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Abstract: In order to reduce power consumption and save storage capacity, we propose
a high-resolution sub-Nyquist radar approach based on matrix completion (MC), termed as
single-channel sub-Nyquist-MC radars. While providing the high-resolution joint angle-Doppler
estimation, this proposed radar approach minimizes the number of samples in all three dimensions,
that is, the range dimension, the pulse dimension (also named temporal dimension), and the spatial
dimension. In range dimension, we use a single-channel analog-to-information converter (AIC) to
reduce the number of range samples to one; in both spatial and temporal dimensions, we employ a
bank of random switch units to regulate the AICs, which greatly reduce the number of spatial-temporal
samples. According to the proposed sampling scheme, the samples in digital processing center
forwarded by M receive nodes and N pulses are only a subset of the full matrix of size M times N.
Under certain conditions and with the knowledge of the sampling scheme, the full matrix can be
perfectly recovered by using MC techniques. Based on the recovered full matrix, this paper addresses
the problem of the high-resolution joint angle-Doppler estimation by employing compressed sensing
(CS) techniques. The properties and performance of the proposed approach are demonstrated
via simulations.

Keywords: compressed sensing radar; sub-Nyquist sampling; matrix completion; array signal
processing; recovery algorithm

1. Introduction

In a typical move target indication (MTI) radar scenario [1], matched filtering (MF) is done
separately on the returns from each pulse of each receive node, after which the signals are sampled
by the analog-to-digital converter (ADC) and sent to a digital processing center, as illustrated in
Figure 1. The digital processing center performs all subsequent radar signal and data processing, such
as target detection and parameter estimation [2]. For each pulse repetition interval (PRI), L range
samples are collected to cover the range interval. With M receive nodes and N pulses, the received
data for one coherent processing interval (CPI) comprises L ×M ×N complex samples. However,
growing demands for target distinction capability imply significant growth in both the number of
channels and the signal bandwidth in modern radar systems [3–7]. Under the confinement of classic
bandpass sampling theorem [8], sampling at the Nyquist rate would result in considerably large
snapshots L. Accordingly, the number of overall samples L×M×N would be tremendous, implying
an increase in potential power consumption and also the requirement of huge storage capacity for
subsequent processing. Therefore, real-time processing would be quite difficult in MTI radar systems.
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For these reasons, we expect to communicate the least samples as possible to the digital processing
center while preserving the ability to perfectly reconstruct the signal. Inspired by this motivation,
we propose a high-resolution sub-Nyquist radar approach based on matrix completion (MC), termed
as single-channel sub-Nyquist-MC radars. This proposed radar approach minimizes the number of
samples in all three dimensions: the range dimension, the pulse dimension, and the spatial dimension.
In range dimension, we use a single-channel analog-to-information converter (AIC) to reduce the
number of samples from L to 1. AIC is a technique for sampling analog signals directly at a rate lower
than Nyquist sampling rate [9–11]; in both pulse dimension and spatial dimension, we employ a bank
of random switch units to regulate the AICs, which reduces the number of samples from M×N to m
(m�M×N). Consequently, the number of total samples is reduced from L×M×N to m by adopting
the proposed radar approach.
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Figure 1. Processing for receive nodes (left) and the coherent processing interval (CPI) data cube (right)
in conventional move target indication (MTI) radar systems.

In order to avoid information loss, the sampling rate cannot be simply reduced. Therefore, we
adopt sub-Nyquist radar techniques in the range dimension. Sub-Nyquist radar allows sampling at rates
much lower than Nyquist while being able to exactly recover the signal, which has been demonstrated
by real-time analog experiments in hardware [12,13]. For example, Ref. [14] proposed a sub-Nyquist
sampling approach called the direct multichannel sampling scheme, in which an analog prefiltering
operation is performed and then sampled in order to extract the required information for recovery.
The random demodulation (RD) [11] and the modulation bandwidth converter (MWC) [15] are the
mainstream implementations of AIC. The RD scheme multiplies the signal and the pseudo-random chip
sequence by mixing and low-pass filtering. Sampling is then performed by a low-speed analog-to-digital
converter that is lower than the Nyquist rate. Reference [15] proposed an MWC scheme based on
compressed sensing. Signals are captured with an analog front end that consists of a bank of multipliers
and low-pass filters whose cutoff is much lower than the Nyquist rate. To minimize the samples while
avoiding information loss, we use a single-channel AIC to perform the sampling in range dimension,
which is shown in Figure 2. In each receive channel, both the matched filter and high-rate ADC in
MTI radars are replaced by an AIC, before which a random switch unit is used to turn on and turn
off the AIC. This scheme implies that only one sample can be obtained at each receive node during
one pulse when the parallel random switch unit is turned on. According to the proposed sampling
scheme, the samples in the digital processing center forwarded by all receive nodes and all pulses
are only a subset of the entries of a M ×N matrix. If and only if all switch units are turned on, the
samples can be arranged into a full matrix of size M ×N. When the number of target K is much
smaller than the number of receive nodes M and the number of pulses N, the full matrix is of low rank.
This means that, under certain conditions and with the knowledge of the sampling scheme, the full
matrix can be exactly recovered by using matrix completion techniques based on the observations of a
small subset of the full matrix. There are several recent papers on matrix completion problem [16–23].
For example, Candes and Recht proved that most low-rank matrices could be recovered exactly from
most sets of sampled entries even though these sets have surprisingly small cardinality, and more
importantly, they proved that this could be done by solving a simple convex optimization problem [16].
Cai et al. proposed the singular value thresholding (SVT) algorithm, which can also directly recover
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an unknown (approximately) low-rank matrix from very limited information and have minimum
storage requirement since only principle factors are needed to keep in memory [23]. MC techniques
furthermore have been applied as means of reducing the volume of data required in Multiple-Input
Multiple-Output (MIMO) radars for target detection and estimation [24–26], while the theoretical
results and performance bounds for Scheme I of MIMO-MC radar are derived in [27].
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Based on the recovered full matrix, this paper tackles the high-resolution joint angle-Doppler
estimation problem. This estimation comes down to an underdetermined equation solving the problem.
In order to apply the compressed sensing (CS) techniques, we discretize the angle-Doppler plane into
a discrete grid. This gridding approach is first proposed for CS radar in which the time-frequency
plane is discretized into an N ×N grid [3,5]. After that, this idea is extended to the MIMO radar [28]
when the signals are sparse in the range-Doppler-angle space. Since the target signal is sparse in the
angle-Doppler domain, a variety of CS [29,30] techniques can be employed for recovery, for instance,
orthogonal matching pursuit (OMP) [31] and iterative hard thresholding (IHT) [32]. Finally, we are
able to obtain estimates of the angles and Doppler frequencies of targets by using a compressed sensing
recovery algorithm. The properties and performance of the proposed approach are demonstrated via
simulations. Compared to conventional MTI radar, the proposed radar approach has the advantage in
terms of the most significant reduction in the number of samples needed for accurate joint angle-Doppler
estimation. In a scenario with K point targets in the far field, when the number of samples is reduced
from L×M×N required by conventional MTI radar to m, where m is the number of samples, m ≈ 4d f
and df = K(M + N − K) [23], the proposed single-channel sub-Nyquist-MC radar is still able to achieve
high-resolution angle-Doppler estimation.

A. Notation

Lower-case and upper-case letters in bold denote vectors and matrices, respectively. Superscripts
(·)T and (·)H denote transpose and Hermitian transpose, respectively. ‖X‖∗ is the nuclear norm, that is,
the sum of the singular values. ‖X‖F is the Frobenius norm. ‖x‖0 means the l0-norm, that is, a total
number of nonzero elements in a vector. ‖x‖1 and ‖x‖2 denote the l1-norm and l2-norm, respectively.

2. Methods

In this section, we first briefly introduce the required background in matrix completion and then
review the fundamentals of a typical sampling approach in MTI radar systems.

Let us consider conventional MTI radar with a uniform linear array (ULA) of M elements. The
radar transmits a coherent burst of N pulses at a constant pulse repetition frequency (PRF) fr = 1/Tr,
where Tr is the PRI. Then, the length of a CPI is equal to NTr. On the receiver, each element has its
own matched filter, A/D converter, that is, matched filtering is done separately on the returns from
each pulse of each element, after which the signals are sampled by the A/D converter and sent to a
digital processing center. This digital processing center performs all subsequent radar signal and data
processing, such as target detection and parameter estimation. L range samples are collected from each
pulse and each element. Hence, the received data for one CPI comprises L×M×N complex baseband
samples from N pulses and M receiver elements. The three-dimensional data set is often visualized
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as the L×M×N cube of complex samples shown in Figure 1. The directions along the columns and
rows are referred to as a spatial dimension and pulse dimension (also called slow-time dimension),
respectively. The third dimension is the range dimension, also called fast-time dimension. The data for
a single range gate can be written as a the lth M×N × 1 vector xl, termed as space-time snapshot

xl = [x11l, x12l, · · · xMNl]
T (1)

where xmnl denotes the complex samples from the mth element, nth pulse, and lth range gate.
Based on this data cube, high-resolution estimation methods can be applied to estimate targets’

angles and Doppler frequencies. However, these high-resolution estimation methods require large
numbers of training snapshots to maintain good performance. In order to reduce power consumption
and save storage capacity, we propose a high-resolution sub-Nyquist radar approach based on matrix
completion, termed as single-channel sub-Nyquist-MC radar. This proposed radar approach reduces
the number of samples as much as possible in all three dimensions while providing the high-resolution
joint angle-Doppler estimation.

3. The Proposed Single-Channel Sub-Nyquist-MC Radar Approach

Suppose that a random single-channel AIC is used to replace the matched filter and high-rate
ADC in each receive channel, as shown in Figure 2, in which a random switch unit is used to turn
on and off each AIC. The structure of the single-channel AIC is illustrated in Figure 3, in which the
continuously received waveform over each PRI is sampled at the sub-Nyquist rate using only one
direct channel sampling scheme. For each element, the analog input is mixed with the harmonic signal
e− j2πk0t/Tr integrated over the PRI duration, and then sampled, where k0 is an arbitrary positive integer
less than L. This scheme implies that only one sample can be obtained at each receive element during
one pulse when the random switch unit is turned on. This direct sampling scheme is straightforward,
which can be implemented by only using oscillators, mixers, and integrators.
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3.1. ULA Case

Consider the simplest ULA case. If and only if all switch units are turned on, the samples can be
arranged into a full matrix X of size M×N. Let us consider a scenario with K point targets in the far
field. The kth target is described by its angle θk and Doppler frequency fdk, k = 1, · · · , K. Then, the full
matrix X can be expressed as

X = Z + W = ADBT + W (2)

where the matrix Z and W denote the signal and noise component, respectively; D = diag(d)
with d = [α1, · · · ,αK]

T denotes the complex amplitudes of targets; A is the M × K receive steering
matrix, defined as A = [a(θ1), a(θ2), · · · , a(θK)]; B is the N × K Doppler steering matrix, defined as
B = [b( fd1), b( fd2), · · · , b( fdK)], where

a(θk) = [1, e j 2π
λ d sin(θk), · · · , e j 2π

λ (M−1)d sin(θk)]T

b( fdk) = [1, e j2π fdkTr , · · · , e j2π fdk(N−1)Tr ]T
(3)

are the spatial steering vector and temporal steering vector, respectively, where λ and d are the
wavelength and the interelement spacing, respectively. The problem formulation given in (7) is similar
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to that of MIMO-MC radar [24–27], where Ref. [27] provided the detailed analysis regarding the
recoverability of the data matrix in collocated MIMO radar system.

According to the proposed sampling scheme illustrated in Figure 2, the samples in the digital
processing center forwarded by all receive nodes and pulses are only a subset of the entries of the full
matrix X. In the digital processing center, therefore, the observational vector c can be related to the full
matrix X as the following equation

c = PΩ(X) = PΩ(Z) +PΩ(W). (4)

where PΩ(·) is an entrywise sampling operator.
To recover the signal component Z in (2) with matrix completion, we need to demonstrate that the

matrix Z indeed obeys A0) and A1). Therefore, we show that the maximum coherence of the spaces
spanned by the left and right singular vector of Z is bounded by the parameter µ0 (see Appendices A
and B).

Consequently, the matrix recovery is done by solving the following nuclear norm optimization
problem with quadratic constraint

min ‖E‖∗
s.t. ‖c− PΩ(E)‖ ≤ δ.

(5)

where ‖E‖∗ is the nuclear norm, which is the sum of the singular values.
This optimization problem can be solved by the singular value thresholding (SVT) algorithm,

which is a rather powerful computational tool, especially for large scale matrix completion. The
recovered data matrix Ẑ is the optimal solution Zopt of the problem.

From the Appendix A. we know that the smaller the µ0, the fewer samples would be required to
recover Z. Since ξu(v) ∈ (0, 1

2 ] by assumption, both the constants βξu and βξv , as defined in (A26) and
(A19), respectively, would be always finite. At this point, for sufficiently large but finite M and N, the
coherence µ(U) and the coherence µ(V) are given by

µ(U) ≈ µ(V) ≈ 1 (6)

Consequently, we have µ0 ≥ max(µ(U),µ(V)) ≈ 1.
Before we proceed with a discussion of bounds regarding the number of observations, let us state

the following reconstruction theorem and lemma.

Theorem 2 [12]: Let M ∈ CN1×N2 be a matrix of rank r obeying the strong incoherence property with parameter
µ and set N ,max{N1, N2}. Suppose we observe m entries of M with locations sampled uniformly at random.
Then, there exist positive numerical constants C1 and C2 such that if

m ≥ C1µ4Nr2 log2 N or
m ≥ C2µ2Nr log6 N

(7)

the minimizer to the Equation (A2) is unique and equal to M with probability at least 1−N−3.

Lemma 1 [24]: If a matrix M of rank r is incoherent with parameter µ0 and µ1, it is strongly incoherent with
parameter µ ≤ µ0

√
r.

Hence, using Lemma 1, for a fixed number of targets K, Z is strongly incoherent with parameter

µ ≤ µ0
√

K ≈
√

K (8)
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Set G,max{M, N}. Combining Theorem 1, therefore, there exist positive numerical constants C1

and C2 such that if
m ≥ C1K4G log2 G or
m ≥ C2K2G log6 G

(9)

the minimizer to the Equation (A2) is unique and equal to Z with probability at least 1−G−3.
That is, for a sufficiently large number of elements and a large number of pulses, and for a fixed

and relatively small number of targets, matrix completion is exact if the number of observation is at
least of the order of the number of observation Gpolylog(G). But for a finite number of elements and
number of pulses, the simulation results presented in Section 5 show that matrix completion is exact
when the number of observation approximately equals to 4d f , where d f = K(M + N −K).

3.2. Arbitrary 2-D Array Case

We extended the analysis of coherence of Z for the arbitrary 2-dimensional array case. Since the
pulse dimension is not changed, we only focus on the coherence µ(U) of Z. Consider an arbitrary array
equipped with M antennas. Assume that the set of targets {θk}k∈NK−1

consists of almost surely distinct
members and that

(θi,θ j) ∈⊆ R2
−

{
(x, y) ∈ R2

∣∣∣x , y
}

(10)

∀(i, j) ∈ NK−1 × NK−1 with i , j, where constitutes a nominal point set for all admissible
angle pair combinations. At this point, the M × K receive steering matrix A defined as A =

[a(θ1), a(θ2), · · · , a(θK)], where

a(θk) = [1, e j2πrT(1)Γ(θk), · · · , e j2πrT(M−1)Γ(θk)]
T

(11)

where
r(m) ,

1
λ
[xm, ym]

T
∈ R2×1, m ∈ NM−1 (12)

Γ(θ) , [cos(θ), sin(θ)]T ∈ R2×1, (13)

with the collection of vectors
{
[xm, ym]

T
}
m∈NM−1

denoting the 2-dimensional antenna coordinates of the
arbitrary array.

Similarly, we still have the almost surely rank-K matrix

Z = ADBT
∈ CM×N (14)

In order to derive the strictly positive lower bound for λmin(AHA), we have,

AHA ,


M δ1,0 · · · δK−1,0

δ∗1,0 M · · · δK−1,1
...

...
. . .

...
δ∗K−1,0 δ∗K−1,1 · · · M

 (15)

where

δi, j ,
M−1∑
m=0

e j2πrT(m)(Γ(θi)−Γ(θ j)), ∀(i, j) ∈ NK−1 ×NK−1 (16)

with M ≡ δi,i, ∀i ∈ NK−1.
Define M,AHA∈CK×K. The trace of M is simply MK. Hence, we have

τ =
MK
K

= M (17)
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We also need the trace of M2. Since M is a Hermitian matrix, it is true that

tr(M2
)

=
K−1∑
k1=0

K−1∑
k2=0

∣∣∣δk1,k2

∣∣∣2

≡

K−1∑
k1=0


M2 +

K−1∑
k2 = 0
k1 , k2

∣∣∣∣∣∣M−1∑
m=0

e j2πrT(m)(Γ(θk1
)−Γ(θk2

))

∣∣∣∣∣∣2


(18)

Then, we can define a bivariate function ϕu :→ C , given by

ϕu(x, y) ,
M−1∑
m=0

e j2πrT(m)(Γ(x)−Γ(y)) (19)

Whose norm can be bounded as∣∣∣ϕu(x, y)
∣∣∣2 ≤ sup

(x,y)∈A

∣∣∣ϕu(x, y
∣∣∣= )∣∣∣2 ∈ [0, M2) (20)

Then, we can bound tr(M2
)

as

tr(M2
)
≤

K−1∑
k1=0

M2 + (K − 1) sup
(x,y)∈

∣∣∣ϕu(x, y)
∣∣∣2

≡ KM2 + K(K − 1)βa

(21)

where
βa , sup

(x,y)∈

∣∣∣ϕu(x, y)
∣∣∣2 (22)

At this point, in the arbitrary array case, the associated matrix Z obeys the assumptions A0) and
A1) with

µ0 , max

 M

M− (K − 1)
√
βa(M)

,
N

N − (K − 1)
√
βξv(N)

 (23)

with probability 1. That is, the proposed approach still works if the radar system is equipped with an
arbitrary 2-D array, such as an identical uniform circular array (UCA).

4. Joint Angle-Doppler Estimation with Recovered Matrix

Based on the recovered matrix Ẑ, this section addresses the high-resolution joint angle-Doppler
estimation problem. Vectorizing the recovered matrix Ẑ by stacking each succeeding column one
beneath the other yields a single space-time snapshot z, which can be expressed as

z =
K∑

k=1

αkuk + w (24)

where w is noise vector, αk is the kth target’s complex parameter accounting for both channel effects
and target radar cross section (RCS), and the steering vector uk can be written as

u(θk, fdk) = a(θk) ⊗ b( fdk). (25)

In order to apply the CS techniques, we set up a discrete space-time (angle-Doppler frequency)
grid

{
(θi, fdj)

}
, 1 ≤ i ≤ Nθ, 1 ≤ j ≤ ND, where Nθ and ND are the resolution of angle and Doppler
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frequency, respectively. This gridding approach is employed for CS based (MIMO) radar to reconstruct
the target scene [2–5,28]. Using vector u(θ, fd) for all grid points

{
(θi, fdj)

}
, we construct a complete

response matrix H whose columns are u(θi, fdj) for 1 ≤ i ≤ Nθ and 1 ≤ j ≤ ND. Based on that, the
signal component can be represented by some points in the discrete angle-Doppler plane, that is, the
vector z can be rewritten as

z = Hβ+ w (26)

where H ∈ CMN×NθND is the dictionary matrix, which represents all possible angle and Doppler
frequency of the interest targets, and β = (β0, · · · , βNθN fd

−1)
T, β ∈ CNθND×1 is the coefficient vector.

Because the target scene β is known to be sparse (i.e., ‖β‖0 �MN), the compressed sensing technique
is a powerful tool to recover β. Compressed sensing reconstruction methods include using greedy
algorithms, such as OMP, which is used to solve the following convex problem:

β̂ = argmin
{
‖β
′

‖1 : ‖z−Hβ
′

‖
2
2 ≤ ε

}
(27)

5. Numerical Results

In this section, we demonstrate the performance of the proposed approaches in terms of matrix
recovery error and the joint angle-Doppler estimation based on the recovered matrix. We use ULA for
receivers. The carrier frequency is set to f = 1× 109 Hz, which is a typical radar frequency. The noise
introduced is white Gaussian with zero mean and variance σ2. Here, we use the SVT algorithm to
recover the data matrix. This is because both the storage space and computation cost SVT algorithm
are very low at its every iteration and it is suitable for a large size problem with a low-rank solution.
To ensure the SVT algorithm converges, we set the thresholding parameter to τ = 5ξ in this simulation,
where ξ is the dimension of the low-rank matrix that needs to be recovered.

5.1. Matrix Recovery Error under Noisy Observations

We consider a scenario with two targets. The first target’s angle θ1 and normalized Doppler
frequency fd1 are generated at random in [−90◦, 90◦] and [−0.5, 0.5], respectively, and the second
target’s angle and normalized Doppler frequency are taken as θ2 = θ1 + ∆θ and fd2 = fd1 + ∆ fd,
respectively. The target reflection coefficients are set as complex randomly. The Signal to Noise Ratio
(SNR) at each receive antenna is 15 dB. In the following, we compute the matrix recovery error as a
function of the number of samples m per degrees of freedom df, that is, m/df, a quantity also used
in [23]. A matrix of size M×N with rank K has K(M + N −K) degrees of freedom [23]. Let φẐ denote
the relative matrix recovery error, defined as:

φẐ = ‖Ẑ−Z‖F/‖Z‖F. (28)

Both Figures 4 and 5 show the relative matrix recovery error φẐ as a function of the number of
samples per degree of freedom for the scenario described above, where Figure 4 describes the case
of different angle separation between two targets while having the same Doppler frequency, and
Figure 5 provides the case of different Doppler separations between two targets while having the same
angle. The number of receiver antennas and the number of pulses are, respectively, set as M = 64 and
N = 64. One can observe that φẐ converges very fast. It converges in about when m/d f ≈ 4 in this
simulation. It can also be seen from Figures 4 and 5 that when the two targets have the same angle and
the same Doppler frequency, the relative recovery error is the smallest for both the cases because the
coherence parameters of data matrixes are optimum, that is, µ0 = 1. With the increase in the angle
separation in Figure 4 or the Doppler frequency separation in Figure 5 between two targets, the relative
recovery error increases for the case of 2 ≤ m/d f ≤ 4. Finally, from both Figures 4 and 5, it can be seen
that in the noisy cases, when m/d f ≥ 4, which corresponds to the matrix occupancy ratio more than
4d f /(MN) ≈ 0.25, the relative recovery errors of the matrices decrease to the reciprocal of SNR.
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Figure 4. Relative matrix recovery errors under different angle separations between two targets while
the Doppler frequency separation is set as 0 Hz.
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targets while the angular separation is set as 0◦.

5.2. Angle-Doppler Frequency Estimation

Figure 6 shows the sparse target scene on an angle-Doppler frequency map for a 0 dB SNR scenario.
This scenario comprises five-point targets, where the leftmost two targets are very close, which locate
at (45◦,−0.2) and (45.5◦,−0.205) in the angle-Doppler frequency domain, respectively. From Figure 6,
we can see that the joint angle-Doppler frequencies can be exactly estimated by OMP algorithms based
on the recovered matrix.
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Figure 6. Real target positions along with the estimates.

Figure 7 shows the sparse target scene on an angle-Doppler frequency map for a 25 dB SNR
scenario. This scenario comprises two point targets, which locate at (10◦,−0.3) and (10◦,+0.1) in the
angle-Doppler frequency domain, respectively. From Figure 7, we can see that the joint angle-Doppler
frequencies can be exactly estimated by OMP algorithms based on the recovered matrix.
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Figure 7. Real target positions along with the estimates. OMP: orthogonal matching pursuit.

The performance of high-resolution is provided from both angle and Doppler dimensions.
However, for the case where the two targets have identical Doppler frequency but different angles, the
estimation performance would decrease. Hence, we examine the angle resolution in terms of the ability
to separate two closely spaced targets with equal Doppler frequency. Let us consider the scenario
with two targets. The real value and estimated value of the target angle are, respectively, set as θi
and θ̂i, i = 1, 2. We set M = 100, N = 100, θ1 = 30◦, and θ2 = θ1 + ∆θ, where ∆θ = [0.5◦ : 0.5◦ : 5◦].
If ‖θ̂i − θi‖ ≤ ε∆θ, ε = 0.1, we declare the estimation a success, which means the two targets are
distinguished successfully from the angle domain; otherwise, they are distinguished unsuccessfully. The
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probability of angle resolution is then defined as the fraction of successful events in 200 independents,
which is illustrated in Figure 8.Information 2019, 10, 124 11 of 16 
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ρ
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6. Conclusions

We demonstrate a high-resolution radar approach termed as single-channel sub-Nyquist-MC
radar, which employs the sub-Nyquist, matrix completion, as well as compressed sampling techniques.
The proposed single-channel sub-Nyquist-MC radar approach allows for minimizing the number of
samples in all three dimensions, implying power consumption saving, and hence gaining substantial
storage capacity reduction. We compared our proposed radar approach to the conventional MTI radar
and have seen its clear advantages in simulations: in a scenario with K point targets in the far field,
when the number of samples is reduced from L ×M ×N required by conventional MTI radar to m,
where m ≈ 4d f and df = K(M + N − K), the proposed single-channel sub-Nyquist-MC radar is still
able to achieve high-resolution angle-Doppler estimation. In future work, we will apply the proposed
algorithm to the actual work scene.
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do not have any commercial or associative interest that represents a conflict of interest in connection with the
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Appendix A. Matrix Completion

Let us first consider an n1 × n2 complex matrix M of rank r, whose singular value decomposition
(SVD) is given by M =

∑r
i=1 ρiuiv

H
i and with column and row spaces denoted by U and V, which

spanned by the set
{
ui ∈ Cn1×1, i = 1, 2, · · · , r

}
and

{
vi ∈ Cn2×1, i = 1, 2, · · · , r

}
, respectively. Then, we

can define the coherence of U as

µ(U) =
n1

r
sup

1≤i≤n1

‖PUei‖
2
2 ∈

[
1,

n1

r

]
(A1)
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where PU is the orthogonal projection operator onto U and ei denotes the standard basis. Likewise, the
coherence of V is defined by µ(V). Further, two assumptions about matrix M are introduced in [11]
as below

A0) The coherence obeys max(µ(U),µ(V)) ≤ µ0 for some positive µ0.
A1) The n1 ×n2 matrix

∑
1≤k≤r ukvH

k has a maximum entry bounded by µ1
√

r/(n1n2) in the absolute
value for some positive µ1.

Moreover, it is notable that A1) always holds with µ1 = µ0
√

r if A0) holds [12].
Suppose that the matrix M is corrupted with noise, that is, Y = M+W, where W denotes the noise

component. Let us define PΩ(·) as an entrywise sampling operator. For example, PΩ(M) denotes
an entrywise sampling of M, that is, the orthogonal projector onto the span of matrices vanishing
outside of Ω so that the (i, j)th component of PΩ(M) is equal to Mi j if (i, j) ∈ Ω and zero otherwise,
where Ω is the set of indices of observed entries with cardinality m. Hence, the observation becomes
PΩ(Y) = PΩ(M) +PΩ(W). If a matrix M obeys A0) and A1), then M can be recovered by solving a
nuclear norm optimization problem

min ‖X‖∗
s.t. ‖PΩ(X−Y)‖F ≤ δ

(A2)

If the noise is zero-mean and white, then parameter δ can be related to the noise variance σ2, that
is, δ2 = (m +

√
8m)σ2. Correspondingly, the recovery error ‖M̂−M‖F is bounded as

‖M̂−M‖F ≤ 4

√
1
p
(2 + p)min(n1, n2)δ+ 2δ (A3)

where p = m
n1n2

is the fraction of observed entries [14].
The following result gives a probabilistic bound of the number of entries m required to recover

the matrix M.

Theorem 1 [12]. Suppose that we observe m entries of the rank-r matrix M ∈ Cn1×n2 obeying A0) and A1),
with matrix coordinates sampled uniformly at random. Let n = max{n1, n2}. Then, there exist constants C and
c such that if

m ≥ Cmax
{
µ2

1,µ1/2
0 µ1,µ0n1/4

}
nrβ log n (A4)

for some β > 2, then the minimizer to the problem of (A2) is unique and equal to M with probability at least
1− cn−β. For r ≤ µ−1

0 n1/5, this estimate can be improved to

m ≥ Cµ0n6/5r(β log n) (A5)

with the same probability of success. Theorem 1 implies that if the coherence parameter µ0 is low, few samples are
required to recover M.

Appendix B. Maximum Coherence of the Spaces

In this appendix, we prove that the maximum coherence of the spaces spanned by the left and
right singular vector of Z in (2). is bounded by the parameter µ0. From (2), we have Z = ADBT. On
the one hand, the matrix Z has the compact singular value decompositions Z = UΣVH with unitaries
U ∈ CM×K, V ∈ CN×K, and diagonal matrix Σ ∈ RK×K with nonzero singular values.

On the other hand, let us consider the thin Orthogonal Right (QR) matrix decomposition of A
given by A = VAGA, where VA ∈ CM×K is such that VH

AVA ≡ IK and GA ∈ CK×K constitute an upper
triangular matrix. Likewise, the QR decomposition of B is given by B = VBGB, where VB ∈ CN×K

is such that VH
B VB ≡ IK and GB ∈ CK×K constitute an upper triangular matrix. Then, we have
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Z = VAGADGT
BVT

B, and since the matrix GADGT
B ∈ CK×K is almost surely of full rank by definition,

the Singular Value Decomposition (SVD) is given by GADGT
B = QAΛQH

B , where QA ∈ CK×K is such
that QAQH

A = QH
AQA = IK and Λ ∈ RK×K are non-zero-diagonal, containing the singular values of

GADGT
B. Thus, the matrix Z can be rewritten as

Z = VAQAΛQH
B VT

B = VAQAΛ(V∗BQB)
H (A6)

which constitutes a valid SVD of Z, since (VAQA)
HVAQA ≡ IK.

Consequently, by the uniqueness of the singular values of a matrix, it holds that Λ ≡ Σ. Therefore,
we can set U = VAQA and V = V∗BQB. If Vn

B ∈ C1×K and Bn
∈ C1×K, n ∈ (1, N) denote the nth row of

VB and B, respectively, it holds that.

µ(V) ≤
N

λmin(BHB)
(A7)

Likewise, regarding the coherence of the column space of Z, we get

µ(V) ≤
N

λmin(BHB)
(A8)

Due to (A5), a strictly positive lower bound for λmin(BHB) is needed to derive, where BHB can be
written as

BHB ,


N δ1,0 · · · δK−1,0

δ∗1,0 N · · · δK−1,1
...

...
. . .

...
δ∗K−1,0 δ∗K−1,1 · · · N

 (A9)

where

δi, j ,
N−1∑
n=0

e j2πTrn( fdi− fdj), ∀(i, j) ∈ NK−1 ×NK−1 (A10)

Obviously, N ≡ δi,i, ∀i ∈ NK−1. Before we proceed with the analysis, let us state the following
standard result, which bounds the minimum and maximum eigenvalues of a matrix M using exclusive
functions of the traces of M and M2.

Theorem 3 [12]: Let M ∈ CK×K be a matrix with real eigenvalues. Define

τ ,
tr(M)

K
and s2 ,

tr(M2
)

K
− τ2 (A11)

Then, it is true that
τ− s

√

K − 1 ≤ λmin(M) ≤ τ−
s

√
K − 1

(A12)

τ+
s

√
K − 1

≤ λmax(M) ≤ τ+ s
√

K − 1 (A13)

In order to apply the Theorem, we define M , BHB ∈ CK×K. The trace of M is simply NK. Hence,
we have

τ =
NK
K

= N (A14)
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We also need the trace of M2. Since M is a Hermitian matrix, it is true that

tr(M2
)

=
K−1∑
k1=0

K−1∑
k2=0

∣∣∣δk1,k2

∣∣∣2

≡

K−1∑
k1=0


N2 +

K−1∑
k2 = 0
k1 , k2

∣∣∣∣∣∣N−1∑
n=0

e j2πTrn( fdk1
− fdk2

)

∣∣∣∣∣∣2


=
K−1∑
k1=0


N2 +

K−1∑
k2 = 0
k1 , k2

sin2
(
πNTr( fdk1

− fdk2
)
)

sin2
(
πTr( fdk1

− fdk2
)
)


=
K−1∑
k1=0


N2 +

K−1∑
k2 = 0
k1 , k2

φ2
N[Tr( fdk1 − fdk2)]



(A15)

where

φN(x) ,
sin(πNx)
sin(πx)

, x ∈ R, and N ∈ N+ (A16)

At this point, it is instructive to at least qualitatively study

tr(M2) ≤
K−1∑
k1=0

N2 + (K − 1) sup
x∈[ξv,0.5]

φ2
N(x)

 , KN2 + K(K − 1)βξv(N) (A17)

where
βξv(N) = sup

x∈[ξv,0.5]
φ2

N(x), (A18)

ξv , min
(i, j) ∈ NK−1 ×NK−1

i , j

g
(
Tr

∣∣∣ fdi − fdj
∣∣∣) (A19)

and

g(x) ,

dxe − x, dxe − x ≤ 1
2

x− dxe, otherwise.
(A20)

Hence, via Theorem

s2 ,
tr(M2

)
K

−N2
≤ N2 + (K − 1)βξv(N) −N2

≡ (K − 1)βξv(N) (A21)

Consequently, we can bound λmin(M) = λmin(BHB) from below as

λmin(BHB) ≥ N − (K − 1)
√
βξv(N) (A22)

Using (A5) and (A20), we get the upper bound of the coherence of V

µ(V) ≤
N

N − (K − 1)
√
βξv(N)

(A23)
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Likewise, regarding the strictly positive lower bound for λmin(AHA), we have

λmin(AHA) ≥M− (K − 1)
√
βξu(M) (A24)

where
βξu(M) = sup

x∈[ξu,0.5]
φ2

M(x), (A25)

ξu , min
(i, j) ∈ NK−1 ×NK−1

i , j

g
(

d
λ

∣∣∣sin(θi) − sin(θ j)
∣∣∣) (A26)

The upper bound of the coherence of U becomes

µ(U) ≤
M

M− (K − 1)
√
βξu(M)

(A27)

Consequently

max
{
µ(U),µ(V)

}
≤ max

 M

M− (K − 1)
√
βξu(M)

,
N

N − (K − 1)
√
βξv(N)

 (A28)
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