order, and thus, two
representative points cannot show the whole contour of the skyline points. On the other hand, as
shown in Figure 9i, from k = 4 Greedy method starts to show the full contour of the overall skyline
points. However, as for the Max-Dom method, Greedy method only shows the dominant
representative skyline points, and thus, the overall representation does not change much while the k
increases.

Figure 9. Representative skyline points of Anisotropic dataset.

4.2.2. Experiment 2. Comparison of Re-computation Time with Related Work on Synthetic Dataset
with Varied Dimensions.

In this experiment, we compare the re-computation time of related work with our top
representative skyline selection and diverse representative skyline selection algorithms on the

Figure 9. Representative skyline points of Anisotropic dataset.

As shown in Figure 9b, the number of diverse representative skyline points is increased from
Figure 9a because our method selects the diverse representative skyline points. On the other hand,
when the input.θ = 0.8, our proposed method only returns two representatives. However, it can still
represent the contour of the overall skyline points. On the other hand, Figure 9d shows the top
representative skyline points when the input.θ = 0.4. In this illustration, we can observe that all the
points of one of the major groups are returned as a result. In some cases, this may be preferred by the
user. Finally, Figure 9e,f depicts the result of top representative skyline selection with input.θ = 0.02
and input.θ = 0.4, respectively. Figure 9g illustrates two representative skyline points chosen by the

Information 2019, 10, 96 19 of 26

Greedy method. This method chooses the initial representative point in random order, and thus, two
representative points cannot show the whole contour of the skyline points. On the other hand, as
shown in Figure 9i, from k = 4 Greedy method starts to show the full contour of the overall skyline
points. However, as for the Max-Dom method, Greedy method only shows the dominant representative
skyline points, and thus, the overall representation does not change much while the k increases.

4.2.2. Experiment 2. Comparison of Re-computation Time with Related Work on Synthetic Dataset
with Varied Dimensions

In this experiment, we compare the re-computation time of related work with our top
representative skyline selection and diverse representative skyline selection algorithms on the
anti-correlated synthetic dataset. The dataset contains 600 K data points with varied dimensions.
For the experiment, we use the wall clock time to measure the re-computation time of all methods.
Figure 10 shows the comparison of the re-computation time of four different algorithms. T-RSC and
D-RSC stand for top representative skyline points selection algorithm and diverse representative
skyline selection points algorithm, respectively.

Information 2019, 10, x FOR PEER REVIEW 19 of 26

anti-correlated synthetic dataset. The dataset contains 600K data points with varied dimensions. For
the experiment, we use the wall clock time to measure the re-computation time of all methods.
Figure 10 shows the comparison of the re-computation time of four different algorithms. T-RSC and
D-RSC stand for top representative skyline points selection algorithm and diverse representative
skyline selection points algorithm, respectively.

Figure 10. Comparison of re-computation time on synthetic dataset (varied d).

T-RSC and D-RSC use default input.θ = 0.1 while Greedy, Max-Dom uses k = 6 as we mentioned
in Table 3. The horizontal axis of Figure 10 indicates the number of dimensions d and the vertical axis
indicates the wall clock time in milliseconds in the log10 scale. The re-computation of T-RSC is linear
due to the singleton to root traversal. Moreover, it is clear to observe that our proposed method
outperforms the state-of-the-art representative skyline points selection methods in re-computation
time by approximately 41–52 times.

4.2.3. Experiment 3. Comparison of Re-Computation Time with Related Work on Synthetic Dataset
with Varied Cardinality.

In this experiment, we compare the re-computation time of related work with our top
representative skyline selection and diverse representative skyline selection algorithms on the
anti-correlated synthetic dataset. The dataset has two dimensions and contains various cardinalities.
For the experiment, we use the wall clock time to measure the re-computation time of the methods.
Figure 11 shows the comparison of the re-computation time of four different algorithms. T-RSC and
D-RSC use default input.θ = 0.1 and Greedy, Max-Dom uses k = 6 as we mentioned in Table 3. The
horizontal axis of Figure 11 indicates the cardinality of dataset |P| and the vertical axis indicates the
wall clock time in milliseconds in the log10 scale. The re-computation of T-RSC is linear due to the
singleton to root traversal. Moreover, it is clear to see that our proposed method outperforms the
state-of-the-art representative skyline points selection methods in re-computation time by
approximately 9–17 times.

Figure 11. Comparison of re-computation time on synthetic dataset (varied |P|).

Figure 10. Comparison of re-computation time on synthetic dataset (varied d).

T-RSC and D-RSC use default input.θ = 0.1 while Greedy, Max-Dom uses k = 6 as we mentioned
in Table 3. The horizontal axis of Figure 10 indicates the number of dimensions d and the vertical
axis indicates the wall clock time in milliseconds in the log10 scale. The re-computation of T-RSC is
linear due to the singleton to root traversal. Moreover, it is clear to observe that our proposed method
outperforms the state-of-the-art representative skyline points selection methods in re-computation
time by approximately 41–52 times.

4.2.3. Experiment 3. Comparison of Re-Computation Time with Related Work on Synthetic Dataset
with Varied Cardinality

In this experiment, we compare the re-computation time of related work with our top
representative skyline selection and diverse representative skyline selection algorithms on the
anti-correlated synthetic dataset. The dataset has two dimensions and contains various cardinalities.
For the experiment, we use the wall clock time to measure the re-computation time of the methods.
Figure 11 shows the comparison of the re-computation time of four different algorithms. T-RSC
and D-RSC use default input.θ = 0.1 and Greedy, Max-Dom uses k = 6 as we mentioned in Table 3.
The horizontal axis of Figure 11 indicates the cardinality of dataset |P| and the vertical axis
indicates the wall clock time in milliseconds in the log10 scale. The re-computation of T-RSC is
linear due to the singleton to root traversal. Moreover, it is clear to see that our proposed method
outperforms the state-of-the-art representative skyline points selection methods in re-computation
time by approximately 9–17 times.

Information 2019, 10, 96 20 of 26

Information 2019, 10, x FOR PEER REVIEW 19 of 26

anti-correlated synthetic dataset. The dataset contains 600K data points with varied dimensions. For
the experiment, we use the wall clock time to measure the re-computation time of all methods.
Figure 10 shows the comparison of the re-computation time of four different algorithms. T-RSC and
D-RSC stand for top representative skyline points selection algorithm and diverse representative
skyline selection points algorithm, respectively.

Figure 10. Comparison of re-computation time on synthetic dataset (varied d).

T-RSC and D-RSC use default input.θ = 0.1 while Greedy, Max-Dom uses k = 6 as we mentioned
in Table 3. The horizontal axis of Figure 10 indicates the number of dimensions d and the vertical axis
indicates the wall clock time in milliseconds in the log10 scale. The re-computation of T-RSC is linear
due to the singleton to root traversal. Moreover, it is clear to observe that our proposed method
outperforms the state-of-the-art representative skyline points selection methods in re-computation
time by approximately 41–52 times.

4.2.3. Experiment 3. Comparison of Re-Computation Time with Related Work on Synthetic Dataset
with Varied Cardinality.

In this experiment, we compare the re-computation time of related work with our top
representative skyline selection and diverse representative skyline selection algorithms on the
anti-correlated synthetic dataset. The dataset has two dimensions and contains various cardinalities.
For the experiment, we use the wall clock time to measure the re-computation time of the methods.
Figure 11 shows the comparison of the re-computation time of four different algorithms. T-RSC and
D-RSC use default input.θ = 0.1 and Greedy, Max-Dom uses k = 6 as we mentioned in Table 3. The
horizontal axis of Figure 11 indicates the cardinality of dataset |P| and the vertical axis indicates the
wall clock time in milliseconds in the log10 scale. The re-computation of T-RSC is linear due to the
singleton to root traversal. Moreover, it is clear to see that our proposed method outperforms the
state-of-the-art representative skyline points selection methods in re-computation time by
approximately 9–17 times.

Figure 11. Comparison of re-computation time on synthetic dataset (varied |P|). Figure 11. Comparison of re-computation time on synthetic dataset (varied |P|).

4.2.4. Experiment 4. Comparison of Diverse Representation Error Rate on Anisotropic Dataset with
Varied k and input.θ

In this experiment, we compare the diverse representation error rate of related work with our
diverse representative skyline selection algorithms on anti-correlated synthetic Anisotropic dataset.
To measure the diverse error rate, we use the following Equation (9).

Error
(
S′
)
= max

p ∈ S− S′

{
min
p′∈ S′

{
d
(

p, p′
)}}

(9)

Recall from Section 2 that the goal of diverse representative skyline points is to show the full
contour of the overall skyline points with the minimum number of representatives. Therefore,
to measure such error rate, we measure the distance of the non-representative skyline points to
their closest representative skyline point. We then get their maximum distance value as the diverse
representation error.

Figure 12 shows the comparison of diverse representation error between Max-Dom, Greedy, and
D-RSC. The horizontal axis of Figure 12 indicates the input.θ and k the vertical axis indicates the diverse
representation error. To make this comparison possible, we calculate the input.θ value that can give us
the exact k representative skyline points. Considering that the Greedy method chooses random skyline
points as the initial representative skyline point, we collected the mean value of 50 iterations from
the experimental result of the Greedy method. As the k increases the error rate of both Greedy and
D-RSC decreases as these methods can find the diverse representatives. However, our method shows
representatives with less error (approximately 5.6% to 21%) compared with the other two methods.
The reason is that Greedy method is approximate and Max-Dom finds the dominant representative
skyline points.

Information 2019, 10, x FOR PEER REVIEW 20 of 26

4.4.4. Experiment 4. Comparison of Diverse Representation Error Rate on Anisotropic Dataset with
Varied k and input.θ.

In this experiment, we compare the diverse representation error rate of related work with our
diverse representative skyline selection algorithms on anti-correlated synthetic Anisotropic dataset.
To measure the diverse error rate, we use the following Equation (9). 𝐸𝑟𝑟𝑜𝑟(𝑆) = max ∈ min∈ 𝑑(𝑝, 𝑝) (9)

Recall from Section 2 that the goal of diverse representative skyline points is to show the full
contour of the overall skyline points with the minimum number of representatives. Therefore, to
measure such error rate, we measure the distance of the non-representative skyline points to their
closest representative skyline point. We then get their maximum distance value as the diverse
representation error.

Figure 12. Comparison of diverse representation error on Anisotropic dataset.

Figure 12 shows the comparison of diverse representation error between Max-Dom, Greedy,
and D-RSC. The horizontal axis of Figure 12 indicates the input.θ and k the vertical axis indicates the
diverse representation error. To make this comparison possible, we calculate the input.θ value that
can give us the exact k representative skyline points. Considering that the Greedy method chooses
random skyline points as the initial representative skyline point, we collected the mean value of 50
iterations from the experimental result of the Greedy method. As the k increases the error rate of
both Greedy and D-RSC decreases as these methods can find the diverse representatives. However,
our method shows representatives with less error (approximately 5.6% to 21%) compared with the
other two methods. The reason is that Greedy method is approximate and Max-Dom finds the
dominant representative skyline points.

4.2.5. Experiment 5. Comparison of Diverse Representation Error Rate on NBA Dataset with Varied k
and input.θ.

In this experiment, we compare the diverse representation error rate of related work with our
diverse representative skyline selection algorithms on the real NBA dataset. To measure the diverse
error rate, we use Equation (5), which is used in Experiment 4.

Figure 13 shows the comparison of diverse representation error between Max-Dom, Greedy,
and D-RSC, which stands for diverse representative selection algorithm. The horizontal axis of
Figure 13 indicates the input.θ and k the vertical axis indicates the diverse representation error.

Figure 12. Comparison of diverse representation error on Anisotropic dataset.

Information 2019, 10, 96 21 of 26

4.2.5. Experiment 5. Comparison of Diverse Representation Error Rate on NBA Dataset with Varied k
and input.θ

In this experiment, we compare the diverse representation error rate of related work with our
diverse representative skyline selection algorithms on the real NBA dataset. To measure the diverse
error rate, we use Equation (5), which is used in Experiment 4.

Figure 13 shows the comparison of diverse representation error between Max-Dom, Greedy, and
D-RSC, which stands for diverse representative selection algorithm. The horizontal axis of Figure 13
indicates the input.θ and k the vertical axis indicates the diverse representation error.

Information 2019, 10, x FOR PEER REVIEW 20 of 26

4.4.4. Experiment 4. Comparison of Diverse Representation Error Rate on Anisotropic Dataset with
Varied k and input.θ.

In this experiment, we compare the diverse representation error rate of related work with our
diverse representative skyline selection algorithms on anti-correlated synthetic Anisotropic dataset.
To measure the diverse error rate, we use the following Equation (9). 𝐸𝑟𝑟𝑜𝑟(𝑆) = max ∈ min∈ 𝑑(𝑝, 𝑝) (9)

Recall from Section 2 that the goal of diverse representative skyline points is to show the full
contour of the overall skyline points with the minimum number of representatives. Therefore, to
measure such error rate, we measure the distance of the non-representative skyline points to their
closest representative skyline point. We then get their maximum distance value as the diverse
representation error.

Figure 12. Comparison of diverse representation error on Anisotropic dataset.

Figure 12 shows the comparison of diverse representation error between Max-Dom, Greedy,
and D-RSC. The horizontal axis of Figure 12 indicates the input.θ and k the vertical axis indicates the
diverse representation error. To make this comparison possible, we calculate the input.θ value that
can give us the exact k representative skyline points. Considering that the Greedy method chooses
random skyline points as the initial representative skyline point, we collected the mean value of 50
iterations from the experimental result of the Greedy method. As the k increases the error rate of
both Greedy and D-RSC decreases as these methods can find the diverse representatives. However,
our method shows representatives with less error (approximately 5.6% to 21%) compared with the
other two methods. The reason is that Greedy method is approximate and Max-Dom finds the
dominant representative skyline points.

4.2.5. Experiment 5. Comparison of Diverse Representation Error Rate on NBA Dataset with Varied k
and input.θ.

In this experiment, we compare the diverse representation error rate of related work with our
diverse representative skyline selection algorithms on the real NBA dataset. To measure the diverse
error rate, we use Equation (5), which is used in Experiment 4.

Figure 13 shows the comparison of diverse representation error between Max-Dom, Greedy,
and D-RSC, which stands for diverse representative selection algorithm. The horizontal axis of
Figure 13 indicates the input.θ and k the vertical axis indicates the diverse representation error.

Figure 13. Comparison of diverse representation error on NBA dataset.

To make this comparison possible, we calculate the input.θ value that can give us exact k
representative skyline points. Considering that the Greedy method chooses random skyline points as
the initial representative skyline point, we collected the mean value of 50 iterations as the experimental
result for the Greedy method. Due to the data distribution of the NBA dataset from k = 10, the diverse
error rate of our proposed method and Greedy methods became almost identical. Our method shows
representatives with less error (approximately 0.9% to 11%) compared with the other two methods.
The reason is that Greedy method is approximate and Max-Dom finds the dominant representative
skyline points.

4.2.6. Experiment 6. Comparison of Top Representation Error Rate on Anisotropic Dataset with Varied
k and input.θ

In this experiment, we compare the top representation error rate of related work with our top
representative skyline selection algorithms on the anti-correlated synthetic Anisotropic dataset. To
measure the top error rate, we use the following Equation (10).

Error(S′) = 1− Density(S′)
Density(S)

Density(S′) = |S′ |
max

p′∈ S′
{d(p′ ,c)}— c(centroid of overall skyline points) (10)

The top representative points should be the data points, which are closest to the centroid of the
overall skyline points yet, they must be close to each other. Figure 14 shows the comparison of top
representation error between Max-Dom, Greedy, and T-RSC. The horizontal axis of Figure 14 indicates
the input.θ and k the vertical axis indicates the diverse representation error.

To make this comparison possible, we calculate the input.θ value that can give us exact k
representative skyline points. Considering that the Greedy method chooses random skyline points as
the initial representative skyline point, we collected the mean value of 50 iterations as the experimental
result for the Greedy method. As shown in Figure 12, even the Max-Dom is utilized for the
dominant representative skyline points, which cannot show the top representation. Our method
shows representatives with less error (approximately 17% to 48%) compared with the other two

Information 2019, 10, 96 22 of 26

methods. The reason is that Greedy method finds diverse representatives and Max-Dom finds the
dominant representative skyline points.

Information 2019, 10, x FOR PEER REVIEW 21 of 26

Figure 13. Comparison of diverse representation error on NBA dataset.

To make this comparison possible, we calculate the input.θ value that can give us exact k
representative skyline points. Considering that the Greedy method chooses random skyline points
as the initial representative skyline point, we collected the mean value of 50 iterations as the
experimental result for the Greedy method. Due to the data distribution of the NBA dataset from k =
10, the diverse error rate of our proposed method and Greedy methods became almost identical. Our
method shows representatives with less error (approximately 0.9% to 11%) compared with the other
two methods. The reason is that Greedy method is approximate and Max-Dom finds the dominant
representative skyline points.

4.2.6. Experiment 6. Comparison of Top Representation Error Rate on Anisotropic Dataset with
Varied k and input.θ.

In this experiment, we compare the top representation error rate of related work with our top
representative skyline selection algorithms on the anti-correlated synthetic Anisotropic dataset. To
measure the top error rate, we use the following Equation (10).

𝐸𝑟𝑟𝑜𝑟(𝑆) = 1 − 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑆)𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑆)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑆) = ∈ (,) c - (centroid of overall skyline points)
(10)

The top representative points should be the data points, which are closest to the centroid of the
overall skyline points yet, they must be close to each other. Figure 14 shows the comparison of top
representation error between Max-Dom, Greedy, and T-RSC. The horizontal axis of Figure 14
indicates the input.θ and k the vertical axis indicates the diverse representation error.

Figure 14. Comparison of top representation error on Anisotropic dataset.

To make this comparison possible, we calculate the input.θ value that can give us exact k
representative skyline points. Considering that the Greedy method chooses random skyline points
as the initial representative skyline point, we collected the mean value of 50 iterations as the
experimental result for the Greedy method. As shown in Figure 12, even the Max-Dom is utilized for
the dominant representative skyline points, which cannot show the top representation. Our method
shows representatives with less error (approximately 17% to 48%) compared with the other two
methods. The reason is that Greedy method finds diverse representatives and Max-Dom finds the
dominant representative skyline points.

4.2.7. Experiment 7. Comparison of Top Representation Error Rate on NBA Dataset with Varied k
and input.θ.

Figure 14. Comparison of top representation error on Anisotropic dataset.

4.2.7. Experiment 7. Comparison of Top Representation Error Rate on NBA Dataset with Varied k and
input.θ

In this experiment, we compare the top representation error rate of related work with our top
representative skyline selection algorithms on the real NBA dataset. To measure the top error rate,
we use Equation (6), which is used in Experiment 6. Figure 15 shows the comparison of the top
representation error between Max-Dom Greedy and T-RSC, which stands for the top representatives
selection algorithm that we proposed. The horizontal axis of Figure 15 indicates the input.θ and k the
vertical axis indicates the diverse representation error. To make this comparison possible we calculate
the input.θ value that can give us the exact k representative skyline points as the Greedy method
chooses the random skyline point as the initial representative skyline point.

Information 2019, 10, x FOR PEER REVIEW 22 of 26

In this experiment, we compare the top representation error rate of related work with our top
representative skyline selection algorithms on the real NBA dataset. To measure the top error rate,
we use Equation (6), which is used in Experiment 6. Figure 15 shows the comparison of the top
representation error between Max-Dom Greedy and T-RSC, which stands for the top representatives
selection algorithm that we proposed. The horizontal axis of Figure 15 indicates the input.θ and k the
vertical axis indicates the diverse representation error. To make this comparison possible we
calculate the input.θ value that can give us the exact k representative skyline points as the Greedy
method chooses the random skyline point as the initial representative skyline point.

Figure 15. Comparison of top representation error on NBA dataset.

We collected the mean value of 50 iterations as the experimental result for the Greedy method.
As shown in Figure 15, even the Max-Dom is utilized for the dominant representative skyline points,
which cannot show the top representation. Our method shows representatives with less error
(approximately 13% to 37%) compared with the other two methods. The reason is that Greedy
method finds diverse representatives and Max-Dom finds the dominant representative skyline
points.

4.2.8. Experiment 8. Comparison of Number Of Cluster Accesses on Synthetic Dataset with varied
input.θ

In this experiment, we compare the number of cluster accesses of diverse representative skyline
points selection and top representative skyline points selection algorithm with varied input.θ on an
anti-correlated synthetic dataset with two dimensions. The dataset contains 600K data points.

Figure 16 shows the comparison of the number of clusters accesses of two different selection
algorithms. The horizontal axis of Figure 16 indicates the input.θ and the vertical axis indicates the
number of cluster accesses. As shown in Figure 16, T-RSC has a smaller number of cluster accesses
when the input.θ < 0.5. It is because two algorithms use a different traversal procedure. The
proposed method uses the root to singleton cluster traversal to select the diverse representative
skyline points. On the other hand, to select the top representative skyline points, the proposed
method uses a singleton cluster to root traversal.

Figure 15. Comparison of top representation error on NBA dataset.

We collected the mean value of 50 iterations as the experimental result for the Greedy method.
As shown in Figure 15, even the Max-Dom is utilized for the dominant representative skyline
points, which cannot show the top representation. Our method shows representatives with less
error (approximately 13% to 37%) compared with the other two methods. The reason is that Greedy
method finds diverse representatives and Max-Dom finds the dominant representative skyline points.

4.2.8. Experiment 8. Comparison of Number Of Cluster Accesses on Synthetic Dataset with varied
input.θ

In this experiment, we compare the number of cluster accesses of diverse representative skyline
points selection and top representative skyline points selection algorithm with varied input.θ on an
anti-correlated synthetic dataset with two dimensions. The dataset contains 600 K data points.

Information 2019, 10, 96 23 of 26

Figure 16 shows the comparison of the number of clusters accesses of two different selection
algorithms. The horizontal axis of Figure 16 indicates the input.θ and the vertical axis indicates the
number of cluster accesses. As shown in Figure 16, T-RSC has a smaller number of cluster accesses
when the input.θ < 0.5. It is because two algorithms use a different traversal procedure. The proposed
method uses the root to singleton cluster traversal to select the diverse representative skyline points.
On the other hand, to select the top representative skyline points, the proposed method uses a singleton
cluster to root traversal.

Information 2019, 10, x FOR PEER REVIEW 22 of 26

In this experiment, we compare the top representation error rate of related work with our top
representative skyline selection algorithms on the real NBA dataset. To measure the top error rate,
we use Equation (6), which is used in Experiment 6. Figure 15 shows the comparison of the top
representation error between Max-Dom Greedy and T-RSC, which stands for the top representatives
selection algorithm that we proposed. The horizontal axis of Figure 15 indicates the input.θ and k the
vertical axis indicates the diverse representation error. To make this comparison possible we
calculate the input.θ value that can give us the exact k representative skyline points as the Greedy
method chooses the random skyline point as the initial representative skyline point.

Figure 15. Comparison of top representation error on NBA dataset.

We collected the mean value of 50 iterations as the experimental result for the Greedy method.
As shown in Figure 15, even the Max-Dom is utilized for the dominant representative skyline points,
which cannot show the top representation. Our method shows representatives with less error
(approximately 13% to 37%) compared with the other two methods. The reason is that Greedy
method finds diverse representatives and Max-Dom finds the dominant representative skyline
points.

4.2.8. Experiment 8. Comparison of Number Of Cluster Accesses on Synthetic Dataset with varied
input.θ

In this experiment, we compare the number of cluster accesses of diverse representative skyline
points selection and top representative skyline points selection algorithm with varied input.θ on an
anti-correlated synthetic dataset with two dimensions. The dataset contains 600K data points.

Figure 16 shows the comparison of the number of clusters accesses of two different selection
algorithms. The horizontal axis of Figure 16 indicates the input.θ and the vertical axis indicates the
number of cluster accesses. As shown in Figure 16, T-RSC has a smaller number of cluster accesses
when the input.θ < 0.5. It is because two algorithms use a different traversal procedure. The
proposed method uses the root to singleton cluster traversal to select the diverse representative
skyline points. On the other hand, to select the top representative skyline points, the proposed
method uses a singleton cluster to root traversal.

Figure 16. Comparison of number of cluster accesses on synthetic dataset.

4.2.9. Experiment 9. Comparison of Number of Cluster Accesses on Real Dataset with Varied input.θ

In this experiment, we compare the number of cluster accesses of diverse representative skyline
points selection and top representative skyline points selection algorithm with varied input.θ on real
NBA dataset.

Figure 17 shows the comparison of the number of clusters accesses of two different selection
algorithms. The horizontal axis of Figure 17 indicates the input.θ and the vertical axis indicates the
number of cluster accesses. As shown in Figure 17, T-RSC has a smaller number of cluster accesses
when the input.θ < 0.5. It is because of the same reason as the previous experiment. Specifically,
the two algorithms use a different traversal procedure. As we mentioned earlier, to select the diverse
representative skyline points, the proposed method uses root to singleton cluster traversal. On the
other hand, to select the top representative skyline points, the proposed method uses a singleton
cluster to root traversal.

Information 2019, 10, x FOR PEER REVIEW 23 of 26

Figure 16. Comparison of number of cluster accesses on synthetic dataset.

4.2.9. Experiment 9. Comparison of Number of Cluster Accesses on Real Dataset with Varied input.θ

In this experiment, we compare the number of cluster accesses of diverse representative skyline
points selection and top representative skyline points selection algorithm with varied input.θ on real
NBA dataset.

Figure 17 shows the comparison of the number of clusters accesses of two different selection
algorithms. The horizontal axis of Figure 17 indicates the input.θ and the vertical axis indicates the
number of cluster accesses. As shown in Figure 17, T-RSC has a smaller number of cluster accesses
when the input.θ < 0.5. It is because of the same reason as the previous experiment. Specifically, the
two algorithms use a different traversal procedure. As we mentioned earlier, to select the diverse
representative skyline points, the proposed method uses root to singleton cluster traversal. On the
other hand, to select the top representative skyline points, the proposed method uses a singleton
cluster to root traversal.

Figure 17. Comparison of number of cluster accesses on real dataset.

4.2.10. Experiment 10. Ratio of the Representative Skyline Points to |S| on Synthetic Dataset with
Varied input.θ.

In this experiment, we compare the ratio between the number of diverse and top representative
skyline points to the number of overall skyline points |S| with varied input.θ on the anti-correlated
synthetic dataset with two dimensions, which contains 600K data points. Figure 18 shows the ratio
between the number of representative skyline points to |S| of both top and diverse representative
skyline selection algorithms. The horizontal axis of Figure 18 indicates the input.θ and the vertical
axis indicates the ratio of the representative skyline points in percentage. As shown in Figure 18, the
ratio between the number of diverse representative skyline points and the number of overall skyline
points |S| become smaller than the ratio between the number of top representative skyline points
and the number of overall skyline points |S| as the input.θ increases.

Figure 18. Ratio of RSC result on synthetic dataset with varied input.θ.

Figure 17. Comparison of number of cluster accesses on real dataset.

4.2.10. Experiment 10. Ratio of the Representative Skyline Points to |S| on Synthetic Dataset with
Varied input.θ

In this experiment, we compare the ratio between the number of diverse and top representative
skyline points to the number of overall skyline points |S| with varied input.θ on the anti-correlated
synthetic dataset with two dimensions, which contains 600 K data points. Figure 18 shows the ratio

Information 2019, 10, 96 24 of 26

between the number of representative skyline points to |S| of both top and diverse representative
skyline selection algorithms. The horizontal axis of Figure 18 indicates the input.θ and the vertical axis
indicates the ratio of the representative skyline points in percentage. As shown in Figure 18, the ratio
between the number of diverse representative skyline points and the number of overall skyline points
|S| become smaller than the ratio between the number of top representative skyline points and the
number of overall skyline points |S| as the input.θ increases.

Information 2019, 10, x FOR PEER REVIEW 23 of 26

Figure 16. Comparison of number of cluster accesses on synthetic dataset.

4.2.9. Experiment 9. Comparison of Number of Cluster Accesses on Real Dataset with Varied input.θ

In this experiment, we compare the number of cluster accesses of diverse representative skyline
points selection and top representative skyline points selection algorithm with varied input.θ on real
NBA dataset.

Figure 17 shows the comparison of the number of clusters accesses of two different selection
algorithms. The horizontal axis of Figure 17 indicates the input.θ and the vertical axis indicates the
number of cluster accesses. As shown in Figure 17, T-RSC has a smaller number of cluster accesses
when the input.θ < 0.5. It is because of the same reason as the previous experiment. Specifically, the
two algorithms use a different traversal procedure. As we mentioned earlier, to select the diverse
representative skyline points, the proposed method uses root to singleton cluster traversal. On the
other hand, to select the top representative skyline points, the proposed method uses a singleton
cluster to root traversal.

Figure 17. Comparison of number of cluster accesses on real dataset.

4.2.10. Experiment 10. Ratio of the Representative Skyline Points to |S| on Synthetic Dataset with
Varied input.θ.

In this experiment, we compare the ratio between the number of diverse and top representative
skyline points to the number of overall skyline points |S| with varied input.θ on the anti-correlated
synthetic dataset with two dimensions, which contains 600K data points. Figure 18 shows the ratio
between the number of representative skyline points to |S| of both top and diverse representative
skyline selection algorithms. The horizontal axis of Figure 18 indicates the input.θ and the vertical
axis indicates the ratio of the representative skyline points in percentage. As shown in Figure 18, the
ratio between the number of diverse representative skyline points and the number of overall skyline
points |S| become smaller than the ratio between the number of top representative skyline points
and the number of overall skyline points |S| as the input.θ increases.

Figure 18. Ratio of RSC result on synthetic dataset with varied input.θ. Figure 18. Ratio of RSC result on synthetic dataset with varied input.θ.

The reason behind it is that diverse representative skyline points selection algorithm uses the root
to singleton traversal. On the other hand, the top representative skyline points selection algorithm uses
the singleton to root traversal. Moreover, depending on the input.θ value, the diverse representative
skyline points selection algorithm chooses the representative points of the cluster. In the case of the
top representative skyline points selection algorithm, it chooses the skyline points of the cluster with a
smaller θ distance than input.θ, which contains the representative point of the root cluster.

4.2.11. Experiment 11. Ratio of the Representative Skyline Points to |S| on Real Dataset with Varied
input.θ

In this experiment, we compare the ratio between the number of diverse and top representative
skyline points to the number of overall skyline points |S| with varied input.θ on real NBA dataset.
Figure 19 shows the ratio between the number of representative skyline points to |S| of both top
and diverse representative skyline selection algorithms. The horizontal axis of Figure 19 indicates
the input.θ and the vertical axis indicates the ratio of the representative skyline points in percentage.
As shown in Figure 19, the ratio between the number of diverse representative skyline points and
the number of overall skyline points |S| and ratio between the number of top representative skyline
points and the number of overall skyline points |S| changes drastically as the input.θ increases.

Information 2019, 10, x FOR PEER REVIEW 24 of 26

The reason behind it is that diverse representative skyline points selection algorithm uses the
root to singleton traversal. On the other hand, the top representative skyline points selection
algorithm uses the singleton to root traversal. Moreover, depending on the input.θ value, the diverse
representative skyline points selection algorithm chooses the representative points of the cluster. In
the case of the top representative skyline points selection algorithm, it chooses the skyline points of
the cluster with a smaller θ distance than input.θ, which contains the representative point of the root
cluster.

4.2.11. Experiment 11. Ratio of the Representative Skyline Points to |S| on Real Dataset with Varied
input.θ.

In this experiment, we compare the ratio between the number of diverse and top representative
skyline points to the number of overall skyline points |S| with varied input.θ on real NBA dataset.
Figure 19 shows the ratio between the number of representative skyline points to |S| of both top and
diverse representative skyline selection algorithms. The horizontal axis of Figure 19 indicates the
input.θ and the vertical axis indicates the ratio of the representative skyline points in percentage. As
shown in Figure 19, the ratio between the number of diverse representative skyline points and the
number of overall skyline points |S| and ratio between the number of top representative skyline
points and the number of overall skyline points |S| changes drastically as the input.θ increases.

Figure 19. Ratio of RSC result on real dataset with varied input.θ.

The main reason is the distribution of the NBA dataset. We can assume that the NBA dataset is
densely populated. In addition, this sudden change in the ratio occurs because diverse
representative skyline points selection algorithm uses root to singleton traversal. On the other hand,
the top representative skyline points selection algorithm uses a singleton to root traversal. Moreover,
depending on the input.θ value diverse representative skyline points selection algorithm chooses the
representative points of the cluster. In the case of the top representative skyline points selection
algorithm, it chooses the skyline points of the cluster with a smaller θ distance than input.θ, which
contains the representative point of the root cluster.

5. Conclusions

In this paper, we have proposed a novel representative skyline query processing method based
on the hierarchical agglomerative clustering method, which solves the problems of the existing
methods. With the proposed method, once the hierarchical agglomerative clustering structure is
created, changing the global threshold does not trigger the re-computation problem. Because we use
centroid linkage to cluster the skyline points, our method shows the exact representatives in any
dimension. In addition, we have defined a structure that enables us to obtain a set of top and diverse
representative skyline points. This structure makes our method more flexible than the existing
methods. Moreover, the representative skyline points found by our proposed method can show the
full contour of the overall skyline points.

We have performed extensive experiments on both synthetic and real datasets with varying
dimensions, cardinality and attribute correlation. Experimental results have demonstrated that the

Figure 19. Ratio of RSC result on real dataset with varied input.θ.

The main reason is the distribution of the NBA dataset. We can assume that the NBA dataset is
densely populated. In addition, this sudden change in the ratio occurs because diverse representative

Information 2019, 10, 96 25 of 26

skyline points selection algorithm uses root to singleton traversal. On the other hand, the top
representative skyline points selection algorithm uses a singleton to root traversal. Moreover,
depending on the input.θ value diverse representative skyline points selection algorithm chooses
the representative points of the cluster. In the case of the top representative skyline points selection
algorithm, it chooses the skyline points of the cluster with a smaller θ distance than input.θ, which
contains the representative point of the root cluster.

5. Conclusions

In this paper, we have proposed a novel representative skyline query processing method based
on the hierarchical agglomerative clustering method, which solves the problems of the existing
methods. With the proposed method, once the hierarchical agglomerative clustering structure is
created, changing the global threshold does not trigger the re-computation problem. Because we
use centroid linkage to cluster the skyline points, our method shows the exact representatives in
any dimension. In addition, we have defined a structure that enables us to obtain a set of top and
diverse representative skyline points. This structure makes our method more flexible than the existing
methods. Moreover, the representative skyline points found by our proposed method can show the
full contour of the overall skyline points.

We have performed extensive experiments on both synthetic and real datasets with varying
dimensions, cardinality and attribute correlation. Experimental results have demonstrated that
the proposed method is superior compared with the existing state-of-the-art methods in terms of
re-computation time consumption and quality of the representation.

As we use a naive method to create the dendrogram, one can argue that the proposed method
has a computational overhead and memory inefficiency. Moreover, the proposed method may not
be useful in continuous representative skyline query processing due to updating the hierarchical
clustering requires recreation of the dendrogram. To solve such problems, in exchange for the quality
of representation, we can use dimensionality reduction methods or space-filling curves to reduce
the computational overhead of the dendrogram creation. On the other hand, by using the subspace
partitioning algorithms to create the dendrogram can be another solution. Thus, in our future work,
originating a new novel method of creating the scalable dendrogram from skyline points without the
computational overhead is the future enhancement.

Author Contributions: Supervision, A.N.; Writing—review and editing, L.B. and A.N.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03035729).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ihm, S.Y.; Lee, K.E.; Nasridinov, A.; Heo, J.S.; Park, Y.H. Approximate convex skyline: A partitioned
layer-based index for efficient processing top-k queries. Knowl. Based Syst. 2014, 61, 13–28. [CrossRef]

2. Wang, S.; Ooi, B.C.; Tung, A.K.H.; Xu, L. Efficient skyline query processing on peer-to-peer networks.
In Proceedings of the 23rd International Conference on Data Engineering (ICDE’07), Istanbul, Turkey, 15–20
April 2007; pp. 1126–1135.

3. Koizumi, K.; Eades, P.; Hiraki, K.; Inaba, M. BJR-tree: Fast skyline computation algorithm using dominance
relation-based tree structure. Int. J. Data Sci. Anal. 2018, 7, 17–34. [CrossRef]

4. Lin, X.; Yuan, Y.; Zhang, Q.; Zhang, Y. Selecting stars: The k most representative skyline operator.
In Proceedings of the 23rd International Conference on Data Engineering (ICDE’07), Istanbul, Turkey,
15–20 April 2007; pp. 86–95.

5. Tao, Y.; Ding, L.; Lin, X.; Pei, J. Distance-Based Representative Skyline. In Proceedings of the 25th
International Conference on Data Engineering (ICDE’09), Shanghai, China, 29 March–2 April 2009;
pp. 892–903.

http://dx.doi.org/10.1016/j.knosys.2014.01.022
http://dx.doi.org/10.1007/s41060-018-0098-x

Information 2019, 10, 96 26 of 26

6. Zhao, F.; Das, G.; Tan, K.L.; Tung, A.K.H. Call to order: A hierarchical browsing approach to eliciting users’
preference. In Proceedings of the 2010 ACM SIGMOD international Conference on Management of Data
(SIGMOD’10), Indianapolis, IN, USA, 6–10 June 2010; pp. 27–38.

7. Borzsony, S.; Kossmann, D.; Stocker, K. The skyline operator. In Proceedings of the 17th International
Conference on Data Engineering (ICDE’01), Heidelberg, Germany, 2–6 April 2001; pp. 421–430.

8. Chomicki, J.; Godfrey, P.; Gryz, J.; Liang, D. Skyline with Presorting: Theory and Optimizations. Intell. Inf.
Process. Web Min. 2005, 31, 595–604.

9. Godfrey, P.; Shipley, R.; Gryz, J. Maximal vector computation in large data sets. In Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB’05), Trondheim, Norway, 30 August–2 September
2005; pp. 229–240.

10. Bartolini, I.; Ciaccia, P.; Patella, M. SaLSa: Computing the skyline without scanning the whole sky.
In Proceedings of the 15th ACM International Conference on Information and Knowledge Management
(CIKM’06), Arlington, VA, USA, 6–11 November 2006; pp. 405–414.

11. Vlachou, A.; Doulkeridis, C.; Kotidis, Y. Angle-based space partitioning for efficient parallel skyline
computation. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (SIGMOD’08), Vancouver, BC, Canada, 9–12 June 2008; pp. 227–239.

12. Tan, K.L.; Eng, P.K.; Ooi, B.C. Efficient progressive skyline computation. In Proceedings of the 27th
International Conference on Very Large Data bases (VLDB’02), Roma, Italy, 11–14 September 2001;
pp. 301–310.

13. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. An Optimal and Progressive Algorithm for Skyline Queries.
In Proceedings of the 2003 ACM International Conference on Management of Data (SIGMOD’03), San
Diego, CA, USA, 9–12 June 2003; pp. 467–478.

14. Lee, K.C.; Lee, W.C.; Zhen, B.; Li, H.; Tian, Y. Z-SKY: An efficient skyline query processing framework based
on Z-order. VLDB J. 2010, 19, 333–362. [CrossRef]

15. Huang, J.; Ding, D.; Wang, G.; Xin, J. Tuning the Cardinality of Skyline. In Proceedings of the 10th Asia-Pacific
Web Conference (APWeb’08) Workshops, Shenyang, China, 26–28 April 2008; pp. 220–231.

16. Yuan, Y.; Lin, X.; Liu, Q.; Wang, W.; Yu, J.X.; Zhang, Q. Efficient computation of the skyline cube.
In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05), Trondheim,
Norway, 30 August–2 September 2005; pp. 241–252.

17. Xia, T.; Zhang, D.; Tao, Y. On skylining with flexible dominance relation. In Proceedings of the 24th
International Conference on Data Engineering (ICDE’08), Cancun, Mexico, 7–12 April 2008; pp. 1397–1399.

18. Koltun, V.; Papadimitriou, C.H. Approximately dominating representatives. Theor. Comput. Sci. 2007, 371,
148–154. [CrossRef]

19. Nanongkai, D.; Sarma, A.D.; Lall, A.; Lipton, R.J.; Xu, J. Regret-minimizing representative databases. Proc.
VLDB Endowment 2010, 3, 1114–1124. [CrossRef]

20. Chen, L.; Wu, J.; Deng, S.; Li, Y. Service recommendation: Similarity-based representative skyline.
In Proceedings of the 6th World Congress on Services (SERVICES’10), Miami, FL, USA, 5–10 July 2010;
pp. 360–366.

21. Asudeh, A.; Nazi, A.; Zhang, N.; Das, G. Efficient Computation of Regret-ratio Minimizing Set: A Compact
Maxima Representative. In Proceedings of the 2017 ACM International Conference on Management of Data
(SIGMOD’17), Chicago, IL, USA, 14–19 May 2017; pp. 821–834.

22. Magnani, M.; Assent, I.; Mortensen, M.L. Taking the Big Picture: Representative skylines based on
significance and diversity. VLDB J. 2014, 23, 795–815. [CrossRef]

23. Salvador, S.; Chan, P. Determining the number of clusters/segments in hierarchical clustering/segmentation
algorithms. In Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’04), Boca Raton, FL, USA, 6–8 November 2004; pp. 576–584.

24. Kurita, T. An Efficient Agglomerative Clustering Algorithm using a Heap. Pattern Recognit. 1991, 24, 205–209.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00778-009-0166-x
http://dx.doi.org/10.1016/j.tcs.2006.11.003
http://dx.doi.org/10.14778/1920841.1920980
http://dx.doi.org/10.1007/s00778-014-0352-3
http://dx.doi.org/10.1016/0031-3203(91)90062-A
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Skyline Query Processing Methods
	Representative Skyline Query Processing Methods
	Dominance-Based Methods
	Distance-Based Methods
	Analysis

	Proposed Method
	Overview
	Skylining Step
	Clustering Step
	Configuration Step
	 Distance
	Representative Skyline Points Selection
	Finding Appropriate input.

	Theoretical Analysis

	Performance Evaluation
	Experimental Datasets and Environment
	Experiment Results
	Experiment 1. Representative Skyline Points of Anisotropic Dataset
	Experiment 2. Comparison of Re-computation Time with Related Work on Synthetic Dataset with Varied Dimensions
	Experiment 3. Comparison of Re-Computation Time with Related Work on Synthetic Dataset with Varied Cardinality
	Experiment 4. Comparison of Diverse Representation Error Rate on Anisotropic Dataset with Varied k and input.
	Experiment 5. Comparison of Diverse Representation Error Rate on NBA Dataset with Varied k and input.
	Experiment 6. Comparison of Top Representation Error Rate on Anisotropic Dataset with Varied k and input.
	Experiment 7. Comparison of Top Representation Error Rate on NBA Dataset with Varied k and input.
	Experiment 8. Comparison of Number Of Cluster Accesses on Synthetic Dataset with varied input.
	Experiment 9. Comparison of Number of Cluster Accesses on Real Dataset with Varied input.
	Experiment 10. Ratio of the Representative Skyline Points to |S| on Synthetic Dataset with Varied input.
	Experiment 11. Ratio of the Representative Skyline Points to |S| on Real Dataset with Varied input.

	Conclusions
	References

