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Abstract: It took some time indeed, but the research evolution and transformations that occurred
in the smart agriculture field over the recent years tend to constitute the latter as the main topic
of interest in the so-called Internet of Things (IoT) domain. Undoubtedly, our era is characterized
by the mass production of huge amounts of data, information and content deriving from many
different sources, mostly IoT devices and sensors, but also from environmentalists, agronomists,
winemakers, or plain farmers and interested stakeholders themselves. Being an emerging field,
only a small part of this rich content has been aggregated so far in digital platforms that serve as
cross-domain hubs. The latter offer typically limited usability and accessibility of the actual content
itself due to problems dealing with insufficient data and metadata availability, as well as their quality.
Over our recent involvement within a precision viticulture environment and in an effort to make
the notion of smart agriculture in the winery domain more accessible to and reusable from the
general public, we introduce herein the model of an aggregation platform that provides enhanced
services and enables human-computer collaboration for agricultural data annotations and enrichment.
In principle, the proposed architecture goes beyond existing digital content aggregation platforms
by advancing digital data through the combination of artificial intelligence automation and creative
user engagement, thus facilitating its accessibility, visibility, and re-use. In particular, by using
image and free text analysis methodologies for automatic metadata enrichment, in accordance to the
human expertise for enrichment, it offers a cornerstone for future researchers focusing on improving
the quality of digital agricultural information analysis and its presentation, thus establishing new
ways for its efficient exploitation in a larger scale with benefits both for the agricultural and the
consumer domains.

Keywords: smart viticulture; precision viticulture; collaborative platform; data aggregation;
metadata analysis

1. Introduction

Over recent years, the smart agriculture sector has evolved tremendously towards the bridging
of two separate worlds: information technologies and primitive agriculture. In this framework,
smart agriculture followed the general tendency and became part of the so-called digital evolution in
the form primarily of massive digitization, as well as annotation, activities, along with actions towards
multimedia content generation from all possible sources. The latter resulted into an obvious problem
of our epoch, i.e., the one of information overload. Initiatives to aggregate the digital content resulted
in the solution of the so-called traditional digital platforms. Typically, such a traditional platform
operates as a cross-domain hub, making the content accessible to its users, independently on whether
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the latter are considered to be content producers (e.g., farmers or smart agriculture stakeholders) or
consumers (e.g., the general public). Among the characteristics of the platform is the fact that data and
information are made available for search and study. Additional applications and web services may
reuse and re-purpose the data, whereas the main strength of such platforms lay in the vast number of
content items they contain.

Of course, not all issues are tackled efficiently by such a traditional digital platform. In most cases,
they offer limited usability and accessibility due to their insufficient data and metadata quality. As it is
the case with many information technology sub-domains, there is a variety of factors that affects the
quality of smart agriculture data and metadata:

• lack of structured and rich descriptive metadata;
• complex, heterogeneous, and multi-channel aggregation workflows;
• possible shortcomings in the data providing process (surpassing manual quality control of

automatic metadata generation in digital repositories);

These are some of the main causes that result in poor information descriptions. This drawback
highly affects the accessibility, visibility and dissemination range of the available digital content. It also
limits the potential of added-value services and applications that re-use the available resources in
innovative ways, also limiting the overall user experience in the process. On top of that, metadata
quality improvement usually faces another important problem, i.e., the problem of scale, since
improving the metadata quality coming from different sources often requires a huge amount of
time, effort, and resources that aggregators cannot afford.

In this framework, metadata enrichment services through automated metadata processing and
feature extraction, possibly along with crowd-sourcing annotation services, available in a centralized
way through a dedicated platform can offer a remarkable opportunity for improving the metadata
quality of digital smart agriculture content stored in such typical platforms, while at the same time
engaging users and raising awareness about smart agriculture assets. In this work, we focus on a
viticulture-friendly (Figure 1), cooperative, content sourcing, publication platform, aiming to enrich and
improve metadata quality, facilitate the exploration, visibility, and promote digital content reprocessing
through various smart farming applications. Our project targets various types of users from the
viticulture domain with different levels of expertise and, in addition, offers enriched capabilities
based on present resources deploying the platform’s existing interfaces. The platform offers metadata
management and organization in collections and introduces the concept of spaces, defined to enable
data visualization based on various intuitive levels of aggregation. Through linked data principles and
automated metadata processing services that aim to amend acquirable web resources, while improving
the quality of metadata. Finally, it offers the possibility to interested stakeholders to launch ad-hoc
crowd-sourcing campaigns with measurable results, thus mobilizing and engaging users to execute
useful tasks for the enrichment and validation of selected smart agriculture metadata (e.g., by adding
annotations such as semantic tagging, image tagging, geo-tagging, or by validating existing annotations
through up-voting or down-voting within user-friendly and engaging ways).

Finally, the rest of this paper is structured as follows: Section 2 provides an overview of the
smart agriculture domain by illuminating some related pioneer works, as well as illustrating the
overall precision viticulture domain. Section 3 focuses on the design and architecture of the enhanced
platform and its constituent parts. It also provides a detailed description of the data management
approach in terms of semantic heterogeneity handling (Section 3.1), content search and aggregation
workflow (Section 3.2), including the organization and management of content in terms of collections
and spaces, as well as content metadata generation and enrichment methodologies adopted in the
platform (Section 3.3). Finally, Section 4 concludes the work and addresses a couple of future works
with respect to the platform’s evolution over time.
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Figure 1. Precision viticulture illustration.

2. Smart Agriculture Overview

Over recent years, big data technologies have pushed high-performance computing in the
direction of implementing machine learning (ML) for the further development of data science
in multi-disciplinary agri-technologies. Thus, several ML models have been deployed within the
agricultural production systems, with their main focus being on approaches dealing mostly with
crop management through artificial neural networks (ANNs) [1]. Smart agriculture, in the form of
machine learning to sensor data, has evolved into an automated decision making under the scope of
production improvement [2]. The correlation of agricultural data is based mainly on feature extraction
related to the domain of study and defines the use of proper ML tool and consequently rule setting.
Consequently, ML applications in agriculture tend to require indispensable tools and methods that
meet the specifications of the data model that will be deployed in a specific case study.

2.1. Pioneer Works on Smart Agriculture/viticulture

New and emerging technologies and methodologies, such as cloud computing and
crowd-sourcing, aid today’s farmers towards an overall better performance of their owned farming
resources. In this framework, the notion of precision agriculture, in general, and precision viticulture—
when focusing solely on vineyards—in particular, is precision farming applied to optimize the overall
performance, while minimizing environmental impacts and risk [3]. In viticulture, for instance,
this is accomplished by measuring local variation in factors that influence grape yield and quality
(i.e., soil, topography, micro-climate, vine health) and applying appropriate viticulture management
practices (i.e., trellis design, pruning, fertilizer application, irrigation, timing of harvest) [4,5]. Precision
viticulture is based on the premise that high in-field variability for factors that affect vine growth
and grape ripening warrants intensive management customized according to local conditions. In this
manner, Morais et al. [6] studied the effect on the quality of the wine of various barrel types during
aging. They developed a control protocol for monitoring the chemical composition and quality of
the produce. The hardware part of the project was implemented through an array of sink nodes
based on Raspberry Pi model 2, and the software related to the development of a prediction model
was implemented using the mySENSE IoT platform. Morais et al. focused on oxygen consumption
during the wine aging process, through the discovery of substantial differences between wood barrel
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types. Remote sensing is a very useful tool for analyzing the impact of agro-environmental factors
in the quality of vine yields. They employed satellite-derived prescription maps (PM) from aerial
imagery through the analysis of intra-vineyard variability for vine color (vigor). Normalized difference
vegetation index (NDVI) maps offer surveying capabilities for the optimization and further control in
wine production along with field data acquisition. They presented a monitoring system that improves
the distinctive capability for agronomic applications.

An application of a real-time monitoring platform in viticulture is presented in the work of
Canete et al. [7]. Their research emphasized the control of structural health and ullage of wine
casks on the wine aging process through detection system for possible crevices on the cask’s surface.
They managed to gather information from inside the aging containers with the introduction of the
prototype “Smart Cork”, which provides the capability to real-time monitor and resolve any issues.
More specifically the sensing device was based on IoT technologies and supported by a cloud platform
and a control interface for on-site warning in order to evaluate the suitability of the aging process in
real time.

Insular environmental monitoring is a research subject was studied by Naumowicz et al. [8].
They implemented an IoT platform that based on deployed wireless sensor network for three years
design on the scope of monitoring seabirds on Skomer Island (UK National Reserve, West Wales).
Although their application was not specific to agriculture their research focused on the particular
characteristics of insular areas. Their sensory arrangement consists of a real-world deployable sensor
network based on battery powered sensor nodes to investigate the habitat of the Manx shearwater
(Puffinus puffinus) seabird.

Muangprathub et al. [9] proposed an optimization system for water supply in agricultural crops.
They developed a wireless sensor network infrastructure under the scope of controlling and managing
data and operations remotely. Furthermore, the deployed nodes provided concrete and use full data
for irrigation while increasing agricultural productivity.

Finally, to conclude this brief overview of related research literature, we should stress the fact
that the herein discussed approach differs from all the aforementioned depicted in Table 1, in the
sense that it combines on-site soil and atmospheric monitoring based on integrated equipment of
weather instruments. Furthermore, it is worth mentioning that its gathered data are employed within
a semantic structure for smart viticulture through integrated data handling on the scope of current
state-of-the-art artificial intelligence [10].
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Table 1. Overview of research works in smart agriculture.

Work Task(s) Method(s) Pros Cons Dataset(s)

[4] Study of spatial variability in
winegrape yield

Assessment of the yield growth
probability through k-means

Introduction of a system of
zonal vineyard management

They didn’t address the
physiology of the grape

Field data from two areas in
South Australia

[5]
Demonstrate temporal stability
within-vineyard variation and
winegrape quality

Geo-statistical assessment (k-means)
clustering and

Justify the use of zonation on
yield monitoring

Requirements for large scale
sampling and analysis

Field data from two areas in
South Australia

[6] Investigation of behaviour models
on wine aging

Deployment of a distributed monitoring
system (hardware and software

Detect differences between type
of wood barrels and the
different storage conditions on
wine aging quality

Their model produced
variations due to oxidation
in aging process

Measurements of
environmental parameters
from two wineries along
with barrel dimensions

[11]

Investigate satellite data potential to
evaluate changes in vegetation
characteristics on occasional
acquisitions

Investigation of spatial resolution role
in radiometric features of data

Concrete correlations between
grapevine physiological,
reproductive and qualitative
indices

Weak quantitative
interpretation of mapped
vigour

Aerial and mid-resolution
satellite multispectral images
from two growing seasons
(2013 and 2014)

[7]
Real time monitoring system with
IoT prototyping to maintain the
balance between ullage and wine

Prototype embedded system to detect
possible damages to barrels and to track
the level of wine inside the cask

Provide a plan for tracking and
assessing the suitability of the
delicate wine elaboration
process

Low distinctive capability
Recordings of physical and
natural characteristics from
IoT devices

[10] Preliminary ontological scheme for
environmental monitoring

Spatio-temporal ontological
development

Relation between environmental
factors and spatio-temporal
distribution

Not deployed with field data -

[8] Automated Insular environmental
monitoring

Deployment of a WSN for wildlife
monitoring Remote deployment Not widely applicable -

[9] Optimized water supply system for
crops

IoT network of sensors and software
infrastructure

Automatic deployment of a
monitoring system The system is not scalable Climatic variables gathered

by a WSN
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2.2. Precision Viticulture

Precision viticulture is a specialized field of smart agriculture aiming at maximizing the
oenological potential of winegrape yield. High-quality production areas demand the adoption
of spatially aware management systems that assist the optimization of wine quality and yield.
Additionally, technological innovations allow specialized vineyard management that promotes high
quality and reduction of environmental impact. Furthermore, further advancements on the field
of applied geography and information communication technologies (ICT) enhance the probability
of scientific leaps in precision viticulture. Novel optimized solutions provide a plethora of tools
for advanced monitoring and control in vine growth. In conclusion, smart viticulture aims at the
exploitation of methods that identify high-resolution spatial variability on vine fields that provide a
recommendation basis for improved quality, yield, and sustainable management.

Agricultural impact on the environment is reduced through sustainable and efficient practices
derived from smart farming that permits the management of various agricultural factors along with
environmental preservation. It is based on a management approach that estimates the localized needs
of the vineyards, based on heterogeneous structural factors of the yield. The managerial requirements
evolve around the variability on the physiological response, strongly related to grape quality, which
in terms of agronomy it will satisfy the efficiency and quality of crop production. Vineyard spatial
variability directs the development of specialized tools that assist monitoring and control vine growth
through. These technological solutions are based on remote and proximal sensing sensors that monitor
vineyard status, namely water and nutrient availability, plant health and pathogen attacks, or soil
conditions. More specifically precision viticulture exploits the widest range of available sensory
observations to interpret high-resolution spatial variability within the vineyard, and assist the efficient
yield management efficiency in relation to quality, production, and sustainability.

The rise of machine learning and artificial intelligence has offered novel tools for vineyard
management, early pest detection, growth stage and the potential quality of vine grapes estimation.
Unmanned aerial vehicles equipped with red-green-blue (RGB) and near infrared (NIR) cameras are
commonly used in precision viticulture to acquire image data that are used to extract color information
in terms of various indices (e.g., excess green index, excess red index, color index of vegetation
extraction, etc.) that are often used to segment the green vegetation regions in remote sensing images.
Computer vision techniques can be applied on remote sensing images to extract various color, shape
and size related features and vegetative indices, to estimate canopy features in the field, to estimate
cluster morphology which not only impact the cluster architecture and compactness (leading to looser
or tighter clusters), but are also considered as indicators of grape and wine quality. Machine learning
techniques combined with machine vision technology has been widely used and studied in agriculture
to identify and detect plants (crops and weeds). In viticulture, machine learning approaches are used
typically for grape and foliage detection, classification of early-stage grape yield estimation, whereas
neural networks are used to classify wine samples into different varieties, locations, and years of
production. In the following two subsections, we shall investigate further research with respect to two
important traits of precision viticulture, namely soil management and yield/quality estimation.

2.3. Utilization of Artificial Intelligence

One of the most important and studied sub-fields of the above is soil management because it
heavily affects the production and outcome of the vineyard. One of the first integrated works on
the subject is from Mehdizadeh et al. [12]; the authors investigated the performance of equations
and soft computing approaches, implementing 16 empirical equations from temperature-based, mass
transfer-based, radiation-based, and meteorological parameters-based categories. More specifically
they calibrated different types of used empirical equations and evaluated their performances in
estimating ETo (reference evapotranspiration (mm day−1)). Thereafter, they addressed the capabilities
of soft computing approaches, including multivariate adaptive regression splines (MARS), support
vector machines (SVM) and gene expression programming (GEP) and in result they conducted a
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comparative analysis between empirical equations and the soft computing approaches. Their findings
concluded that precise estimation of ETo is required in many fields related to water and aquatic domain,
while testing the effectiveness of the empirical equations.

Artificial intelligence provides a plethora of methodologies on modeling continuous and variable
environmental factors. Feng et al. [13] developed an estimation model for daily ETo based on
temperature data that introduced two models along with extreme learning machine (ELM) and
generalized regression neural network (GRNN). They gathered data from six meteorological stations
from the Sichuan basin (SW China) and thereafter compared them using the ELM and GRNN models
along with the temperature-based Hargreaves (HG) model. Their data sequence corresponded to a
calibrated version considering FAO-56 Penman–Monteith ETo as the benchmark, that produced two
data management scenarios: (1) the models were trained and tested using the local data of each station
and (2) the models were trained using the pooled data from all the stations and tested in each station,
which were compared against to the well-known empirical Hargreaves models.

The development of Artificial Intelligence models for daily ETo estimation solely with temperature
data was addressed by Feng et al. [13]. More specifically they introduced two models along with ELM
and GRNN in six meteorological stations from the Sichuan basin, in southwest China, and compared
the proposed ELM and GRNN with the corresponding temperature-based Hargreaves (HG) model
and its calibrated version considering FAO-56 Penman–Monteith ETo as the benchmark. In relation to
the implementation of the above they considered that the models’ training was based on local weather
station data and derived data from the all of the stations in total, compared altogether against the
empirical Hargreaves models. Furthermore, the authors’ research showed the great capabilities for
ETo estimation of ELM and GRNN models, mainly because they performed much better than the
original models. In conclusion, Feng et al. [13] stated that ELM and GRNN provided a slight better
performance than the local ELM and GRNN, they render a better fit for ETo estimation methodology
based on incomplete local meteorological data.

Precise estimation of evapotranspiration is crucial for accurate crop-water estimation by
implementing machine learning (ML) techniques, such as artificial neural networks (ANNs).
Specifically, the estimation of weekly reference crop evapotranspiration (ETo) was assessed by Patil
and Deka [14] by developing an improved extreme learning machine (ELM) algorithm. The authors
attempted to model the process of evapotranspiration in arid regions of India under limited data
scenario through the evaluation of the capabilities of ELM to model the process of evapotranspiration
and input selection. They concluded that the proposed ELM model performed better than the
Hargreaves and ANN model, as the best to estimate weekly evapotranspiration at Jodhpur and Pali
weather station, based less human intervention to select the optimum model parameters. In addition
to that the effectiveness of using such extrinsic inputs is proved by the evaluation of suitability of
using (ETo) values from various weather stations modeling the process of evapotranspiration.

Prediction of daily dew point temperature was studied by Mohammadi et al. [15] by proposing an
extreme learning machine (ELM)-based model. The effectiveness of ELM was validated against SVM
and ANN based on the case studies of daily averaged measured databases for two stations in Iran
with different climate conditions by focusing on the input elements of the physical factors influencing
the formation of dew, five widely available parameters, average air temperature, relative humidity,
atmospheric pressure, vapor pressure, and horizontal global solar radiation. More specifically they
deployed statistical indicators to provide a statistical comparison between the predicted and measured
data for three modeling techniques to address that the ELM model is superior over SVM and ANN
for the predictions of daily dew point temperature. In conclusion, the ELM was found better to
predict the nonlinear variations of daily dew point temperature in its different ranges by estimating
the probability of occurrence of predicted values compared to measured data revealed that for both
stations the probability distribution of the predicted values.

In principle, it is a rather challenging task to perform accurate yield prediction, estimation
and quality control [16], because such factors are affected by environmental variables. Still, many
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approaches for enhanced vineyard management techniques are introduced, which involve automatic yield
estimation [17–19], grape quality evaluation [20], and grapevine variety identification [21]. In a relevant
approach, Ramos et al. [22] proposed a method of calculating the number of fruits on a coffee branch in the
field. Their system categorized fruits as either harvestable or non-harvestable through identifying their
number, weight, and maturation percentage non destructively. They were based on data obtained from
mobile devices and image processing algorithms along with the development of a dedicated detection
method of masking occluded from un-occluded fruits from field images. Ramos et al. produced estimation
models based on assessing determination coefficients higher than 0.93 and exploiting direct measurements
capable of higher coefficient rate, comparable to similar models.

Taking this a step further, the scope of a machine vision system for automated harvesting
was studied by Amatya et al. [23] through branch detection used morphological features including
orientation, length, and thickness of partially visible segments. The authors aimed at detecting cherry
tree branches during full foliage season that support automated cherry harvesting operation using
mechanical shaking of limbs. Furthermore, they deployed RGB images of cherry tree canopies using a
Bayesian classifier for the identification of the segmentation branch pixels, in which they managed a
classification accuracy of 89.6%. They also implemented noise filtering and grouping techniques of
the same branch in a specified neighborhood, along with curve fitting method was then used to fit
an equation through detected branch segments, providing overall accuracy in detecting individual
branches was by 89.2%. In conclusion, their study showed promising results in detecting branches of
sweet cherry trees during harvest season in the presence of full foliage and fruit on their study sample.

One of the worth-noting works in the field is the one by Radhika and M. Shashi [24], where they
exploit support vector machines (SVMs) for the task of predicting the maximum daily temperature.
Moreover, as a baseline, they use a multi-layer perceptron (MLP) trained through back-propagation.
To accomplish the aforementioned prediction task, they rely on weather data provided by the
University of Cambridge for the time period of 2003–2007. Through their experimental findings, the
authors showcase that the SVM-based approach, is able to achieve significant results, thus showcasing
its suitability for this particular prediction problem.

Similarly, Gill et al. [25] develop an SVM regression model, in order to predict the moisture of soil.
In particular, the authors utilize both meteorological, and soil moisture data, from 11 weather stations
from the Oklahoma region in the United States, for training and testing their prediction model. Finally,
by comparing their proposed model against an artificial neural network (ANN), they showcase its
efficiency. Huuskonen and Oksanen [26] presented a methodology in relation to remote soil sampling
while presenting the results on the augmented reality platform. Their work intended to reproduce a top
soil map with management zones for precision farming based on the gaming experience. They deployed
a UAV on pre-destined sampling sites in order to create soil maps. The maps feed a platform with content
that enhances user experience in order to assist agricultural research.

Lastly, another novel approach in agriculture was implemented by Fuentes et al. [27] in which they
employed machine learning models for the categorization of cultivars. They used morpho-colorimetry
and NIR spectroscopy in grapevine leaves in order to assess the main differences between cultivars, and
their according levels of water stress. The researcher employed automated image analysis under the scope
of morphological and color feature extraction from scanned vine leaves along with an AI-based model
(ANN) for rapid, accurate, and inexpensive ampelography/cultivar classification. Fuentes et al. method
proved to be highly accurate in recognizing different cultivar classes in a large sample of vine leaves.

Table 2 provides a brief comparative overview of the above fundamental research efforts. As it
was the case with previous Table 1, Table 2 includes six columns: The first contains each work’s
bibliographic reference number; the second describes the main task the particular work attempts
to tackle; the third focuses on the depicted methodology the authors propose or utilize in order to
solve the particular research task at hand; the fourth column presents a representative set of positive
characteristics (if applicable); the fifth column presents a representative set of negative characteristics
(if applicable); finally, the sixth column provides information on the utilized dataset (if any).
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Table 2. Overview of research works focused in the utilization of AI.

Work Task(s) Method(s) Pros Cons Dataset(s)

[1] Review of applied Machine
Learning in agriculture

Presentation of a number of relevant
papers with emphasis on key and
unique features of popular Machine
Learning models

Categorization of Machine
Learning methodologies

Not related to decision
making processes forty (40) related articles

[12] Equation performance of monthly
mean reference evapotranspiration

Comparative analysis between
empirical equations and soft computing
approaches

- - Meteorological dataset from
southwest of Asia

[13] Modeling reference ET0 through ML
and techniques

Implementation of temperature based
ELM and GRNN models for the
estimation of daily ET0

Emphasize on the capabilities of
ELM and GRNN models

Experimental data were not
used

A dataset of daily
meteorological variables
from 6 stations of the
National Climatic Centre of
the China Meteorological
Administration

[14]
Evaluation of capabilities of
Extreme ML to model the process of
evapotranspiration

Implementation of ANN1, LS-SVM1,
ELM1 and Hargreaves equations in
climatic data

Comparability between models - Weekly climatic data from
two weather stations in India

[15] Daily Dew point prediction
methodology Extreme Machine Learning

Reliable prediction techniques
deployed in varied climatic
conditions

Decrease of model’s
performance between
training and testing

2555 days of measurements
from two meteorological
stations

[17] Automatic yield estimation Leaf spectroscopy and partial least
squares

The model has many
classification efficiencies

Data obtained from a limited
number of samples

Hyperspectral images of
vine leaves

[18] Complete characterization of grape
seed quality

Detection of morphological differences
through image analysis

They produced an efficient
evaluation tool

They employed a small
distinctive sample

Images from one hundred
berries from a specific
cultivation

[21] Grapevine variety identification Automatic leaf spectroscopy
classification of grapevine varieties

Their word produced robust
results

Limited samples for required
laboratory testing

Images from grapevines of
Vitis vinifera L.

[22]
Automatic identification of
harvestable and not harvestable
fruits on a coffee branch

Object based classification based on a
Machine Vision System & an Image
Processing Algorithm

Appropriate tool for assessing
harvest potential Labour intensive procedure

Acquired and adjusted grape
images from 1018 coffee
branches

[23] Branch shaking localization for
automated cherry harvesting

Machine vision system for automatic
cherry recognition and counting High success rate Time consuming procedure Color RGB images of cherry

trees from Washington, USA

[27] Accurate& automated
ampelographic measurements Two types of ANN models High accuracy rate Requires complex processes Morpho-colorimetric data

obtained from vine leaves

[26] Remote soil sampling Drone imaging and segmentation Novel integrated agricultural
monitoring approach Not tested in large scale Soil data from the study area
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3. Agricultural Data Aggregation—An Interconnected System

At this point, it should have been made obvious by the previous analysis that through the use of
innovative new technologies, farmers may be supported in activities related to the management of
their crops so that they can achieve higher yields and better quality while at the same time they apply
the exact amounts of inputs (e.g., irrigation water, fertilizers, and pesticides) needed by their crops.
This not only improves the financial benefit of farmers (thanks to the minimized production costs),
but also minimizes the impact of agriculture on the environment. Within this challenging framework,
the main motivation behind the creation of a viticulture-friendly platform is to utilize different data
repositories in unison and promote the digital content by enhancing its accessibility and discoverability,
and provide artificial intelligence based services for further analyzing available data (e.g., images
of various modalities, multi-source measurements, sensor data, historical data). Thus the discussed
platform can be viewed as a complete ecosystem that offers enriched services, aggregates content from
multiple sources, resolves interoperability issues by performing automatic mappings in the back-end,
improves metadata quality through linked data principles and automated free text and image analysis
services where applicable, and mobilizes and engages its users (i.e., farmers, winemakers, stakeholders,
the general public) to execute useful tasks for the enrichment and validation of selected metadata,
as well as the provision and extraction of new information. In its core, it is a platform especially
designed with a focus on human-computer collaboration with application in the area of viticulture.
The latter offers a set of services such as content integration, management, retrieval, and curation,
automatic metadata enrichment, information retrieval and extraction, and inserts the human being in
the loop in order to accommodate human expertise and intelligence.

The main characteristics, as well as benefits from the introduction and utilization of such a
platform may be summarized in the following, whereas a diagrammatic overview of the proposed
platform is illustrated in Figure 2:

• Viticulture data are aggregated from multiple repositories and published;
• Viticulture data are translated into usable information consumable for decision-making purposes;
• Heterogeneous data are translated into the same form using a common data model;
• The data model is able to actually evolve, so as to include additional requirements, data sources

and other models;
• Data can be made more accessible to a wide range of users, such as data scientists, business

analysts, etc., by granting a unified access to knowledge from multiple sources, thus promoting
the viti-cultural content;

• Data can be queried and queries may be asked in multiple ways that haven’t been anticipated
while modeling the data;

• Back-end processing can be initiated to extract useful information from translated data;
• Viticulture-related information is retrieved, stored, extracted and sustained for future use;

A more descriptive architectural flowchart of the proposed implementation is illustrated in
Figure 3. The information flow starts on the left, where related content providers (e.g., user archives
or even libraries of related content) and corresponding aggregators provide their content metadata
descriptions to the developed platform. In principle, this first inaugural part of the process tends to be a
rather difficult task, mainly due to the heterogeneity of the various available content metadata formats.
Using the proposed modular system, the metadata transformation module maps and transforms
the uploaded data to elements through an automatic transformation process. The outcome of this
module remains a transformed version of the content metadata. Continuing, translated metadata are
represented as KB expressions by exploiting the semantic enrichment module and are then stored
in the semantic repository module on the upper right corner of the flowchart. It is worth noting at
this point that all metadata elements are represented within the semantic repository as entities of
the terminological knowledge. This knowledge has the form of an ontology, which is related to both
various popular ontology metadata standards, such as Dublin Core or LIDO, as well as to more specific
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terminological axioms providing details about crop varieties, categories of agricultural crops, physical
properties, numerous interrelations, and other important agricultural features. Content providers
and aggregators develop this type of knowledge in the form of so-called thematic terminologies.
The exploitation of such knowledge types is then expected to happen within the semantic query
answering module, responsible for the semantic enrichment of the available content metadata, as well
as for the implementation of meaningful reasoning tasks so as to extract efficient related results.

Figure 2. Platform overview.

Figure 3. Platform architecture flowchart.
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Our system as a whole is available to test and use online (http://withculture.eu/#/custom/ev
inos) and currently addresses numerous kinds of users from various fields of the viticulture domain
that are interested in exploiting, analyzing and creatively reusing content through smart tools and
applications. It serves as a multipurpose platform with varying level of functionality abstraction
depending on the user’s level of expertise. More specifically:

• For end users: wine lovers, viticulture, enthusiasts, winemakers and producers etc., the platform
serves as an outlet for the breakthrough of content and interfaces bonded to propagated
repositories. Users can potentially create customizable multi-source content (e.g., searched
through multiple viticulture repositories), on the scope of further enrichment of dissemination for
viticulture. Customized collections will create a virtual aggregation of data related to viticulture
allowing a straightforward method of presenting popular narratives in a web-based environment.
Furthermore, the platform offers collaborative content creation and modification within registered
groups of users.

• For specialized professionals (from viticulture, agriculture domain, etc.), the platform offers the tools to
synthesize and construct eclectic collections, for the enrichment, optimization, and development
of specialized semantic knowledge.

• For viticulture content holders, i.e., winemakers and producers, it offers an easy to use content &
metadata repository and management system, that can ensure interoperability with standards,
best practices, and guidelines. Winemakers are able to upload their historic data from a specific
vineyard, like for instance soil data, management data, meteorological information, and actual
yields per season. Data can be stored in the platform’s repository and then plugged into the
system’s machine learning models to predict the yield from the coming season, even from the
early stages of growth.

• For organizations, the platform offers the notion of spaces, i.e., a novel way to organize and promote
content and improve its metadata, as well as engage with users through campaigns.

• For aggregators, it provides the MINT (Metadata INTeroperabillity, http://mint.image.ece.ntua.gr
/redmine/) [28,29], open source, web-based platform. It offers full implementation of workflows
on the scope of ingestion, formal mapping, transformation, and aggregation of metadata records.

• For developers, it provides a back-end toolset for digital content re-usability, employing a fully
functional API (api.withculture.eu/assets/developers-lite.html) that disseminates the total of the
available data and services to anyone willing to utilize for further exploitation.

Above depiction of the main possible utilization of the platform by the aforementioned kinds of
viticulture users’ expertise depicts the expansion capabilities and potential of the proposed system,
being a modular platform with varying levels of granularity. The latter may be defined as the lesser or
greater extent in the description of the expected behavior of the platform, according to its functional
specifications and the particular goal associated with its requirements and allows for its great impact
with respect to making agriculture smart using traditional, computer-aided automation, and artificial
intelligence (AI) based and Internet of things (IoT) technologies.

The basic underlying system architecture, as already illustrated in Figures 2 and 3, mainly depicts
the user involvement in the data services of the platform; the latter is designed based on an innovative
human-in-the-loop approach, to target the advancement of data quality and organization, to offer
data services that users can employ in order to better manage, retrieve, enrich, and promote their
data. Specifically, with the aid of metadata aggregation, collection management, and spaces management
services, viticulture users can upload, collect, and organize content from several sources and also
create interesting data views and presentations and store them in the platform’s underlying database.
Moreover, using the AI-enabled metadata extraction services that integrate automatic or semi-automatic
annotation tools (like automatic text analysis, image annotation, etc.), users may select interesting ways
to analyze the relevant content, extract knowledge and develop and store new content descriptions.
Finally, by initiating and managing crowd-sourcing campaigns, users may involve other users in

http://withculture.eu/#/custom/evinos
http://withculture.eu/#/custom/evinos
http://mint.image.ece.ntua.gr/redmine/
http://mint.image.ece.ntua.gr/redmine/
api.withculture.eu/assets/developers-lite.html
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recognition tasks that are difficult for machines to perform (e.g., wine variety recognition from a grape
roe picture), thus further improving the available data content descriptions.

Based on the above system architecture, the platform’s user involvement may be summarized
in four interactive processes, as depicted in Figure 4. The content search and the content management
processes that enable users to collect content and organize content, as well as the Metadata enrichment
and the crowd-sourcing processes that enable users to advance content descriptions, using AI content
analysis tools or human annotations, respectively. In the next subsections, we shall focus on these
main processes, providing further technical details and use-case examples where applicable.

Figure 4. User involvement in the proposed platform.

3.1. Handling of Metadata Semantic Heterogeneity

As the world becomes full of sensor networks producing information, smart viticulture enters the
somehow “foreign” fields of data processing, storage and retrieval at a fast pace. Through various
sources of information derived from a wide data spectrum (e.g., geo-information, soil measurements,
weather forecasts, chemical analyses, to mention just a few data streams), grapevine-powered
stakeholders are in a position to grow an extremely rich system of integrated Internet of things data to
power more informed decisions. The main challenge lies in the high heterogeneity of data types in the
agricultural/viticultural sector. Agriculture makes use of various data (e.g., research, meteorological,
soil, financial/economic, statistical, satellite/remote sensing, administrative, germplasm, crop
experiments, and field trials, to name a few) and for each data type, there are numerous standards
used. These standards are not always linked between each other or at least with the most prominent
one of the sector.

In principle, all data collected from a viticultural object (i.e., a vineyard, parcel, etc.) are stored
in metadata records. The records are an important aspect for documenting and maintaining the
semantic interrelations among various sources of information. These types are used in querying
relevant data like viticulture historical data, over long periods of time. It is worth mentioning that
standardized descriptive metadata enhances the overall search experience and render reliable the
retrieval techniques within or across multiple collections. Information management is assisted by
descriptive, administrative, technical, and preservation metadata, which they ensure data intellectual
integrity. Furthermore, the primary sector in the now has employed ICT research groups under the
scope of disseminating knowledge related to smart agriculture. Inter-operability introduces itself
as an important factor for management and aggregation of digital resources among proprietary
data structures. As an effect, many types of software applications have evolved implementing
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existing methodologies such as crosswalks, translation algorithms, metadata registries, and specialized
data dictionaries.

In the field of smart viticulture, in particular, the crosswalk provides a mapping of metadata
entities within various schemata. Metadata definition is highlighted as the precise interpretation
for implemented the required framework. Furthermore, common elements are hardly distinguished
among different schemata due to existing incompatible records. Tables of equivalent elements serve
the purpose of crosswalks and, even though the equivalences may be inexact, they represent an
expert’s judgment on the matter of software processes. More specifically, the conceptual differences are
immaterial to the software’s operation that involves records encoded in the two models. Therein-after,
retrieval mechanisms support querying capabilities among different data sources that wholly support
the desired semantic inter-operability of viticulture schemata.

An additional important factor on the adoption of crosswalks is the support to convertibility
among data formats. Apart from single point of access or cross-domain searching capabilities, the
aggregation of metadata records among varied from viticulture sources (e.g., vineyards located in quite
distinct geographical areas or producing different wine types) presumably creates conflicting results.
In the case of automatically generated metadata, organizations or individuals that did not follow best
practices or standard thesauri and controlled vocabularies in the process, provide mapping metadata
elements from different schemas under the scope of cross walking. Furthermore, datatype registration
and formatting address the capabilities of semantic interoperability in relation to the values included in
the metadata elements (e.g., rules for recording wine types or encoding standards for dates) assessing
the local authority files for adopted terminologies.

As a solution to this issue, we introduce a novel adaptation of the MINT-mapping tool that
provides an aggregation mechanism on critical activities, such as:

• harvesting and aggregating metadata inputs, created under shared community standards or
proprietary metadata schemata,

• migrating from providers’standard or local models to a reference model,
• transforming records among intermediate standards to pan-European (Europeana Semantic

Elements and the Europeana Data Model [30,31]).

3.2. Content Search and Management

Content search and management is divided into two distinct, yet collaborating parts, namely
content aggregation and content collection and spaces management. In the following subsections, we shall
try to provide a brief overview, together with an illustrative example case of their interchangeability.

3.2.1. Content Aggregation

The content aggregation task is mainly accomplished through searching in external agricultural
digital repositories and libraries. In the herein proposed framework, the utilization of WITH tool allows
us to mash-up APIs from different digital resources and provide a single, yet powerful, service, which
gives access to a large set of heterogeneous multimedia items (e.g., images, text, different metadata
schemata, videos). The tool supports a variety of different data models (e.g., EDM, LIDO, etc.)
and formats (e.g., XML, JSON-LD), and thus resolves most of the aforementioned interoperability
issues. The latter is achieved by integrating the tool in the proposed architecture of fully implemented
workflows or the ingestion, formal mapping, transformation and aggregation of viticulture records in
the back-end through the proposed open-source metadata web-based platform.
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The user interface (UI) of the knowledge base platform (http://withculture.eu/#/custom/evinos)
offers federated and faceted search services, which enable its user to apply multiple search criteria
in different combinations based on the metadata of search results, navigate through the results via
different presentation views and retrieve more information about items of interest (see Figure 5).
One of the system’s provisions is the parallel query into all of the selected repositories, based on a
specific search term or phrase, in order to create facets to be used for narrowing down results. As most
digital data in external repositories are accompanied with rich metadata, the user may choose from a
variety of specialized filters such as rights, creator, media type and dates, resulting in the desirable
objects among thousands of others. Figure 6 indicates the improved adaptability that offers the search
results and facets are accessed through the API, so other developers can include the query features
into their customized applications.

Figure 5. User data collection.

Figure 6. Selected item from the collection.

http://withculture.eu/#/custom/evinos
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It worth mentioning that the required data model is based on the imported records following
the paradigm of major repositories. More particularly, the model demands extensions for fulfilling
compatibility issues among various data models. The proposed platform is compliant with Europeana
data model (EDM) [30,31] and supports two-way transformation capabilities. Furthermore, any
type of data amendment is possible to be implemented through its two-way transformation
capabilities. Regarding the matter of its application programming interface, we introduced a common
support framework on serialization types (JSON, XML, and RDF). This enhanced share-ability and
export-ability of data among similar platforms worldwide.

3.2.2. Collections and Spaces Management

As a next step, platform users are able to create collections that become available under their
specific profile. Data management is implemented through an internal data model that assesses record
imports and transformations in the platform, under the scope of collection enrichment through user
inputs. Particularly the system keeps intact the users’ original records in the form of an accessible
backup and while allowing the amendment of data into their custom collections. Along with collections,
platform users may organize their content, which was either uploaded or collected from external
repositories, into exhibitions that provide enhanced and more playful visualization features.

The platform also provides thematic content organization in the so-called spaces. Spaces is a
concept that corresponds to specific, access-based views of stored data, enables the organization of
digital content in different thematic categories and views, and allows different ways of interaction
with the end-user (e.g., users are able to re-use the provided content, comment and share). This added
feature enables interested wine professionals to design and host custom web spaces in order to promote
their content and engage with users. Furthermore, devoted expansions of content holder serve the
purpose of visualizing and disseminating on the web digital collections, exhibitions and stories, in
addition to content access and use capabilities made to the public by the platform. Alternatively, linked
open data (LOD) are published by the means of specific structures, namely the spaces. For the sake
of efficient organization, content access within a space (collections and exhibitions, etc.) is limited
to specified user groups. The scope of the search engine in each space can be customized as well,
for example to exclude some sources or, to only search for specific type of sources, such as pictures,
etc.. Individual customization of the individual front-end (e.g., descriptive texts, images, CSS) is also
available within each space.

As a case in point, let’s introduce Yorghos, a wine enthusiast fascinated by Greek wines of the
Ionian Islands region, who wants to explore and discover relevant viticulture artifacts and build,
organize and contextualize his own related library. The first thing for Yorghos to do within the
platform is to create a user profile and to initialize an empty collection, where all the assets will be
saved in the following. Let us assume that Yorghos owns content from Greek wineries, so he uploads
and curates it by providing some initial metadata, such as name, description, and rights. To enrich his
collection and add more assets, he uses the platform’s search service to look for traditional Greek wine
types of the Ionian Islands geographical region, like “Avgoustiatis” and “Moschato”. Yorghos collects
assets from worldwide repositories, such as the Digital Public Library of America, Europeana, and the
European Wine Database (http://www.eu-vitis.de/index.php), and further filters the results by setting
the preferable rights and mime type illustrated in Figure 7a. From a set of 15 items returned containing
“Avgoustiatis”, he opens the ones he is interested in, as shown in Figure 7b, reviews related images,
inspects the accompanying metadata and collects the items he wants. Collected items are automatically
transformed into the platform’s data model, an excerpt of which, is shown in Algorithm 1. Yorghos
may then observe and manage his collection shown in Figure 7c.

http://www.eu-vitis.de/index.php
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(a) search results

(b) selected item from search

(c) collection

Figure 7. User data management.
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Algorithm 1 Platform’s datamodel.
"descriptiveData": {
"label": "Greek wine type",
"description": "This image depicts a Greek wine type
from the Ionian Islands geographical region",
"keywords": [
"Greek",
"wine",
"avgoustiatis",
"winery"
],
"isShownAt": "http://www.europeana.eu/api/ANgfDzTpW",
"isShownBy": "https://www.uvinum.co.uk/zakynthos-wine/avgoustiatis-in-the-mountains-root-2015",
"rdfType": "http://www.europeana.eu/schemas/edm/ProvidedCHO",
"country": "Greece",
"dclanguage": "English",
"dctype": "scanned image",
"dcrights": "Public Domain",
"dctermsspatial": "Zakynthos, 1999",
"dcformat": "jpg"
}

3.3. Metadata Generation and Enrichment

As a means to both incorporate and interlink viticulture data that in principle come from a
plethora of different sources (e.g., sensors, IoT devices), we utilize the platform’s characteristics.
In particular, the viticulture information that is collected and aggregated in the platform initially
contains the original metadata that are provided directly by the various smart viticulture information
sources. These are stored in the respective representation of each item using the described data model.
To allow enrichment of these metadata with additional, either manually or automatically generated,
metadata, the developed platform supports the use of annotations.

To facilitate annotation creation, retrieval, management, and interoperability, the platform includes
a thesauri manager that is responsible for importing, through an offline process, the Linked Data
vocabularies and datasets that make up the pool of potential annotation resources. The thesauri
manager converts the imported vocabularies from their source format (e.g., SKOS thesauri, OWL
ontologies, N-triples datasets) to a common model, stores them in the platform’s thesauri database
and indexes them to allow fast search and retrieval. In all the above vocabularies and datasets, each
resource is always accompanied by one or more textual labels, possibly in more than one language.
These labels provide textual representations for the specific resource and are used for indexing the
resources and facilitating look-up.

The herein utilized annotation model is based on W3C’s Web Annotation Model [32], which
is a structured model and format to enable annotations to be shared and reused across different
hardware and software platforms. In brief, an annotation consists of an id, a list of annotators, a body,
a target, and a list of scores. An annotation may be generated either automatically by a content analysis
software, a web-service etc., or manually by a human annotator. Thus, the list of annotators contains
all relevant information about the origins of each annotation. The core part of the annotation is its
body which identifies the relevant Linked Data resource. The target of an annotation identifies the
item, or the part of an item, which the particular annotation relates to the body resource.

Based on the above annotation model, the platform provides a number of tools for the manual
and automatic generation of annotations. The latter are based on natural language processing,
string matching, dictionary look-up tools, as well as three supervised learning models, namely
k-nearest neighbors, linear and random forest regression to analyze the existing textual metadata
of records in order to detect in them occurrences of named entities and terms that belong to the
underlying set of vocabulary and dataset resources; an indicative illustration of the latter is included
in the Appendix A of the manuscript. In the case of the manual annotation process, the user has
to directly choose a resource from the underlying thesauri database and add it as annotation for a
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particular item. The user starts typing in a keyword and the user interface assists him through an
auto-complete functionality (shown in Figure 8), which consults the underlying thesauri index, and
suggests to the user resources having textually matching labels. The user can restrict the scope of
auto-complete suggestions by selecting only specific vocabularies.

An important part of the manual annotation tools forms the geo-tagging tool, which allows the
generation of annotations with a geo-URI in their body, so as to represent geographical locations.
To generate such an annotation, the user of the platform may click on the desired points of the provided
map. In conclusion, the automatic annotation tools are aimed to provide textual and visual metadata
analysis. Textual metadata are the main descriptive metadata of the items, namely their title and
description fields. Textual item data can also be used to automatically generate annotations through
the dictionary look-up tool that is implemented in the platform. Beyond the scope of the current
publication, the deployment of further services is implemented by the extraction of textual and image
related metadata that assist the enforcement of automated tools on image annotation tasks.

Figure 8. Manual annotation paradigm.

3.4. Case Study: The Zakytnhian Variety Selection

The herein discussed platform has been successfully utilized in farms across the Ionian Islands.
Among the first venues involved was a large winery in Zakynthos, Greece. The installation of the
environmental monitoring system in Zakynthos focuses on the basic characteristics of the cultivation
that is found in the “Klima Grampsa” estate on the island. The entire unit consists of a vineyard and a
wine production station. In addition, the company manufactures typical Zakynthian varieties of wine,
such as Avgoustiatis and Goustolidi, maintaining complete production characteristics. The cultivation
is located in a lowland area surrounded by farmland and residential environments in south-west
Zakynthos island and the field of study refers to the wider area of the Gramsa estate near the village
Lagopodo (see Figure 9) belonging to the municipal unit of Artemision.
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Figure 9. Map of Klima Grampsa installation.

The vineyard owners immediately embraced the initiative and contributed practically and
theoretically to the project, aiming to increase conversions and product revenue for their clients
via upgraded quality and optimized production. They used the platform to collect, organize, analyze,
and publicize winery data on behalf of their winery products. By looking at the interests and behaviors
of the people engaged most with their varieties, they were able to feed these insights back into the
overall company planning to inform their strategy on how to best reach these consumers.

As a first step, the owners provided multimedia content (mostly photos and textual data) of their
land, premises, plants and products (see Figure 10). This formed the so-called Grampsas collection in the
knowledge base.

Figure 10. Grampsas collection.



Information 2019, 10, 149 21 of 27

As a second step, detailed information about the individual items of the collection were provided.
These included descriptions of the produced varieties, such as Avgoustiatis, Goustolidi, and Kakotrygis,
as well as the respective wines produced by each variety (e.g., Avgoustiatis Red, see Figure 11).

Figure 11. Grampsas knowledge base item collection.

Initially the vineyard owner provided a recent high resolution photo of the item under
examination. So, for instance in the case of the Avgoustiatis variety, Figure 12a depicts its overview.
Continuing, the entries of the knowledge base were filled up with data. The Info tab (Figure 12b)
contains information about the rights of the multimedia item uploaded, the item’s Uniform Resource
Locator (URL) and the actual knowledge base record’s source. The latter is typically the user who
uploaded the actual content item. The second tab Related presents similar to the uploaded content
items that are already included in the knowledge base. In the case of a photo, given the single uploaded
image, it retrieves similar images from the knowledge base and depicts them. The platform is also
able to suggest tags that may be attached to the original uploaded image (Figure 12c). The Comments
tab (Figure 12d) enables the public to participate in the process because it provides a fully functional
comments section based on the popular Disqus (https://disqus.com/) service. Disqus is a networked
community platform used by hundreds of thousands of sites all over the world. By incorporating the
Disqus functionality, the platform gained a feature-rich comment system complete with social network
integration, advanced administration, and moderation options.

Tab Sharing (Figure12e) deals with social media integration of the platform and allows its visitors
to quickly associate, post, or comment about the knowledge base items on their favorite social media
sites. This is of crucial importance because social media is nowadays integrated in almost every aspect
of the people’s everyday life, and at the same time forms a great way to leverage the power of social
media to increase awareness of the owners of the vineyards marketing efforts. Lastly, tab Annotations
(Figure 12f) offers the ability to the content uploader to provide important annotations describing
the actual content uploaded by either inserting them manually during the process or by allowing the
platform to process them and add them in a semi-automated way during an offline post-processing
step. Finally, it is also worth mentioning that at this point, after the initial stage of content uploaded
mainly by the vineyard owners has been concluded, any interested stakeholder may now use the
platform to add new, edit or delete existing information; the latter two actions are subject to the
administrator’s approval, of course. This allows for a great user participatory approach to smart
viticulture, actively involving all stakeholders in the process to help ensure the results meet their needs
and are rather exploitable.

https://disqus.com/
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(a) Overview (b) Info

(c) Related (d) Comments

(e) Sharing (f) Annotations

Figure 12. Knowledge base (KB) item walk-through.

As a final, not yet implemented, step, vineyard owners will be able to use machine-learning
tools that predict the likelihood of a customer to engage with a specific wine variety product,
and automatically adjusts the target customers with those findings. The overall feedback we are
getting so far from them is that they were able to significantly increase conversions using the
platform’s technology.

4. Discussion and Conclusions

In this paper, we presented a collaboration platform based on linked data and machine principles
with unique features, such as automatic metadata enrichment and services, specifically aimed for the
viticulture domain. We provided a detailed description of the workflow and the user engagement in the
platform and illustrated its basic principles, alongside with a respective real-life case study paradigm.
The platform forms an evolving, flexible, and interconnected integrated information system. It follows
a modular design and implementation that allows it to efficiently adapt over time over numerous
distinct tasks. For instance, new knowledge base repositories may be aggregated, new knowledge base
spaces may be created and new platform features and services may constantly be designed, deployed
and utilized within the proposed architecture. It was designed and developed aiming at strengthening
cooperation of the interested stakeholders within the viticulture domain, initially within the Region of
Ionian Islands and beyond.

The herein proposed part of the platform aims to propose innovative solutions for the
improvement of smart viticulture/agriculture services, their efficient management, including all
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key stakeholders, by providing incentives for the role of vineyard owners and consumers of viticulture
products. Moreover, it aims at involving the wisdom of the crowd, in order to ensure wider
dissemination of the achieved results. This, of course, remains a work in progress for our research
team, in the sense that among our future goals are the extension of the current platform to include data
form other than viticulture application sub-domains of the general smart agriculture domain, as well
as the introduction of enhanced features for the already implemented viticulture one.

Among the technical improvements of the platform that we plan to implement in the near
future lies an automated tag extraction service, based on specifically trained deep convolutional
neural networks (CNNs), to be included in the tabular knowledge base item approach (Figure 12a).
This service will be used to provide automated tags that will be fed to users for verification and
validation and then will be included in the training set. In addition, we plan to exploit the provided user
annotations of knowledge base items for the training of new, or improving the existing, ML algorithms,
towards an enhanced promotion of digital agriculture data from various sources. Analytics of
user-generated data or data simply derived from private sources, coupled together with huge amounts
of publicly available data from large-scale organizations (e.g., the Hellenic National Meteorological
Service) will allow the utilization of new types and combinations of data that were never available
before. For instance, data on farming production costs (i.e., seeds, fertilizer, labor and yield levels) for
various crops collected directly from farmers, combined with spatial, weather and commodity datasets,
as well as insights like cost curves, may be successfully analyzed by machine learning algorithms, so
as to predict market prices of agricultural products with a reliable degree of accuracy.

So, finally, with respect to the marketing part of our initiative, we plan to initiate deeper wine
customer connections to drive better marketing results for the vineyard owners by utilizing existing,
or developing from scratch, analytics solutions. The goal is to obtain reliable data from large numbers
of real-world people, process them in a single framework, where we may identify peoples’ insights,
what actions should be implemented and towards which audience, how it is performing, and make
changes almost in real-time. Taking this a step further, we intend to transform the system into an
integrated agriculture analytics platform used to predict the acceptance of products by the market and
their economic performance in economic terms, as well as forecast crop yields with increased accuracy.
We believe that the data revolution currently happening in agriculture has huge implications for both
society and related business models, and the impact will be colossal in the years to come. Consequently,
our ultimate goal is to develop an integrated platform infrastructure for further assessment and
utilization in the directions of data analysis in smart agriculture, supported by artificial intelligence
tools and methodologies. Additionally, the exploitation of statistical processing methods and even
semantic analysis (automatic metadata deduction), will lead our research to the implementation of a
unified platform for analytics, smarter marketing and better results in the agricultural domain.
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Appendix A

Figure A1. Summarized algorithm report - Excerpt 1.

Figure A2. Summarized algorithm report - Excerpt 2.
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Figure A3. Summarized algorithm report - Excerpt 3.

Figure A4. Summarized algorithm report - Excerpt 4.
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