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Abstract: Intent detection is one of the main tasks of a dialogue system. In this paper, we present our
intent detection system that is based on fastText word embeddings and a neural network classifier.
We find an improvement in fastText sentence vectorization, which, in some cases, shows a significant
increase in intent detection accuracy. We evaluate the system on languages commonly spoken in
Baltic countries—Estonian, Latvian, Lithuanian, English, and Russian. The results show that our
intent detection system provides state-of-the-art results on three previously published datasets,
outperforming many popular services. In addition to this, for Latvian, we explore how the accuracy
of intent detection is affected if we normalize the text in advance.

Keywords: intent detection; word embeddings; dialogue system

1. Introduction and Related Work

Recent developments in deep learning have made neural networks the mainstream approach
for a wide variety of tasks, ranging from image recognition to price forecasting to natural language
processing. In natural language processing, neural networks are used for speech recognition and
generation, machine translation, text classification, named entity recognition, text generation, and many
other tasks. In virtual assistants and dialogue systems, neural networks are used for either end-to-end
system training [1–5], or, in different parts of the system, for intent detection, generation of the response
text, and tracking of the dialogue state [6–9].

Intent detection is formulated as a classification task; since the dialogue system is created to answer
a limited range of questions, there is a finite predefined set of intents. The task of intent detection is to
map the user input to the most probable intent. Although pattern-based recognition was commonly used
before the spread of neural network-based techniques and is a working solution [10–13], this approach
is somewhat limited, and requires labor-intensive creation of a large number of patterns by hand.
Therefore, it is more efficient to use classifiers that learn from labeled examples [14–16]. The newest
dialogue systems use neural network classifiers for intent detection [17–19].

In a dialogue system, the specific nature of intent detection that separates it from other text
classification tasks is that there is often only a very small amount of data available to train the
model. Moreover, the utterances to be classified are relatively short and can contain grammatical
errors, the sentences can be poorly structured, and users may use informal slang or abbreviations.
Deep learning methods generally require a large amount of training data, which is not the typical
case for chatbots. However, one can still leverage the power of deep learning by using pre-trained
word embeddings that are pre-trained in an unsupervised manner on large corpora. Until recently,
massive pre-trained language representation models, such as ULMFiT (Universal Language Model
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Fine-Tuning) [20], ELMo (Embeddings from Language Models) [21], or BERT (Bidirectional Encoder
Representations from Transformers) [22] were only available for the English language, and thus of
limited usability for other languages.

Word embeddings [23] represent an effective, unsupervised, pre-trainable way of injecting general
knowledge about the language in the classification model, given enough monolingual data to train on.
In this research, we used the fastText [24] to generate word embeddings because its use of subword
units makes it more appropriate for less-resourced and inflected languages. We evaluate the quality of
the generated word embeddings in the intent detection setting. We extend our previous research [25]
by evaluating the resulting intent detection system on the five languages commonly used in Baltic
countries. To the best of our knowledge, this is the first research paper on intent detection of the
languages used in Baltic countries. We also explore more sophisticated methods for text normalization
and automatic error-correcting to further improve intent detection accuracy. We believe that our
research can be adapted to other inflected languages.

The rest of the paper is organized as follows. In Section 2, a general overview of the intent
detection problem is given. We present our intent detection models in Section 3, and evaluate them in
Section 4. Section 5 deals with text normalization for the Latvian language. In Section 6, we provide
some conclusions about the results.

2. Intent Detection

The input for an intent detection system is a user’s utterance (a sentence or a question). The task
of the system is to determine which of several predefined intents is most likely for the given utterance.
The intent detection task can be approached by dividing it into separate subtasks. The utterance is
sequentially preprocessed, vectorized, and classified. An example of processing an utterance is shown
in Table 1.

Table 1. An example of intent detection.

Step Result Example

user input the original user utterance Do you wrok in the morning??/
preprocessing preprocessed question do you work in the morning
vectorization vectorized form [0.315243,−0.35235, ..., 1.0521]
classification probability distribution over intents working_hours: 0.79, greeting: 0.12, ...

2.1. Preprocessing

Utterance preprocessing is comprised of several subtasks, as depicted in Table 2. Depending on the
system, a subset of these steps can be done, or additional steps can be introduced. The preprocessing
step has been heavily researched, and is shown to have a great impact on the performance of the
classification [26–28]. We offer a more in-depth analysis of the error correction and text normalization
step in Section 5.

Table 2. An example of preprocessing.

Task Description Example Utterance

input the original user utterance please say, Doez it work in usa?

tokenization
distinct tokens, such as punctuation marks,

please say, Doez it work in usa?words, email addresses, links, numbers,
abbreviations, etc. are properly separated

automatic error correction/ some of the grammatical errors are please say, Does it work in usa?text normalization programmatically corrected
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Table 2. Cont.

Task Description Example Utterance

truecasing or lowercasing the text is converted into Please say, does it work in USA?
lowercase or the true case

removal of punctuation punctuation marks Please say does it work in USA
and other symbols are removed

stemming or lemmatization words are transformed Please say do it work in USA
into a base form

removal of stopwords insignificant words are removed, do work USA
typically from a predefined stoplist

2.2. Vectorization

Vectorization is the process that transforms the utterance from text to a vector of real numbers.
Typically, this is done using word embeddings that map the words to vectors of real numbers so that
words with a similar semantical meaning (according to cosine similarity) are positioned close to each
other in this vector space. Many algorithms perform better when using such continuous representation
instead of, for example, one-hot vectors. The word embeddings are pre-trained on a large corpora of
texts in the given language. Word embeddings can be trained with several different tools. Some of the
most popular are word2vec [23], gloVe [29], and fastText [24].

Typically, word embedding models ignore the morphology of the word and learn a distinct vector
for each word. In contrast, fastText creates a vector for each character n-gram. The word vector is then
calculated as the average of its character n-gram vectors [24]. Therefore, even an out-of-vocabulary
word gets assigned a vector based on its subword units. This is even more important for inflected
languages, since some inflected forms of words are rare and may not even appear in the training data.
Because of its simplicity and efficient realization, training the fastText embeddings is faster than most
other alternatives.

One can obtain sentence embeddings simply by taking the average of the vectors of the words
appearing in the sentence. There are also more sophisticated ways, such as using deep language
representation models [20–22,30].

Different methods to improve the quality of word embeddings have been researched. It has been
shown that enriching the word embeddings with semantical information improves intent detection
accuracy [31]. In [32], the authors introduced probabilistic fastText word representations in order to
deal with multiple word senses. Classification quality can also be improved by using domain-specific
word embeddings [33,34].

2.3. Classification

In the classification phase, the most probable intent is determined for the vectorized utterance.
This is done with a machine learning algorithm, typically a neural network. The classifier outputs
either the most probable intent or a probability distribution over intents.

3. Models

In this section, we describe the intent detection models we evaluate.

3.1. Preprocessing

We tokenized and lowercased the sentences, and deleted all non-alphanumeric characters.
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3.2. Vectorization

We used the fastText tool for vectorization [24,35]. For all languages, we compared the intent
detection accuracy using word embeddings publicly released by Facebook [24,36,37] and word
embeddings trained on our internal monolingual corpora.

For the word embeddings released by Facebook, we used the ones trained on Wikipedia
(https://fasttext.cc/docs/en/pretrained-vectors.html) because the ones trained on Common Crawl
(https://fasttext.cc/docs/en/crawl-vectors.html) showed inferior results in our tests. However, the
inferior results might have been a result of different preprocessing (the Common Crawl corpus was
not lowercased).

Our word embeddings were trained on large monolingual text corpora mainly from online news
articles. The sizes of the corpora used for training the word embeddings are shown in Table 3.
The corpus used for word embedding training was preprocessed, as described in the previous
subsection. We trained a 300-dimensional skipgram model using the default fastText parameters
(lr = 0.05, lrUpdateRate = 100, ws = 5, epoch = 5, neg = 5, loss = ns, wordNgrams = 1, bucket = 2,000,000,
minn = 3, maxn = 6, t = 0.0001). Both types of embeddings were 300-dimensional.

Table 3. Sizes of the corpora used for training the word embeddings.

Language Words (millions) Utterances (millions)

English 2445 125
Estonian 420 32
Latvian 1368 82

Lithuanian 819 58
Russian 1493 96

Improvement in the fastText Vectorizer

During our research, we found a method to improve the way in which fastText vectorizes
sentences. Normally, the fastText sentence vector is calculated as the length-normalized average of the
word vectors. The formula is

W =
1
m

m

∑
i=1

1
‖wi‖

· wi,

where W is the resulting sentence vector, w1, . . . , wm are word embedding vectors of the words in the
sentence, and ‖wi‖ is the length (`2 norm) of the vector wi. The 1

‖wi‖
factor can impart additional noise

in the sentence vector. Usually, more important words have longer vectors than less important ones, as
demonstrated in Table 4. Hence, this normalization of the vectors by their length assigns a relatively
higher weight for the less important words.

We evaluated a modified version of the fastText vectorizer without the normalization by length.
Therefore, the sentence vector was calculated simply as W = 1

m ∑m
i=1 wi. We observed that using

the unnormalized version of the sentence vector often led to significantly better training and test set
accuracy, and the training converged faster in almost all cases. We are not aware of the reasons behind
this design choice by the fastText team to include normalization in sentence vector generation.

Table 4. Lengths of the word embeddings vectors.

Word English Translation Length ‖wi‖ of the Word Vector wi

un and 1.78
k = ada what 2.76

ir is 2.27
mana my 3.12

ip IP 3.96
adrese address 4.91

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
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3.3. Classifier Types

In this work, two different classifiers are investigated—namely, a shallow feedforward network
and a convolutional network.

3.3.1. Feedforward Network

The fastText tool includes a classifier that uses the sentence vectors for the classification [35].
However, we observed that this classifier ignored out-of-vocabulary words when generating the
sentence vector. This can lead to lower performance because it is likely that a word misspelled by a
user will be ignored, even though creating a vector from the parts of the word would yield a similar
vector to what it would be if the user had typed the word correctly.

Therefore, we examine a neural network classifier that has the same architecture as in the fastText
classifier (shallow feedforward network with a softmax layer, see Figure 1) with the difference that it
also includes out-of-vocabulary words in the sentence vector. The utterance vectorized by fastText
(either with or without normalization by length) is used as the input, after which comes a layer of
neurons, on top of which the softmax function is applied to get a probability distribution over intents.
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300-dimensional
sentence vector

layer with
k neurons

Figure 1. The architecture of the feedforward neural network, where k is the number of possible intents.

3.3.2. Convolutional Network

We examined classification with a convolutional network that had an architecture similar to [38].
The architecture of the network we used is presented in Figure 2. We used 100 filters with width 1,
and 100 filters with width 2. We used regularization with a dropout layer and a dropout rate of 0.5.
This setting showed the most consistent performance.

We trained the feedforward network and the convolutional network with the Adam optimizer for
200 and 40 epochs, respectively, as a relatively safe point when the training had converged. This could
possibly be improved to early stopping on a validation set.

representation of each word
with fastText embeddings

multiple convolutional filters
with different widths

max-pooling layer

D
ropout

fully connected layer

Figure 2. The architecture of the convolutional network.

4. Experimental Setup and Results

In this section, we evaluate different intent detection models on three previously published
datasets [39]. We evaluate the intent detection accuracy of the feedforward network classifier
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(with normalized and unnormalized versions of the sentence vectors) and the convolution network
classifier on the two types of word embeddings.

We also compare our results with the results of several other popular dialogue system providers.
In [39], the quality of intent detection and entity recognition was compared for several dialogue
system providers—namely, Google Dialogflow (formerly called API.ai) (https://dialogflow.com/),
Microsoft LUIS (https://www.luis.ai/), IBM Watson (https://www.ibm.com/watson/), and RASA
(https://rasa.com/). Furthermore, the Snips team added Snips.ai (https://snips.ai/) and RASA with
the spaCy backend to the comparison [40]. Wit.ai (https://wit.ai) was not tested in [39] because
of the unreliability of their import system. However, we managed to test Wit.ai, and added it to
the comparison.

In [39], the results for both intent detection and entity recognition were combined in a single score.
However, in this paper, we only evaluate the intent detection accuracy and use it as the main metric to
compare the different dialogue system providers. We calculate the intent detection accuracy using the
counts of true and false positives and negatives listed in [39] and [40].

4.1. Datasets

In [39], three datasets are used. The chatbot dataset contains users’ questions from a Telegram
chatbot that answers questions related to public transport connections. The datasets askubuntu and
webapps were created from the most popular questions of the ask ubuntu (https://askubuntu.com/)
and Web Applications (https://webapps.stackexchange.com/) question and answer sites. The number
of utterances in the datasets is shown in Table 5. We used the same training and test set split as in [39].
For a detailed description of the datasets, see [39].

Table 5. Number of utterances in the datasets.

Dataset Training Test

askubuntu 53 109
chatbot 100 106

webapps 30 59

For the English language, we used the original datasets. For Estonian, Latvian, Lithuanian,
and Russian languages, the datasets were machine-translated by the Tilde machine translation
system [41] and post-edited by humans to correct any translation errors.

4.2. Results

In this subsection, we test different intent detection models on the languages used in the Baltic
countries—that is, Estonian, Latvian, and Lithuanian, as well as English and Russian.

As of publication time, language support for less-resourced languages was weak in the popular
chatbot services. The only exception is Wit.ai, which supports all the languages examined in this
subsection. Dialogflow supports Russian and English. Other services do not support any of these
languages other than English, but Microsoft Language Understanding Intelligent Service (LUIS) does
recommend translating the utterances via their machine translation application programming interface
(API) before using the intent detection module (https://docs.microsoft.com/en-us/azure/cognitive-
services/luis/luis-language-support). We tested Wit.ai on all languages, and also tested LUIS using
the Microsoft machine translation service.

As an illustration, we reported the average accuracy of five runs in Table 6; however,
in Appendix A we analyze the statistical significance using only the first run of each model. Our trained
word embeddings performed better than the Wikipedia ones. Using the unnormalized version of
the sentence vectors can improve the intent detection accuracy, as it shows a 1.2% absolute increase
in accuracy when using our word embeddings. The convolutional network works better than the
feedforward network. The LUIS solution with machine translation is usable, but its accuracy is lower

https://dialogflow.com/
https://www.luis.ai/
https://www.ibm.com/watson/
https://rasa.com/
https://snips.ai/
https://wit.ai
https://askubuntu.com/
https://webapps.stackexchange.com/
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-language-support
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-language-support
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when compared with the systems that perform the intent detection in the original language. We
note that for LUIS on the English datasets, we got slightly worse results than those reported in [39],
even when repeating the test with their published scripts (https://github.com/sebischair/NLU-
Evaluation-Scripts).

Table 6. Intent detection accuracy (in percentages) of the evaluated methods. NN [norm.] and NN
are the feedforward neural networks using normalized and unnormalized versions of the sentence
vectors, respectively. CNN is the convolutional network. Wiki and Tilde are the word embeddings
trained on Wikipedia by Facebook and the word embeddings trained by us on the large internal corpus,
respectively. LUIS (+MT) is the Microsoft LUIS with Microsoft machine translation service

Dataset Language
NN [norm.] NN CNN

Wit.ai LUIS (+MT)
Wiki Tilde Wiki Tilde Wiki Tilde

askubuntu

EN 88.99 89.91 88.99 91.74 91.74 92.66 92.66 88.07
ET 88.07 88.99 84.40 89.91 86.61 87.16 90.83 88.07
LT 86.24 87.16 87.16 90.09 89.91 91.74 87.16 84.40
LV 89.91 88.07 88.99 88.99 88.07 90.83 89.91 86.24
RU 88.07 84.40 86.24 86.24 86.24 88.99 89.91 82.57

chatbot

EN 95.85 95.28 97.17 98.11 97.92 98.49 97.17 95.28
ET 94.34 94.34 93.40 94.34 93.77 95.28 95.28 89.62
LT 93.58 95.09 94.34 93.40 93.96 96.79 94.34 91.51
LV 98.11 97.74 96.98 97.55 100.00 100.00 99.06 96.23
RU 96.60 95.28 94.91 93.77 97.17 96.04 93.40 90.57

webapps

EN 76.27 74.58 81.36 77.97 78.31 83.05 81.36 77.97
ET 72.88 72.88 69.49 76.27 69.49 79.66 76.27 74.58
LT 74.58 74.58 74.58 77.97 73.22 81.36 84.75 79.66
LV 69.49 81.36 74.58 81.36 67.80 84.75 74.58 83.05
RU 83.05 84.75 83.05 84.75 74.92 81.69 77.97 79.66

Average 86.40 86.96 86.38 88.16 85.94 89.90 88.31 85.83

4.3. Comparison to Other Services on the English Language

Here, we compare the results of our best model with other popular chatbot services on the original
English dataset. We use the results from [39] and [40] and add the results of our system and Wit.ai.
As illustrated in Figure 3, our approach achieves accuracy results that are in line with other services.

askubuntu chatbot webapps
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Figure 3. Intent detection accuracy (in percentages) of several dialogue system providers for the
English language.

https://github.com/sebischair/NLU-Evaluation-Scripts
https://github.com/sebischair/NLU-Evaluation-Scripts
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5. Latvian Language-Specific Error Correcting

In this section, we examine some error-correcting methods tailored to the Latvian language.
We evaluate a system developed for chatroom text normalization and an approach of simplifying the
language by removing the diacritical marks.

5.1. Dataset

We used a dataset in Latvian containing user questions addressed to customer service support
personnel. There were 121 intents to be used for this dataset. The training set was constructed artificially.
For every predefined intent, the experts created approximately 10 utterances, with 1231 utterances
in total.

The test sets contained 236 utterances that were obtained by the following procedure.
One thousand real user questions were randomly selected from the production system, and the most
appropriate intent was assigned manually for each of them. This was possible for only 236 utterances,
as the remaining part contained questions not related to the predefined intents (i.e., the majority of
questions were off-topic). The test set Real contains the original user utterances. The test set Fixed
contains the corrected versions of the same utterances, without grammatical errors.

5.2. Automatic Text Normalization

Language used in written communication on social media platforms or in Internet discussion
forums can be quite distant from literary language. As many existing NLP tools are created on the
basis of correct language, several authors have found it beneficial to normalize such user-created texts
before further processing [42,43]. To find out if our intent detection module achieves better results if
we first normalize the user utterances, in our previous research [25] we applied a module that corrects
noisy chatroom text and compared the performance of intent detection on the real text and on the
normalized text. In the above-mentioned module, three different tools were integrated—the regular
expression module and the spelling and grammar checking modules. With the joint help of these
modules, a single normalization hypothesis was provided for every utterance. The algorithm for
applying the modules was simple—at first, the text was corrected by the regular expression module,
then it was passed to the spelling checking module, which retained the first correction suggestion of
every misspelled word (usually there are several suggestions), and finally, the text was corrected by
the grammar checker.

In this research, we have replaced this simple module with a more advanced one that is based on
machine learning methods. The creation details of the new model can be found in [44]. The model was
trained using a random forest classifier that learned to rate normalization candidates for every word.
For every word in an utterance, a list of candidates was generated by different means. As previously,
we used the regular expressions and corrections suggestions generated by the spell-checking engine.
The improved regular expression module now contained 799 regular expressions, allowing it to fix a
wide range of typical chat language errors. We supplemented the spell-checking module with a slang
lexicon, as it was previously built on the lexicon of general language. In the list of correction candidates,
we included all the spelling suggestions generated by this module. We built a word embedding file
on a general text corpus and included the 20 most similar words for every word in an utterance,
based on cosine similarity. We also included the words with the same root. In addition, we used
unigram and bi-gram lists to rate the popularity of a particular candidate, it’s compatibility with the
left and the right adjacent candidates, the length of the original word versus a particular candidate,
and some other features. The suitability of the random forest classifier for the normalization task
was based on its ability to consider different features, because errors found in chat language require
different normalization actions. The previous normalization module shows 82.2% sentence-level
accuracy. The sentence-level accuracy of the new normalization module is 86.02%. Although the real
number is even better as several normalization variants are valid, there are five correctly normalized
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sentences that does not match a human correction. The main mistakes of the normalization module
are: (1) having a word that does not match the context used; (2) an incorrect inflectional form being
used; (3) a proper noun being corrected to some other common noun.

5.3. Language Simplification

It is a common habit for many users to not use diacritics in written chat language. A large part of
the Latvian language lexicon is formed from words with one or several diacritics. 47% of the words in
the Latvian UD Treebank v2.0 contain diacritics [45]. Along with short vowels, four long vowels are
used in Latvian: ā, ē, ı̄, ū. In written chat language, users might write them without a diacritic mark
(a, e, i, u), or repeat the letter twice (aa, ee, ii, uu). The writing of consonants ‘g, k, , l,, n, , č, ž, and š is also
inconsistent. They are written either without diacritics (g, k, l, n, c, z, s), or by adding an extra letter
(gj, kj, lj, nj, ch, zh, sh).

For reducing the effect of such errors on intent detection quality, we tried to simplify the
language. In the simplified training and test sets, all the letters containing diacritics and their common
substitutions were replaced by a corresponding simple letter without the diacritic mark, according
to the rules in Table 7. The corpora for training the word embeddings were also preprocessed in the
same way.

This simplification introduces some ambiguity, as there are words that differ only by diacritics.
However, it might also have the side-benefit of facilitating the training of the word embeddings,
as there is a smaller number of possible subword units.

Table 7. Letter substitution rules used for language simplification.

Letters Replace with

aa ā a
ch č c
ee ē e
gj ‘g g
ii ı̄ i
kj k, k
lj l, l
nj n, n

ō o
r, r

sh š s
uu ū u
zh ž z

5.4. Results

We evaluated our best-performing model (the convolutional network with our word embeddings)
on the differently error-corrected datasets. See the results in Table 8. Datasets Autofix and Simplified
were created from the test set Real by applying the error-correcting methods described previously.
The overall low accuracy can be explained by the heterogeneity of the datasets used for training and
testing. We can see that the normalization of the text improves the intent detection accuracy. However,
the improvement with language simplification seems to be very small.

Table 8. Results for error-corrected data.

Dataset Accuracy (%)

Real 43.13
Simplified 43.59
Autofixed 44.84

Fixed 45.41
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6. Conclusions

In this paper, we have shown an intent detection system based on the fastText vectorizer and
two types of neural network classifiers. The convolutional network showed better performance than
the shallow feedforward network. This approach works for many languages, provided that a large
enough corpus for training the word embeddings is available. The quality of the word embeddings is
important for intent detection accuracy. Therefore, training the word embeddings on a large corpus is
preferred to using word embeddings trained on Wikipedia.

The fastText sentence vectorization can be modified by removing the normalization by vector
length. This improves the intent detection accuracy and training convergence speed. This effect could
be researched further on other natural language processing tasks where sentence embeddings are used.

The quality of intent detection in popular chatbot providers varies. Support for lesser-resourced
languages is rare, and a solution with machine translation lacks quality. Therefore, if possible, it is
better to create an intent detection system specifically for the required language.

In real-life conversations, users make grammatical errors that reduce intent detection accuracy.
This effect can be mitigated by using automatic error-correction methods.

Author Contributions: D.D. contributed the section on the Latvian language-specific automatic error-correction.
K.B. contributed everything else. Both authors have read and approved the final manuscript.

Funding: The research has been supported by the European Regional Development Fund within the project
“Neural Network Modelling for Inflected Natural Languages” No. 1.1.1.1/16/A/215.
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Appendix A. Analysing the Statistical Significance

Due to the small size of the test sets it is hard to draw statistically significant conclusions using
a standard approach of reporting the accuracy and an error margin. Therefore we take a Bayesian
approach. As we have not seen such analysis often in other papers, it seems that it warrants an
additional discussion. Let us illustrate this with an example.

Consider two different cases where two systems, A and B, are compared on a test set containing
1000 examples (see Table A1). In each of the cases, the system A achieves accuracy 0.71 and the system
B achieves accuracy 0.70 on the test set. In Case (a) there are 698 examples where both systems are
correct and 288 examples where both systems are wrong. In Case (b) there are 500 examples where
both systems are correct and 90 examples where both systems are wrong. Although in both cases the
accuracies of the compared systems are the same, in Case (a) we can be quite confident that A performs
better than B, but not so much in Case (b).

Table A1. The number of examples with the given results. X corresponds to an example where system
X gave the correct answer, and ¬X—to an example where it gave an incorrect answer.

Case (a) Case (b)
A ¬A A ¬A

B 698 2 B 500 200
¬B 12 288 ¬B 210 90

In Case (a), we have observed 6 times as many examples in the test data where A outperformed
B, when compared with the number of examples where B outperformed A (12:2). This is very unlikely
to have happened only by chance. We could reasonably expect that on a new example, that is similar
to the test examples, the both systems will perform alike (either both will be correct, or both will be
wrong). However, if there will be a discrepancy, it is much more likely that the system A will be correct
and B—wrong.

In Case (b), the respective numbers (210:200) are relatively much closer to each other, while having
the same absolute difference. It is not unreasonable to expect that on another test set that contains
different 1000 examples we could obtain results that are the other way around (200:210).
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Therefore, any method that analyzes the confidence that A outperforms B based only on their
accuracies on the test set will either be underconfident in Case (a), or overconfident in Case (b). Hence,
to more precisely compare two systems on a small dataset, it is important to remember that they are
tested on the same test set and take into account the correlation of their errors.

Let T be a distribution of examples and let us assume that the test set comprises of examples x∼T
drawn from this distribution. Let A(x) be the intent given by a system A on an example x and I(x) be
the real intent of x.

Let C(A, x) denote the event that A gives the correct answer on x:

C(A, x) =

{
1, if A(x) = I(x)

0, otherwise

Then we define the accuracy Acc(A) = Prx∼T [C(A, x)] as the probability that A gives a correct
answer on a random example. We estimate the accuracy of a system by evaluating it on a test set.
We want to estimate the likelihood that one system is better than another, based on the observed results
on the test set.

We say that system A is better than system B if Acc(A) > Acc(B), i.e., if Acc(A)−Acc(B) > 0.
Observe that:

Acc(A)−Acc(B) = Pr
x∼T

[C(A, x) ∧C(B, x)] · 0

+ Pr
x∼T

[C(A, x) ∧ ¬C(B, x)] · 1

+ Pr
x∼T

[¬C(A, x) ∧C(B, x)] · (−1)

+ Pr
x∼T

[¬C(A, x) ∧ ¬C(B, x)] · 0

= Pr
x∼T

[C(A, x) ∧ ¬C(B, x)] · 1

+ Pr
x∼T

[¬C(A, x) ∧C(B, x)] · (−1).

Notice that the difference in accuracy only depends on the cases where one system gives a correct
answer and the other one – an incorrect, but not on the cases where both systems are correct or both
are wrong.

Let pA = Prx∼T [C(A, x) ∧ ¬C(B, x)] and pB = Prx∼T [¬C(A, x) ∧C(B, x)] be the probability that
A outperforms B, and the probability that B outperforms A, respectively, on a random example.
Therefore, Acc(A) > Acc(B) is equivalent to pA > pB.

pA ∈ [0, 1] is an unknown quantity that we want to estimate. Before observing any results,
we assume that pA is uniformly distributed in the interval [0, 1] (i.e., we assume a non-informative
prior). That corresponds to pA∼Beta(1, 1), where Beta is the beta distribution. Then, after observing
S successes (examples x, where C(A, x) ∧ ¬C(B, x)) and F failures (all other examples x) on the test
set, pA is distributed according to the posterior distribution pA∼Beta(1 + S, 1 + F). We can apply a
similar reasoning for pB.

Let us return to the above-mentioned cases.
In Case (a), after the observations on the test set: pA∼Beta(1 + 12, 1 + 988),

pB∼Beta(1 + 2, 1 + 998).
In Case (b): pA∼Beta(1 + 210, 1 + 790), pB∼Beta(1 + 200, 1 + 800).
As shown in Figure A1, the probability density functions overlap more significantly in Case (b)

than in Case (a). The probability that pA > pB is much larger in Case (a).
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Figure A1. The overlap of probability density functions of the Beta functions corresponding to pA and
pB in Case (a) (left) and Case (b) (right).

Conveniently, if pA∼Beta(αA, βA), pB∼Beta(αB, βB), and all parameters are integers, then the
probability of pA < pB can be evaluated in a closed form (http://www.evanmiller.org/bayesian-ab-
testing.html)

Pr[pB > pA] =
αB−1

∑
i=0

B(αA + i, βA + βB)

(βB + i)B(1 + i, βB)B(αA, βA)

where B is the beta function:

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt

However, this approach is slightly inaccurate, as pA is not entirely independent of pB (for example,
pA + pB ≤ 1). More precisely, on each test example there are three possible outcomes we are interested
in: A is correct and B is wrong; B is correct and A ir wrong; and both are correct or both are wrong.
Therefore, pA and pB (and the probability that both systems perform the same on a test example) are
distributed according to the trivariate Dirichlet distribution Dir(α1, α2, α3).

Assuming a non-informative prior Dir(1, 1, 1), after observing a total of N examples of which
NA and NB is the number of examples where A outperformed B, and B outperformed A, respectively,
the posterior distribution is Dir(1 + NA, 1 + NB, 1 + N − NA − NB).

If we consider only in the cases where one system outperforms another, they are distributed
according to Beta(1 + NA, 1 + NB). The likelihood that pA > pB corresponds to the probability that a
variable p drawn from Beta(1 + NA, 1 + NB) has p > 0.5.

We can calculate that Pr[p ∼ Beta(13, 3) > 0.5] ≈ 0.9963 and Pr[p ∼ Beta(211, 201) > 0.5] ≈ 0.6891,
therefore, confirming our previous intuitive reasoning that in Case (a) we can be much more confident
that the system A is better than B (see Figure A2 for illustration).

Figure A2. The probability distributions corresponding to the Case (a) (left) and Case (b) (right).

http://www.evanmiller.org/bayesian-ab-testing.html
http://www.evanmiller.org/bayesian-ab-testing.html
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In our paper, the datasets used are quite small. Therefore, we consider the combined
results on all 3 datasets and all 5 languages for each of the systems. This results in a total of
1370 = 5× (109 + 106 + 59) test examples to compare the systems on.

We report the numbers NA and NB for all the compared models in Table A2. They correspond to
the probabilities that pA > pB given in Table A3.

Table A2. NA and NB for pairs of models, where A is the model corresponding to the row and B is the
model corresponding to the column. Models are listed in the same order as in Table 6.

NN[n] W NN[n] T NN W NN T CNN W CNN T Wit LUIS

NN[n] W 0-0 28-28 26-21 28-44 37-34 16-52 29-48 76-55
NN[n] T 28-28 0-0 39-34 8-24 44-41 13-49 33-52 73-52
NN W 21-26 34-39 0-0 27-48 28-30 17-58 28-52 78-62
NN T 44-28 24-8 48-27 0-0 52-33 17-37 39-42 77-40

CNN W 34-37 41-44 30-28 33-52 0-0 12-51 33-55 76-58
CNN T 52-16 49-13 58-17 37-17 51-12 0-0 43-26 84-27

Wit 48-29 52-33 52-28 42-39 55-33 26-43 0-0 81-41
LUIS 55-76 52-73 62-78 40-77 58-76 27-84 41-81 0-0

Table A3. Comparison of the models. In row A and column B—the probability (in percent) that model
A is better than model B. Probabilities greater than 0.95 (or smaller than 0.05) are shown in bold.

NN[n] W NN[n] T NN W NN T CNN W CNN T Wit LUIS

NN[n] W 50.00 50.00 76.46 3.02 63.80 0.00 1.54 96.64

NN[n] T 50.00 50.00 71.93 0.23 62.67 0.00 1.99 96.95

NN W 23.54 28.07 50.00 0.77 39.74 0.00 0.36 91.12

NN T 96.98 99.77 99.23 50.00 98.01 0.32 37.03 99.97

CNN W 36.20 37.33 60.26 1.99 50.00 0.00 0.96 93.95

CNN T 100.00 100.00 100.00 99.68 100.00 50.00 97.93 100.00

Wit 98.46 98.01 99.64 62.97 99.04 2.07 50.00 99.99

LUIS 3.36 3.05 8.88 0.03 6.05 0.00 0.01 50.00

There are some limitations of applying this approach to our data. The limitations include
the following:

• When combining the results on all datasets, all test examples are treated equally. However, the test
set for webapps is considerably smaller than the test sets for askubuntu and chatbot. Therefore
this dataset is underrepresented in the test set, while the other two are overrepresented.

• This approach assumes that the test examples are independent of each other. However, this is not
true, because, for different languages, the examples are translations of each other.

• This approach works for comparing two systems. Increasing the number of different systems,
increases the probability that some system will get better results simply by chance.

However, we still believe that this approach gives a reasonable estimate of the confidence that
one system outperforms another.
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