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Abstract: Massive multiple-input-multiple-output (MIMO) is one of the key technologies in the
fifth generation (5G) cellular communication systems. For uplink massive MIMO systems, the
typical linear detection such as minimum mean square error (MMSE) presents a near-optimal
performance. Due to the required direct matrix inverse, however, the MMSE detection algorithm
becomes computationally very expensive, especially when the number of users is large. For achieving
the high detection accuracy as well as reducing the computational complexity in massive MIMO
systems, we propose an improved Jacobi iterative algorithm by accelerating the convergence rate in
the signal detection process.Specifically, the steepest descent (SD) method is utilized to achieve an
efficient searching direction. Then, the whole-correction method is applied to update the iterative
process. As the result, the fast convergence and the low computationally complexity of the proposed
Jacobi-based algorithm are obtained and proved. Simulation results also demonstrate that the
proposed algorithm performs better than the conventional algorithms in terms of the bit error rate
(BER) and achieves a near-optimal detection accuracy as the typical MMSE detector, but utilizing a
small number of iterations.

Keywords: the massive MIMO system; Jacobi algorithm; the steepest descent method; the whole-
correction method; signal detection

1. Introduction

Massive multiple-input-multiple-output (MIMO) is an emerging technology for communication
application which contributes a promising technology for the wireless sensor networks (WSNs) [1–3]
and the fifth generation (5G) wireless communications [4]. In such systems, the base station (BS)
was equipped with hundreds of antennas serving tens of single-antenna users in the same frequency
band [5–7]. Benefit from the massive MIMO system is capable of achieving higher multiplexing and
diversity gains compared with the conventional small-scale MIMO system [8,9].

However, due to the increasing dimension, the signal detection in the uplink may become a
challenge of the massive MIMO system [10]. According to [11], the maximum likelihood (ML) detector
is an optimal algorithm. However, its substantially high computational complexity contributes the
bottleneck of massive MIMO systems. Therefore, assorted detection algorithms have been proposed.
Some nonlinear detection algorithms such as sphere decoder (SD) and its variants have been proposed
to achieve near-optimal performance with low complexity [12,13]. However, the complexity is still
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unfavorable because of the large dimension of the systems or the high modulation order. Thus, one
can resort to the linear detection algorithm, such as the minimum mean square error (MMSE) with
the near-optimal detection accuracy [14]. However, the inverse of the large-dimensional covariance
matrices required by MMSE would result in a prohibitively high complexity.

Given this challenge, low-complexity approximate matrix inversion has drawn substantial
attention. The typical algorithms can be divided into two categories. One typical category is based on
the series expansion, such as the Neumann series expansion (NSE) detection algorithm [15]. The NSE
algorithm utilizes the first few terms of the series expansion to approximate matrix inverse. However,
its performance suffers from a significant loss with the scaling up massive MIMO and only marginal
reduction in complexity can be achieved.

Another category is based on the iterative algorithms derived from linear equations. To expand,
it converts the matrix inversion process into solving linear equations, where the Gauss Seidel (GS)
based iterative algorithm is one of the typical algorithms and utilizes the most up-to-date values
at each iteration, leading to the faster convergence rate and lower complexity than NSE detection
algorithm [16]. Furthermore, the symmetric successive over-relaxation (SSOR) algorithm [17] can also
be applied, where different weights are put in the iteration structure. To enhance the robustness of the
SSOR algorithm, the optimal parameter of weights is determined by exploiting channel characteristics,
yielding a fast convergence and a high accuracy. Unfortunately, each iteration of the GS and SSOR
calculations is serial in nature, where each component of the new iteration depends on all of the
previously calculated components. Fortunately, the Jacobi algorithm is a simple iterative algorithm
with high parallelism [18]. Some improved Jacobi-based algorithms have been proposed, one of which
is the damped Jacobi (DJ) algorithm [19]. The algorithm has great convergence performance when the
number antennas at the BS is far greater than the number of antennas of the users. However, in the
uplink communications, the increase of the users will make the requirements of DJ algorithm no longer
satisfied, resulting in a great performance degradation.

Motivated by the above concerns, we focus our attention on further improving the convergence
rate and calculation accuracy of the Jacobi algorithm with low-complexity calculation. Based on the
Jacobi algorithm, we invoke the steepest descent (SD) method [20] and whole-correction method [21]
to modify the iteration process. The major contributions of our work can be listed as below: (1) The
SD method [20] is invoked in Jacobi algorithm to improve the convergence rate. As the SD method
provides an efficient searching direction, the combined SD and Jacobi algorithm is capable of satisfying
the convergence condition. Furthermore, compared to the conventional Jacobi algorithm, the combined
algorithm is more efficient to accommodate a different number of users. (2) Note that, when the iterative
approximate solution is close to the exact solution, the SD method will no longer provide an efficient
searching direction, and the whole-correction method [21] is employed to improve the convergence.
By exploiting the obtained, the more accurate solution can be attained by the whole-correction method.

The remainder of the paper is structured as follows. We briefly introduce the system model and
present a review of previously proposed approaches in Section 2. In Section 3, a hybrid Jacobi-based
iterative method is proposed, where the analysis of convergence and computational complexity of
the proposed Jacobi iterative method are presented. In Section 4, numerous simulation results are
demonstrated. Finally, the entire paper is concluded in Section 5.

Notation: In this paper, bold-face, lower-case letters represent the column vectors (e.g., a), while
the bold-face, upper-case letters refer to the matrices (e.g., A). The superscript of matrix A, AT , AH ,
A−1 and A+ indicate the transpose, the Hermitian transpose, the inverse and the Moore–Penrose
inverse of A, respectively. Furthermore, IK denotes the K× K identify matrix, [a b] denotes the inner
product of the vectors, and ‖ · ‖ stands for the Euclidean norm of a vector.
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2. System Model

2.1. System Model

Consider an uplink large-scale MIMO system where the BS is equipped with Nr receiving antennas
serving Nt single-antenna users and Nr � Nt [22]. The received signal vector, which is denoted by
y = [y1, y2, · · · , yNr ]

T , at the BS is expressed as

y = Hx + n, (1)

where x = [x1, x2, · · · , xNt ]
T denotes the transmitting signal set and xi ∈ Ω is the transmitted signal

from the ith user with Ω being a complex signal set obtained by modulating and mapping the
source message s. H ∈ CNr×Nt represents a flat-fading channel matrix which has a complex-valued
independent and identically distributed (i.i.d.) Gaussian entries following CN (0, 1), and n =

[n1, n2, · · · , nNr ]
T is the complex-valued additive white Gaussian noise vector with zero mean and σ2

variance, respectively.
The purpose of MIMO signal detection is to estimate the transmitted vector x. The channel matrix

H and the received signal vector y are utilized for the detection. The structure of the signal detection is
illustrated in Figure 1.

s 010... 010...yModulation

mapping

Channel

Matrix H
Receiver

x

n

Signal
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Demodulation

decoding

x

Figure 1. The structure of multiple-input-multiple-output (MIMO) signal detection.

2.2. MMSE Detector

The MMSE approach achieves a near-optimal detector in massive MIMO systems, where the
resulting estimated symbol vector x̄ by utilizing MMSE detector is given by

x̄ =
(

HHH + σ2INt

)−1
HHy. (2)

In Equation (2), A = HHH + σ2INt is the symmetric positive definite matrix and b = HHy is regarded
as the output of the matched filter, respectively. The computational complexity of direct matrix
inversion A−1 is on the order of O

(
N3

t
)
, which incurs a heavy computational burden in massive

MIMO systems when the large-dimensional matrix inversion needs to be performed for large number
of users.

2.3. Conventional Jacobi Algorithm

To avoid the direct matrix inverse of A, we can convert the MMSE detection into solving the linear
equation as

Ax̄ = b. (3)

By utilizing Jacobi algorithm [18], the matrix A can be decomposed as A = D + E, where D and E are
respectively considered as the diagonal and off-diagonal components parts of A. Then, the iterative
solution of the Jacobi algorithm is given by

x̄(k) = D−1
[
(D−A) x̄(k−1) + b

]
, (4)

where k denotes the iteration index. Since the convergence rate of the iteration is highly based on the
initial setting, we consider the initial solution x̄(0) as x̄(0) =

(
D−1 −D−1ED−1) b in this work [23].
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3. Proposed Algorithm for MIMO Detection

In this section, an improved Jacobi algorithm for MIMO detection is proposed in uplink massive
MIMO systems. Specifically, the proposed algorithm is divided into two stages. In the first stage, the
SD method is applied towards an efficient searching direction in the Jacobi algorithm. In the second
stage, the whole-correction method is utilized to further improve the convergence rate of the algorithm.
Then, a fast convergence of the proposed algorithm is proved following an analysis of the complexity
of the algorithm.

3.1. Improved Jacobi Algorithm

For achieving a fast convergence of the estimation of x, the SD method is applied to provide an
efficient searching direction for Jacobi algorithm [20], which is called the SD-Jacobi iteration in this
work. The combined iteration consists of two steps:

(1) During the first half of the iteration, utilize the SD method to compute symbol vector as

x̄(k+1/2) = x̄(k) + αkr(k), (5)

where r(k) = b− Ax̄(k) is the residual vector, and αk represents the variable step size, respectively.
The step size αk, which depends on r(k), is determined by

αk =

[
r(k), r(k)

]
[
Ar(k), r(k)

] . (6)

(2) During the second half of the iteration, conduct Jacobi iteration, which is given by

x̄(k+1) = D−1
[
(D−A) x̄(k+1/2) + b

]
= D−1 (D−A) x̄(k+1/2) + D−1b = Gx̄(k+1/2) + D−1b, (7)

where G = D−1 (D−A) = I−D−1A.
Substituting Equation (5) into Equation (7) yields

x̄(k+1) = G
(

x̄(k) + αkr(k)
)
+ D−1b = x̄(k) + αkr(k) −D−1A

(
x̄(k) + αkr(k)

)
+ D−1b

= x̄(k) + αkr(k) + D−1
(

b−Ax̄(k) − αkAr(k)
)
= x̄(k) + αkr(k) + D−1

(
r(k) − αkAr(k)

)
= x̄(k) + αkr(k) + D−1

(
r(k) − αkp(k)

)
,

(8)

where


r(k) = b−Ax̄(k)

αk =
[r(k),r(k)]
[p(k),r(k)]

p(k) = Ar(k).
Equation (8) shows that, at each iteration, the involved SD method improves the convergence rate

of the Jacobi iteration. However, when the iterative estimation is close to the solution, the SD method
no longer provides an efficient iteration direction. Hence, a whole-correction method is applied to
continue improving the convergence of the SD-Jacobi iteration afterwards, which is introduced below.

The whole-correction method is designed to solve the optimal convergence problem in a linear
system [21]. It assigns the different weights to a series of approximate solutions of the iterations to
obtain the optimal solution, which is presented below.

Suppose x̄1, x̄2, · · · , x̄m (m > 1) are the approximate iterative solutions of the symbol
vector in Equation (2), which are assumed mutually exclusive. In this work, let
x̄1 = x̄(k−m+1), x̄2 = x̄(k−m+2), · · · , x̄m = x̄(k)︸ ︷︷ ︸

m

, where m is the number of selected solutions, which is
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discussed later. Considering the different weights to the iterative solutions, the vector x̄, which
represents the updated x̄(k), can be expressed as

x̄ = a1x̄1 + a2x̄2 + · · ·+ amx̄m,
a1 + a2 + · · ·+ am = 1,

(9)

where the weight ai denotes the contribution ratio of x̄i to x̄.
The whole-correction method leads to a more accurate solution of the vector x̄ from the

approximate solution set of x̄i. Therefore, the updated solution x̄ should satisfy ‖b−Ax̄‖2 <

min
1≤i≤m

‖b−Ax̄i‖2.

We are now in position to determine the weight ai. Let’s select q ∈ {1, 2, · · · , m} randomly. Then,
we can obtain

x̄ = x̄q + ∑
i 6=q

ai
(
x̄i − x̄q

)
. (10)

The residual vector regarding aq is rq = b − Ax̄q. Thus, the residual vector of the updated x̄ is
rewritten as

r (x̄) = b−Ax̄ = (b−Ax̄q)−∑
i 6=q

aq
(
Ax̄i −Ax̄q

)
= rq + ∑

i 6=q
aq
(
ri − rq

)
. (11)

In this case, the optimization problem can be rewritten as

‖b−Ax̄‖2 =

∥∥∥∥∥rq + ∑
i 6=q

aq
(
ri − rq

)∥∥∥∥∥ =
∥∥rq + Qqyq

∥∥
2 = min, (12)

where

Qq =
(
r1 − rq, · · · , rq−1 − rq, rq+1 − rq, · · · , rm − rq

)
,

yq =
(
a1, · · · , aq−1, aq+1, · · · am

)T .

The minimum norm solution of the optimization problem in Equation (12) is given by

yq = −Q+
q rq,

aq = 1− ∑
i 6=q

ai. (13)

Therefore, an improved solution of x̄ can be achieved when the contribution ratio is obtained. It is
verified later that this improved solution is more accurate than any arbitrary approximate solutions of
the iterations. Based on the above discussion, the pseudo code of the proposed algorithm is presented
in Algorithm 1, where the algorithm terminates at the K-th iteration. Note that an important issue of
the proposed algorithm is related to a suitable choice of the number of approximate solutions m, which
highly influences the convergence rate and the computation complexity of the algorithm. In the next
subsection, we will consider the value m from two aspects.
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Algorithm 1: Proposed Improved Jacobi Iterative Algorithm

Step 1) Compute the initial approximate solution of the transmitted signal x, mark it as x̄(0).
Step 2) (if m > 2) Compute m− 2 approximate solutions of x using Equation (7), mark as
x̄(1), · · · , x̄(m−2)︸ ︷︷ ︸

m−2

, to obtain enough mutual solution which are required by the

whole-correction method.
For k = 1 : m− 2
Use SD-Jacobi iteration to obtain x̄(k);
End for
Step 3) Employe the whole-correction method to update the approximate solution.

For k = m− 1 : K
Use SD-Jacobi iteration to obtain x̄(k);
Obtain the updated x̄(k) by x̄(k−m+1), · · · , x̄(k)︸ ︷︷ ︸

m

;

End for

3.2. Parameter Selection

In general from the existing iterative MIMO detection algorithms aim at the small number of
iterations. In this case, number of approximate solutions obtained by the iterations is also limited.
Thus, in this part, we only consider the value of m as 2, 3 and 4. Firstly, we focus on the complexity
of calculating the correction coefficient. In each iteration process, we need to compute the correction
coefficient a1, · · · , am , which can be written as:

yq = −Q+
q rq,

aq = 1− ∑
i 6=q

ai, (14)

where q ∈ {1, · · · , m}. For illustrative purposes, we consider the q as q = 1, then Equation (14) can be
rewritten as: [

a2 · · · am

]
= −

[
r2 − r1 · · · rm − r1

]+
r1. (15)

Case 1: for m > 2, it should be noted that we need to calculate a Moore–Penrose inverse to obtain
a correction coefficient, the required number of complex-valued multiplication is O

(
mN2

t
)

[24].
Case 2: when m = 2, the correction coefficient a1 and a2 can be rewritten as

a2 = −(r2 − r1)
+r1 = − (r2 − r1)

Hr1

‖r1 − r2‖2
2

, a1 = − (r1 − r2)
Hr2

‖r1 − r2‖2
2

. (16)

The calculation of correction coefficient requires performing two vector multiplication and one norm
calculation with the complexity is O (Nt). The second case requires far fewer computations than the
first case to realize coefficient calculation. Therefore, in terms of computational complexity, m = 2 is
more advantageous for the iteration process than m = 3 and 4. Next, the detector performance is shown
in terms of the bit error rate (BER) performance over a Rayleigh-fading channel to illustrate the effect
of m value on performance. We consider an uplink massive MIMO scenario with 128 × 32 antenna
configuration and 64-quadrature amplitude modulation (QAM) modulation scheme. In addition, the
number of iterations is set as K = 3.

Figure 2 and Table 1 show that the proposed algorithm with m = 3 and m = 4 does not result in
an appreciable gain in performance with respect to the case m = 2. We can observe that the proposed
algorithm with m = 3 only outperforms the proposed algorithm with m = 2 in 0.12 dB for BER = 10−5

and its complexity is 3Nt times higher. The proposed algorithm m = 4 even has the same BER of the
proposed algorithm with m = 2. As a consequence, we choose the value of m is 2. In Algorithm 2,
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the pseudo code of the proposed algorithm with m = 2 is presented, where the algorithm terminates at
the K-th iteration.

SNR(dB)

6 7 8 9 10 11 12 13 14 15 16

B
E
R

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

MMSE

m=2

m=3

m=3

Figure 2. Bit error rate (BER) curves of the proposed signal detection algorithm with different value m,
where K = 3.

Table 1. Performance comparison for different m.

m Value Signal-to-Noise Ratio (Target 10−5) Computational Complexity of Moore–Penrose Inverse

m = 2 11.56 decibel (dB) O (Nt)
m = 3 11.44 dB O

(
3N2

t
)

m = 4 11.55 dB O
(
4N2

t
)

3.3. Convergence Proof

Taking the iterative process into account, the overall convergence performance is split into two
parts for theoretical analysis. For the first part, we research the convergence performance of the
combined SD and Jacobi iterative process and compare it with the conventional Jacobi algorithm.

Theorem 1. A necessary and sufficient condition for the iterative algorithm x(k) = Bx(k−1)+ c to be convergent
for all initial vectors x(0) is that ρ (B) < 1 [25].

As the theorem shows, the convergence velocity of the iterative algorithm is closely related to
the spectral radius of the iteration matrix. Therefore, we derive the iteration matrix of the combined
algorithm firstly. The iterative form of iterative process of the combined algorithm is concluded
as below:

x̄(k)2 = x̄(k−1) + αk−1r(k−1) + D−1
(

r(k−1) − αk−1p(k−1)
)

=
(

I− αk−1A−D−1A + αk−1D−1A2
)

x̄(k−1) + αk−1b + D−1b− αk−1D−1Ab,
(17)

where B = I− αk−1A−D−1A + αk−1D−1A2 is considered as the iteration matrix. Afterward, analyze
the spectral radius of B, hereinafter ρ (B):

ρ (B) = ρ
(

I− αk−1A−D−1A + αk−1D−1A2
)

= ρ
(
(I− αk−1A)

(
I−D−1A

))
.

(18)
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Since the MMSE filtering matrix A is a positive definite matrix, the diagonal matrix D of A can be
considered as the positive definite. According to that, we can infer that the norm of ρ

(
I−D−1A

)
and

ρ (I− αk−1A) , k = 1 : K are both less than one [26]. Furthermore, we can get ρ
(
I−D−1A

)
< 1 and

ρ (I− αk−1A) < 1 , respectively. Thus, it is easy to infer ρ (B) < 1. According to Theorem 1, we can
assert that the iteration of the combined algorithm is convergent.

Algorithm 2: Proposed improved Jacobi-based algorithm with m = 2
Input: (1) H, channel matrix
(2) y, received signal matrix
(3) K, number of iterations
Output: detected signal x̄(K)

//Initialization
1: A = HHH + σ2INt , b = HHy;
2: x̄(0) =

(
D−1 −D−1ED−1) b;

3: r(0) = b−Ax̄(0);
// Iterative Process(repeat K times)

4: for k = 1 to K (iteration times) do
5: if k = 1; the value of r(0) is obtained in the initialization

6: else;r(k−1) = a1r1 + a2r2, the value of r1, r2 is obtained in the previous iteration
7: end if

8: p(k−1) = Ar(k−1);

9: αk−1 =
[r(k−1),r(k−1)]
[p(k−1),r(k−1)]

;

10: x̄(k) = x̄(k−1) + αk−1r(k−1) + D−1
(

r(k−1) − αk−1p(k−1)
)

;

11: x̄1 = x̄(k−1), x̄2 = x̄(k);

12: r1 = r(k−1), r2 = b−Ax̄2;

13: a1 = − (r1−r2)
Hr2

‖r1−r2‖2
2

, a2 = 1− a1;

14: x̄(k) = a1x̄1 + a2x̄2;

15: end for

In addition, the spectral radius of the Jacobi iterative matrix is ρ
(
I−D−1A

)
. Comparing Label

(18) with the spectral radius of the conventional Jacobi algorithm, we obtain the following inequality:

ρ
(
(I− αk−1A)

(
I−D−1A

))
< ρ

(
I−D−1A

)
. (19)

It is worth pointing out that the smaller spectral radius of the iterative matrix, the faster the convergence
of the scheme. Therefore, we can infer that the convergence velocity of the proposed algorithm is faster
than the conventional Jacobi algorithm.

For the second part, we focus on the convergence of the whole correction method, that is, prove
the convergence of the whole correction method [21]. Supposing that the residuals value correspond
to x̄1, x̄2 is r1 = b− Ax̄1, r2 = b− Ax̄2; then, the residual of the correction solution is r = b− Ax̄.
Assume the residual value r1, r2, r as the space vector which takes the origin of the coordinate as the
starting point, and the r1, r2, r as the end point. Select i, k ∈ {1, 2} randomly, and i 6= k, for ease of
presentation and description, let i = 1, k = 2, then we can get
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(r1 − r2)
Hr = (r1 − r2)

H (r2 + a1 (r1 − r2))

= (r1 − r2)
H (r2 + Q2y2)

= (r1 − r2)
H (r2 −Q2Q+

2 r2
)

=
(
(r1 − r2)

H − (r1 − r2)
HQ2Q+

2

)
r2

=
(
(r1 − r2)

H −
(
Q2Q+

2 (r1 − r2)
)H
)

r2

= 0.

(20)

Thus, we can conclude that r is perpendicular to the hyperplane determined by points r1, r2,
which means

‖r‖2 ≤ ‖r1‖2,‖r‖2 ≤ ‖r2‖2. (21)

As a consequence, the proposed algorithm exhibits good convergence performance.

3.4. Computational Complexity Analysis

The computational complexity is one of the necessary aspects in measuring the performance of
detection algorithms for massive MIMO systems. In this part, we compute the proposed algorithm
complexity in each step and analyze the complexity of the proposed algorithm and the conventional
algorithms. Since all the algorithms we mentioned need to calculate the matrix A = HHH + σ2INt

and the output matched filter b, we only concentrate on the complexity of the remaining parts. In
addition, the complexity is defined as the required complex multiplications.

(1) compute x̄(0) : As the computation of x̄(0) involves a multiplication of a Nt × Nt diagonal
matrix with a Nt × Nt off-diagonal matrix and a multiplication of a Nt × Nt off-diagonal matrix with a
Nt × 1 vector, the complexity of initial solution is 2N2

t .
(2) compute r(k): The computation complexity of r(k) should be evaluated by two scalar

multiplication with a Nt × 1 vector, yielding the total complexity of 2Nt.
(3) compute x̄2 : In Algorithm 2, the computation of x̄2 includes a multiplication of a Nt × Nt

matrix A with a Nt × 1 vector r : p, two inner products of two Nt × 1 vectors: αk−1, two scalar
multiplication with Nt × 1 vectors and a Nt × Nt diagonal matrix with a Nt × 1 vector. In conclusion,
the complexity in this step is N2

t + 5Nt.
(4) compute x̄: having obtained the value of x̄1, x̄2, the computation of x̄ includes a multiplication

of a Nt × Nt matrix A with a Nt × 1 vector x̄2: r2, one multiplication of two Nt × 1 vectors: a1 and two
scalar multiplication with Nt × 1 vectors. In this step, the total complexity is N2

t + 5Nt.
In summary, the total calculated quantity required by the proposed algorithm is

(2N2
t + 10Nt)K + 2N2

t .
From Table 2 and Figure 3, due to the number of iterations usually being relatively small,

the proposed algorithm has approximately the same low computational complexity as the conventional
GS and SSOR algorithms. Although the DJ algorithm requires the fewest calculation among these
algorithms, it requires much larger iterations to achieve the same accuracy with the proposed algorithm.
Additionally, for any number of iterations, the proposed algorithm can reduce the computational
complexity of the MMSE detection algorithm from O

(
N3

t
)

to O
(

N2
t
)
. This advantage of computational

complexity is reflected distinctly, especially when the number of users is large.
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Table 2. Computational complexity comparison.

Detectors Complexity (Iteration Times K)

MMSE 5
6 N3

t + 3
4 N2

t + 4
3 Nt

GS [16] (K + 5) N2
t

SSOR [17]
(
2N2

t + 2Nt
)

K + 2N2
t

Jacobi [19] N2
t (K + 2)

Proposed
(
2N2

t + 10Nt
)

K + 2N2
t
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Figure 3. Complexity comparison against the number of users with K = 3.

4. Simulation Results

Numerical simulations are designed to assess the performance of the proposed improved Jacobi
iteration algorithm. We provide the simulation results on the BER performance to compare the
proposed algorithm with the conventional algorithms. The BER curve of the typical MMSE is used
as the benchmark for comparison. The simulation environment is assumed to be the uplink massive
MIMO system with the 64-QAM modulation scheme.

First, we show simulation results for a massive MIMO system in an uncorrelated Rayleigh fading
channel. Figure 4 illustrates the BER performance over a range of signal-to-noise (SNR) between
the DJ algorithm and the improved Jacobi-based algorithm, when the complex channels of size
Nr × Nt = 128× 32. In addition, the number of iteration is denoted by K. As we can see, with the
number of iterations is increased, both algorithms can improve the BER performance. However, the DJ
algorithm requires massive iterations to meet the BER performance requirement. In comparison,
the proposed algorithm can achieve near-optimal performance with a small number of iterations.
In addition, compared with the exact MMSE algorithm, the proposed approximated algorithm can
achieve a satisfying performance with the relatively small iterations K (i.e., K = 3). In addition, when
K = 3, the BER performance of the MMSE algorithm and that of the proposed algorithm has a difference
within 0.1 dB.

Additionally, the BER performance of the proposed algorithm is compared with the conventional
detection algorithms GS and SSOR in Figure 5, when Nr × Nt = 128× 32. It is clearly noticed that
the BER performances of all algorithms are closer to that of MMSE algorithm when the number of
iterations increases. Obviously, the proposed algorithm can achieve the exact performance of the
MMSE algorithm when the number of iteration is 3, which requires the computation complexity is
O
(
8N2

t
)

. The conventional algorithm GS and SSOR algorithm require at least four iterations to achieve
the near MMSE performance, which means that the required complexity is O

(
9N2

t
)

and O
(
10N2

t
)
,
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respectively. As a consequence, the proposed Jacobi-based algorithm outperforms the conventional
algorithms in massive MIMO systems.
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Figure 4. Bit error rate (BER) curves of the damped Jacobi (DJ) algorithm and the proposed
Jacobi-based algorithm.
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Figure 5. BER curves of the symmetric successive over-relaxation (SSOR), Gauss Seidel (GS) algorithms
and the proposed Jacobi-based algorithm.

Figure 6 reveals that the advantages of the proposed Jacobi-based algorithm come to an effect
when the number of users increases. Note that we can set the number of the receiving antennas
at BS as 128 and SNR = 10 dB is applied to the channel. As seen in Figure 6, when the number
of single-antenna users increases, the performance of the all algorithms suffers a non-negligible
degradation. The proposed algorithm still can achieve almost the same BER performance as the MMSE
algorithm with small iterations (i.e., K = 3), regardless of the number of users. In addition, the GS
and SSOR algorithms require more iterations (i.e., K = 4) to achieve the near BER performance of
MMSE algorithm.
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Figure 6. BER curves with the different number of users.

Finally, for realistic MIMO systems, the spatial correlation plays an important role in the BER
performance. Thus, we consider the influence of channel correlation on the performance of BER.
The exponential correlation model is formulated in [27], and r represents the correlation coefficient.
Figure 7 shows that the convergence performance of all algorithms degrades with the serious channel
correlation. Furthermore, it is worth noting that the proposed algorithm can still converge to the
MMSE algorithm with a small number of iterations (i.e., K = 3 when r = 0.1, K = 4, when r = 0.4).
When r = 0.1, to ensure the performance of the final approximation, the required complexity of the
proposed Jacobi-based algorithm, GS algorithm and SSOR algorithm is O

(
8N2

t
)

(i.e., K = 3), O
(
9N2

t
)

(i.e., K = 4) and O
(
10N2

t
)

(i.e., K = 4), respectively. Similarly, when r = 0.4, the required complexity
of the proposed Jacobi-based algorithm, GS algorithm and SSOR algorithm is O

(
10N2

t
)

(i.e., K = 4),
O
(
11N2

t
)

(i.e., K = 6) and O
(
14N2

t
)

(i.e., K = 6), respectively. Consequently, the proposed algorithm
can still enjoy lower complexity than the GS and SSOR algorithm to achieve the near exact performance
of the MMSE algorithm with serious channel correlation.
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Figure 7. BER curves with different values of correlated magnitude.
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5. Conclusions

In this paper, we propose an improved Jacobi iterative algorithm in signal detection in the massive
MIMO system. The performance improvement has been achieved with the fast convergence of the
iteration process, which is conducted by integrating an SD method and the whole-correction method
into the traditional Jacobi iterative algorithm. We evaluate the performance of the proposed algorithm
by a theoretical analysis and Monte Carlo simulations. Based on the theoretical analysis, the proposed
algorithm has been proved to have good convergence and low computational complexity. Simulation
results show that the proposed Jacobi-based algorithm performs better than the conventional
algorithms. Especially, with the small number of iterations, the improved Jacobi-based algorithm
performs almost the same as the MMSE algorithm in terms of BER, but achieving a much lower
computationally complexity compared to one of the latter. Future work includes the joint channel
estimation and signal detection based on the proposed algorithm in the massive MIMO system and
the related hardware design for a real application system.

Author Contributions: X.Z., Z.L. and B.L. contributed the idea generation; X.Z., Z.L. and S.X. conducted the
study design and paper writing; Y.L., Q.W., and B.L. helped the analysis of the simulation results.

Funding: This work is supported in part by the Postgraduate Research and Practice Innovation Program of
Jiangsu Provence (No. SJCX18_0646), the National Natural Science Foundation of China (No. 61571108 and
No. 61701197 and No. 61801193), the open research fund of the National Mobile Communications Research
Laboratory, Southeast University (No. 2018D15 and No. 2019D18), the open research fund of the National Key
Laboratory of millimeter wave, Southeast University (No. K201918), the Open Foundation of Key Laboratory of
Wireless Communication, Nanjing University of Posts and Telecommunication (No. 2017WICOM01), the Project
funded by the China Postdoctoral Science Foundation (No. 2018M641354), the Open Fund of the Key Laboratory
of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources (No. KF-2018-03-065), and
the Fundamental Research Funds for the Central Universities under Grant JUSRP11919.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ciuonzo, D.; Rossi, P.S.; Dey, S. Massive MIMO channel-aware decision fusion. IEEE Trans. Signal Process.
2015, 63, 604–619. [CrossRef]

2. Shirazinia, A.; Dey, S.; Ciuonzo, D.; Rossi, P.S. Massive MIMO for decentralized estimation of a correlated
source. IEEE Trans. Signal Process. 2016, 64, 2499–2512. [CrossRef]

3. Ciuonzo, D.; Rossi, P.S.; Dey, S. Massive MIMO meets decision fusion: Decode-and-fuse vs. decode-then-fuse.
In Proceedings of the IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna,
Spain, 22–25 June 2014; pp. 265–268.

4. Xiang, W.; Zheng, K. An overview of 5G requirements. In 5G Mobile Communications; Shen, X.S., Ed.; Springer
International Publishing: Basel, Switzerland, 2017; pp. 3–27.

5. Wu, S.; Zheng, K.; Aggoune, H.; Alwakeel, M.M.; You, X. A general 3D non-stationary 5G wireless channel
model. IEEE Trans. Commun. 2018, 66, 3065–3077. [CrossRef]

6. Yang, S.; Hanzo, L. Fifty years of MIMO detection: The road to large-scale MIMOs. IEEE Commun. Surv. Tuts.
2015, 17, 1941–1988. [CrossRef]

7. Zhou, C.; Gu, Y.; He, S.; Shi, Z. A robust and efficient algorithm for coprime array adaptive beamforming.
IEEE Trans. Veh. Technol. 2018, 67, 1099–1112. [CrossRef]

8. Shi, Z.; Zhou, C.; Gu, Y.; Goodman, N.A.; Qu, F. Source estimation using coprime array: A sparse reconstruction
perspective. IEEE Sens. J. 2017, 17, 755–765. [CrossRef]

9. Garcia, N.; Wymeersch, H.; Larsson, E G.; Haimovich, A.M.; Coulon, M. Direct localization for massive
MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [CrossRef]

10. Al-Falahy, N.; Alani, O.Y. Technologies for 5G networks: Challenges and opportunities. IT Prof. 2017,
19, 12–20. [CrossRef]

11. Xiao, L.; Yang, P.; Xiao, Y.; Fan, S.; Renzo, M.D.; Xiang, W.; Li, S. Efficient compressive sensing detectors for
generalized spatial modulation systems. IEEE Trans. Veh. 2017, 66, 1284–1298. [CrossRef]

12. Barbero, L.G.; Thompson, J.S. Fixing the complexity of the sphere decoder for MIMO detection. IEEE Trans.
Veh. Technol. 2017, 66, 2131–2142. [CrossRef]

http://dx.doi.org/10.1109/TSP.2014.2376886
http://dx.doi.org/10.1109/TSP.2016.2523459
http://dx.doi.org/10.1109/TCOMM.2017.2779128
http://dx.doi.org/10.1109/COMST.2015.2475242
http://dx.doi.org/10.1109/TVT.2017.2704610
http://dx.doi.org/10.1109/JSEN.2016.2637059
http://dx.doi.org/10.1109/TSP.2017.2666779
http://dx.doi.org/10.1109/MITP.2017.9
http://dx.doi.org/10.1109/TVT.2016.2558205
http://dx.doi.org/10.1109/TWC.2008.060378


Information 2019, 10, 165 14 of 14

13. Romano, G.; Ciuonzo, D.; Rossi, P.S.; Palmieri, F. Low-complexity dominance-based sphere decoder for
MIMO systems. Signal Process. 2013, 21, 2500–2509. [CrossRef]

14. Mandloi, M.; Bhatia, V. Low-complexity near-optimal iterative sequential detection for uplink massive
MIMO systems. IEEE Commun. Lett. 2017, 21, 568–571. [CrossRef]

15. Rosário, F.; Monteiro, F.A.; Rodrigues, A. Fast matrix inversion updates for massive MIMO detection and
precoding. IEEE Signal Process. Lett. 2016, 23, 75–79. [CrossRef]

16. Wu, Z.; Zhang, C.; Xue, Y.; Xu, S.; You, X. Efficient architecture for soft-output massive MIMO detection
with Gauss-Seidel method. In Proceedings of the IEEE International Symposium on Circuits and Systems,
Montreal, QC, Canada, 22–25 May 2016; pp. 1886–1889.

17. Sun, Y.; Li, Z.; Zhang, C.; Zhang, R.; Yan, F.; Shen, L. Low complexity signal detector based on SSOR iteration
for large-scale MIMO systems. In Proceedings of the IEEE Conference on Wireless Communications and
Signal Processing, Nanjing, China, 11–13 October 2017; pp. 1–6.

18. Kong, B.Y.; Park, I. Low-complexity symbol detection for massive MIMO uplink based on Jacobi method.
In Proceedings of the IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications, Valencia, Spain, 4–8 September 2016; pp. 1–5.

19. Minango, J.; de Almeida, C.; Daniel Altamirano, C. Low-complexity MMSE detector for massive MIMO
systems based on Damped Jacobi method. In Proceedings of the IEEE Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications, Montreal, QC, Canada, 8–13 October 2017; pp. 1–5.

20. Kalousek, Z. Steepest descent method with random step lengths. Found. Comput. Math. 2017, 17, 359–422.
[CrossRef]

21. Zhang, K. Prerequisite konwledge. In Iterative Algorithm for Solving Solutions of Matrix Equations; National
Defense Industry Press: Beijing, China, 2015; pp. 1–22.

22. Mandloi, M.; Bhatia, V. Error recovery based low-complexity detection for uplink massive MIMO systems.
IEEE Wirel. Commun. Lett. 2017, 6, 302–305. [CrossRef]

23. Zhang, C.; Jing, Y.; Huang, Y.; Yang, L. Performance analysis for massive MIMO downlink with low
complexity approximate Zero-Forcing precoding. IEEE Trans. Commun. 2018, 66, 3848–3864. [CrossRef]

24. Li, Y.; Yang, Q. The comparison of generalized inverse matrix algorithms complexity. Sch. Math. Sci. 2012,
45, 7–13.

25. Gu, T.; An, H.; Liu, X.; Xu, X. Iterative method. In Iterative Method and Preprocessing Technique; Shi, Z.,
Wang, X., Yu, H., Eds.; Science Press: Beijing, China, 2015; pp. 59–105.

26. Björck, Å. Iterative methods. In Numerical Methods in Matrix Computations; Antman, S., Greengard, L.,
Holmes, P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 613–638.

27. Gao, Y.; Niu, H.; Kaiser, T. Massive MIMO detection based on belief propagation in spatially correlated
channels. In Proceedings of the IEEE Conference on Systems Communications and Coding, Hamburg,
Germany, 6–9 February 2017; pp. 1–6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.sigpro.2013.02.011
http://dx.doi.org/10.1109/LCOMM.2016.2637366
http://dx.doi.org/10.1109/LSP.2015.2500682
http://dx.doi.org/10.1007/s10208-015-9290-8
http://dx.doi.org/10.1109/LWC.2017.2677905
http://dx.doi.org/10.1109/TCOMM.2018.2823715
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Model
	System Model
	MMSE Detector
	Conventional Jacobi Algorithm

	Proposed Algorithm for MIMO Detection
	Improved Jacobi Algorithm
	Parameter Selection
	Convergence Proof
	Computational Complexity Analysis

	Simulation Results
	Conclusions
	References

