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Abstract: Based on the grey prediction model GM(1,1), a novel fractional-order grey prediction
model is proposed and its modeling error is systematically studied. In this paper, exponential data
sequences are generated for numerical simulation. Via the numerical simulation method, the mean
absolute percentage error (MAPE) of the fractional-order GM(1,1) with different values of order and
development coefficient is compared to the GM(1,1) and the discrete GM(1,1). The error distribution
of the sequences of exponential data is given. The GM(1,1) and the direct modeling GM(1,1) are both
special cases of the fractional-order GM(1,1). The conclusion is helpful to further optimize the grey
model using fractional-order operators and to expand the applicable bound of GM(1,1).
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1. Introduction

Grey system theory was developed to study uncertainty systems with small samples and poor
information by Chinese scholar, Professor Deng Julong [1]. The grey system theory uses the generation
and development method to extract valuable information of some known information in the unknown
system, recognizes the correct description of the system’s operational behavior and evolution law,
and realizes the quantitative prediction of future changes [2,3]. This is the grey model (GM). The GM(1,1)
is the basic model of grey prediction theory. Its modeling method has been very actively studied and
a wealth of research results has been obtained. The representative research modeling results of GM(1,1)
include GM(1,1) with zero-setting modeling [4], GM(1,1) with extended step-by-step optimum direct
modeling [5], GM(1,1) with step-by-step optimum grey derivative background values [6], GM(1,1)
based on optimum grey derivative [7], GM(1,1) direct modeling with step-by-step optimizing grey
derivative whiten values [8], modeling and application of metabolic GM(1,1) [9], discrete GM(1,1) and its
modeling mechanism and optimization [10,11], the buffer operator method [12,13], multivariable grey
forecasting with a dynamic background-value coefficient [14], unbiased grey model with a weakening
buffer operator [15], self-adapting intelligent grey model [16], GM(1,1) optimization based on the
background value and boundary value correction [17], GM(1,1) with standardized interval grey
number [18], and others. The combined grey prediction model was used to forecast electricity
consumption [19] and foreign tourists [20]. Salmeron proposed an autonomous FGCM-based system
for surveillance asset coordination [21]. Chang used the grey silhouette coefficient to build a novel
procedure for multimodel development [22]. Aydemir developed an EPQ model by degree of greyness
approach [23]. Özdemir applied grey model to predict the product demand [24]. Ma studied the
framework of grey machine learning [25]. For the applicable bound of the grey prediction model,
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Professor Liu Sifeng systematically studied several basic forms and applicable bound of the GM(1,1) [26].
In the literature [27–30], the grey prediction model, based on fractional-order accumulation operator,
was studied. Meng Wei studied that the fractional-order accumulating generation operator and the
fractional-order reducing generation operator satisfied the commutative and exponential laws [31,32].
The same order of accumulating generation operator and reducing generation operator satisfied the
reciprocal law, which lays a theoretical foundation for the grey prediction model with fractional-order
operators [33].

Extant studies focused on the optimization and applicable bounds of traditional grey prediction
models and the modeling method of fractional-order operators. The error distribution and applicable
bound of grey prediction models with fractional-order operators has not been studied. This paper
mainly studies a novel fractional-order grey prediction model based on the fractional-order operators
and applies numerical simulation to study the error distribution of GM(1,1) with different values of
order and development coefficient. The mean absolute percentage error (MAPE) of the medium-length
exponential sequences are compared with the GM(1,1) and the discrete GM(1,1). The simulation results
can help optimize the modeling method of grey prediction model with fractional-order operators and
expand the applicable bound of grey prediction model.

The rest of this paper is organized as follows. Fractional-order grey generation operators are
presented in Section 2. In Section 3, the definition and modeling steps of fractional-order GM(1,1)
is discussed. The experimental data of experimental sequences is generated in Section 4. The error
distribution of experimental data is studied by the method of numerical simulation. In this section,
the MAPE of the GM(1,1), the discrete GM(1,1), and the GM(1,1) with different values of order and
development coefficient is calculated and compared. A graph of the error distribution is drawn and
the applicable bound of fractional-order GM(1,1) is analyzed. Finally, a conclusion is drawn in the
last section.

2. Fractional-Order Grey Prediction Model

Definition 1. Assume that X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) is the sequence of raw data, where
r ∈ R+, we call X(r) = (x(r)(1), x(r)(2), · · · , x(r)(n)) is the r th-order accumulating generation sequence of
X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) [33], where Γ(n) is the gamma function and

x(r)(k) =
k∑

i=1

Γ(r + k− i)
Γ(k− i + 1)Γ(r)

x(0)(i), k = 1, 2, · · · , n (1)

Definition 2. Assume that X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) is the sequence of raw data, where
r ∈ R+, we call X(−r) = (x(−r)(1), x(−r)(2), · · · , x(−r)(n)) the r th-order reducing generation sequence of
X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) [33], where

x(−r)(k) =
k−1∑
i=0

(−1)i Γ(r + 1)
Γ(i + 1)Γ(r− i + 1)

x(0)(k− i), . (2)

Theorem 1. Assume that X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) is a sequence of raw data, X(p) is the p
th-order accumulating generation sequence of the sequence of X(0), where p ∈ R+, and X(−q) is the q th-order

reducing generation sequence of the sequence of X(0), where q ∈ R+. It follows that (X(p))
(−q)

is the q th-order

reducing generation sequence of the sequence of (X(p)), and (X(−q))
(p)

is the p th-order accumulating generation
sequence of X(−q). The following holds true [33]:

(i) If p− q > 0, X(p−q) is the (p− q) th-order accumulating generation sequence of the sequence of X(0).
(ii) If p− q < 0, X(p−q) is the (q− p) th-order reducing generation sequence of the sequence of X(0).
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(iii) The fractional-order accumulating generation operator and the fractional-order reducing generation
operator satisfy the commutative and exponential laws.

X(p−q) = (X(p))
(−q)

= (X(−q))
(p)

(3)

Definition 3. Assume that X(r) = (x(r)(1), x(r)(2), · · · , x(r)(n)) is defined as in Definition 1, and X(−r) =

(x(−r)(1), x(−r)(2), · · · , x(−r)(n)) is defined as in Definition 2.
Thus, Z(r) = (z(r)(2), z(r)(3), · · · , z(r)(n)), where

z(r)(k) =
x(r)(k) + x(r)(k− 1)

2
, k = 2, 3, · · · , n, (4)

we call
x(r−1)(k) + az(r)(k) = b (5)

is the fractional-order GM(1,1). In particular, consider the following.
(i) If r = 1, x(r−1)(k) + az(r)(k) = b is the GM(1,1).

x(0)(k) + az(1)(k) = b.

(ii) If r = 0, x(r−1)(k) + az(r)(k) = b is the direct modeling GM(1,1).

x(−1)(k) + az(0)(k) = b.

Theorem 2. Assume that the fractional-order GM(1,1) is defined as in Definition 3. Then, the parameter vector
of x(r−1)(k) + az(r)(k) = b, â = [a, b]T, can be calculated by the least-squares method.

â = (BTB)
−1

BTY. (6)

It follows that

Y =


x(r−1)(2)
x(r−1)(3)

...
x(r−1)(n)

, B =


−z(r)(2) 1
−z(r)(3) 1

...
...

−z(r)(n) 1

, (7)

where
x(r−1)(k) = (x(r))

(−1)
(k) = x(r)(k) − x(r)(k− 1)

=
k∑

i=1

Γ(r+k−i)
Γ(k−i+1)Γ(r)x(0)(i) −

k−1∑
i=1

Γ(r+k−1−i)
Γ(k−i)Γ(r) x(0)(i), k = 2, 3, · · · , n, k− i ≥ 1

z(r)(k) = x(r)(k)+x(r)(k−1)
2

=

k∑
i=1

Γ(r+k−i)
Γ(k−i+1)Γ(r) x(0)(i)+

k−1∑
i=1

Γ(r+k−i)
Γ(k−i+1)Γ(r) x(0)(i)

2 , k = 2, 3, · · · , n.
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So, it follows that

Y =



2∑
i=1

Γ(r+2−i)
Γ(2−i+1)Γ(r)x(0)(i) −

1∑
i=1

Γ(r+2−1−i)
Γ(2−i)Γ(r) x(0)(i)

3∑
i=1

Γ(r+3−i)
Γ(3−i+1)Γ(r)x(0)(i) −

2∑
i=1

Γ(r+3−1−i)
Γ(3−i)Γ(r) x(0)(i)

...
n∑

i=1

Γ(r+n−i)
Γ(n−i+1)Γ(r)x(0)(i) −

n−1∑
i=1

Γ(r+n−1−i)
Γ(n−i)Γ(r) x(0)(i)


=



(r− 1)x(0)(1) + x(0)(2)
r(r−1)

2 x(0)(1) + (r− 1)x(0)(2) + x(0)(3)+
...

n∑
i=1

Γ(r+n−i)
Γ(n−i+1)Γ(r)x(0)(i) −

n−1∑
i=1

Γ(r+n−1−i)
Γ(n−i)Γ(r) x(0)(i)



B =


−

x(r)(1)+x(r)(2)
2 1

−
x(r)(2)+x(r)(3)

2 1
...

...

−
x(r)(n−1)+x(r)(n)

2 1


=



−
1
2

[
(r + 1)x(0)(1) + x(0)(2)

]
1

−
1
2

[
r(r+3)

2 x(0)(1) + (r + 1)x(0)(2) + x(0)(3)
]

1
...

...

−
1
2

[
n∑

i=1

Γ(r+n−i)
Γ(n−i+1)Γ(r)x(0)(i) +

n−1∑
i=1

Γ(r+n−i)
Γ(n−i+1)Γ(r)x(0)(i)

]
1


Definition 4. Assume that x(r−1)(k) and z(r)(k) are defined as in Theorem 1. Thus,

dx(r)

dt
+ ax(r) = b (8)

is called a whitenization (i.e., image) equation of the grey differential equation.

x(r−1)(k) + az(r)(k) = b.

Theorem 3. Assume that B, Y, and â are the same as in Theorem 2. If

â = [a, b]T = (BTB)
−1

BTY,

then the following is true.
(i) The solution (i.e., time response function) of the whitenization function of the fractional-order GM(1,1),

dx(r)

dt
+ ax(r) = b

is given by

x̂(r)(t) = (x(r)(1) −
b
a
)e−at +

b
a

. (9)

(ii) The time response sequence of fractional-order GM(1,1),

x(r−1)(k) + az(r)(k) = b,

is given by

x̂(r)(k) = (x(0)(1) −
b
a
)e−a(k−1) +

b
a

, k = 2, 3, · · · , n. (10)

(iii) Let x(1)(0) = x(0)(1). Then, the restored values of x(0)(k) can be given by

x̂(0)(k) = (x̂
(r)
)(−r)(k) =


x(0)(1) k = 1
k−1∑
i=0

(−1)i Γ(r+1)
Γ(i+1)Γ(r−i+1) x̂(r)(k− i) k = 2, 3, · · · , n

(11)
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The overall modeling steps of the fractional-order GM(1,1) are shown in Figure 1. The MATLAB
program code for the fractional-order GM(1,1) is shown in the Appendix A.
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Step 2. Data processing
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No

        Step 1.1. Set the value of order r
        Step 1.2. Set the number of data to be predicted
        Step 1.3. Prepare the modeling data sequence 

Figure 1. The modeling steps of the fractional-order GM(1,1).

3. Modeling Error Analysis

3.1. Data Preparation

The accumulating generation sequence of economic data satisfies the approximate exponential
law and is suitable for the application of grey prediction model GM (1,1) [2]. Economic forecasting is
an important application field of GM(1,1). French economist C. Juglar proposed that the economy has
a cyclical fluctuation of nine to 10 years. This is generally called the “Juglar Cycle”. Let the sequence
length, n = 9, and set the development coefficient, −a = −0.5, −0.4, −0.3, −0.2, −0.1, −0.05, −0.04, −0.03,
−0.02, −0.01, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8,
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0.9, 1. A total of N = 31 sequences of experimental data are generated. The sequences of exponential
data are generated by Equation (12).

xi
(0)(k) = e−ak +

b
n

n∑
j=1

e−aj, i = 1, 2, · · · , N, k = 1, 2, · · · , n. (12)

where the 1
n

n∑
j=1

e−aj is the means of homogeneous exponential sequences, and b = 1 is the

nonhomogeneous terms. We can get the data sequence as shown below.

−a = −0.5, X(0)
1 = (x(0)1 (1), x(0)1 (2), x(0)1 (3), x(0)1 (4), x(0)1 (5), x(0)1 (6), x(0)1 (7), x(0)1 (8), x(0)1 (9))

= (0. 776,0. 537,0.393,0.305,0.251,0. 219,0.200,0.188,0.180)
· · · · · ·

−a = 0.01, X(0)
11 = (x(0)11 (1), x(0)11 (2), x(0)11 (3), x(0)11 (4), x(0)11 (5), x(0)11 (6), x(0)11 (7), x(0)11 (8), x(0)11 (9))

= (2.062,2.072,2.082,2.092,2.103,2.114,2.124,2.135,2.146)
· · · · · ·

−a = 1, X(0)
31 = (x(0)31 (1), x(0)31 (2), x(0)31 (3), x(0)31 (4), x(0)31 (5), x(0)31 (6), x(0)31 (7), x(0)31 (8), x(0)31 (9))

= (1426.9,1431.5,1444.2,1478.7,1572.6,1827.6,2520.8,4405.1,9527.2)

All the experimental data sequences are shown in Table 1. The sequences with smaller negative
values of development coefficient −a have sequences of smaller value and lower growth rate.

Table 1. The experimental data sequences.

Seq. −a k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

X(0)
1

−0.5 0.776 0.537 0.393 0.305 0.251 0.219 0.200 0.188 0.180

X(0)
2

−0.4 0.890 0.669 0.521 0.422 0.355 0.310 0.281 0.261 0.247

X(0)
3

−0.3 1.037 0.845 0.703 0.597 0.519 0.462 0.419 0.387 0.363

X(0)
4

−0.2 1.238 1.089 0.968 0.868 0.787 0.720 0.665 0.621 0.584

X(0)
5

−0.1 1.532 1.446 1.368 1.297 1.234 1.176 1.124 1.076 1.034

X(0)
6

−0.05 1.737 1.690 1.646 1.604 1.564 1.526 1.490 1.456 1.423

X(0)
7

−0.04 1.784 1.746 1.710 1.675 1.642 1.610 1.579 1.549 1.521

X(0)
8

−0.03 1.834 1.805 1.777 1.750 1.724 1.699 1.674 1.650 1.627

X(0)
9

−0.02 1.886 1.867 1.848 1.829 1.811 1.793 1.775 1.758 1.741

X(0)
10

−0.01 1.942 1.932 1.922 1.912 1.903 1.893 1.884 1.875 1.866

X(0)
11

0.01 2.062 2.072 2.082 2.092 2.103 2.114 2.124 2.135 2.146

X(0)
12

0.02 2.127 2.148 2.169 2.190 2.212 2.234 2.257 2.280 2.304

X(0)
13

0.03 2.196 2.227 2.260 2.293 2.327 2.363 2.399 2.437 2.475

X(0)
14

0.04 2.269 2.311 2.355 2.401 2.449 2.499 2.551 2.605 2.661

X(0)
15

0.05 2.346 2.400 2.457 2.516 2.579 2.645 2.714 2.787 2.863

X(0)
16

0.1 2.809 2.926 3.054 3.196 3.353 3.526 3.718 3.930 4.164

X(0)
17

0.15 3.441 3.629 3.848 4.101 4.396 4.739 5.137 5.599 6.137

X(0)
18

0.2 4.317 4.587 4.917 5.321 5.814 6.415 7.150 8.048 9.145

X(0)
19

0.25 5.548 5.912 6.381 6.982 7.754 8.745 10.018 11.653 13.751

X(0)
20

0.3 7.300 7.772 8.410 9.270 10.432 12.000 14.116 16.973 20.830

X(0)
21

0.35 9.823 10.418 11.262 12.459 14.159 16.570 19.992 24.849 31.740

X(0)
22

0.4 13.489 14.223 15.318 16.951 19.387 23.021 28.442 36.530 48.596

X(0)
23

0.45 18.861 19.752 21.150 23.342 26.780 32.172 40.629 53.891 74.690

X(0)
24

0.5 26.786 27.856 29.619 32.526 37.320 45.223 58.253 79.736 115.15

X(0)
25

0.55 38.549 39.820 42.023 45.841 52.459 63.929 83.809 118.27 177.99

X(0)
26

0.6 56.100 57.598 60.328 65.301 74.364 90.876 120.96 175.79 275.68
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Table 1. Cont.

Seq. −a k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

X(0)
27

0.65 82.405 84.159 87.519 93.954 106.28 129.89 175.12 261.76 427.72

X(0)
28

0.7 121.99 124.03 128.14 136.42 153.09 186.66 254.26 390.40 664.55

X(0)
29

0.8 272.29 275.01 281.08 294.59 324.66 391.57 540.49 871.91 1609.5

X(0)
30

0.9 619.11 622.70 631.53 653.25 706.67 838.06 1161.2 1956.1 3911.1

X(0)
31

1 1426.9 1431.5 1444.2 1478.7 1572.6 1827.6 2520.8 4405.1 9527.2

3.2. Results and Discussion

The GM(1,1), the discrete GM(1,1), and the fractional-order GM(1,1) are established by each
sequence of exponential data, where the value of order r = 0, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 1, 1.5, 1.8.
The MAPE of the GM(1,1), the discrete GM(1,1), and the fractional-order GM(1,1) for each sequence is
calculated. MAPE removed less than 100% is shown in Table 2.

Table 2. Mean absolute percentage error (MAPE) of the experimental data sequences for the three models.

Seq. −a Discrete GM GM
Fractional-Order GM(1,1)

0 0.01 0.05 0.1 0.2 0.5 0.7 0.9 1.0 1.5 1.8

X(0)
1

−0.5 10.6 10.5 1.0 1.0 1.2 2.0 3.8 4.6 7.8 10.4 10.5 2.8 19.5

X(0)
2

−0.4 7.3 7.2 0.6 0.6 1.1 1.8 3.8 1.3 6.0 7.4 7.2 4.9 22.5

X(0)
3

−0.3 4.3 4.3 0.3 0.4 0.9 1.8 3.7 1.1 4.3 4.8 4.3 7.9 24.9

X(0)
4

−0.2 2.0 2.0 0.1 0.2 0.9 1.7 15.5 1.7 3.0 2.8 2.0 10.0 25.9

X(0)
5

−0.1 0.5 0.5 0.0 0.2 0.8 9.8 1.2 2.0 2.3 1.4 0.5 10.8 25.3

X(0)
6

−0.05 0.1 0.1 0.0 0.2 5.8 0.9 0.5 2.1 2.1 1.1 0.1 10.7 24.5

X(0)
7

−0.04 0.1 0.1 0.0 0.2 7.7 0.4 0.7 2.1 2.0 1.0 0.1 10.7 24.3

X(0)
8

−0.03 0.0 0.0 0.0 0.2 1.1 0.1 0.8 2.1 2.0 1.0 0.0 10.7 24.1

X(0)
9

−0.02 0.0 0.0 0.0 0.2 0.2 0.3 1.0 2.1 2.0 1.0 0.0 10.6 23.8

X(0)
10

−0.01 0.0 0.0 0.0 1.3 0.2 0.5 1.1 2.1 2.0 1.0 0.0 10.5 23.6

X(0)
11

0.01 0.0 0.0 0.0 0.1 0.4 0.7 1.3 2.2 2.0 1.0 0.0 10.4 23.1

X(0)
12

0.02 0.0 0.0 0.0 0.1 0.5 0.8 1.4 2.3 2.0 1.0 0.0 10.3 22.8

X(0)
13

0.03 0.0 0.0 0.0 0.1 0.6 0.9 1.5 2.3 2.1 1.0 0.0 10.1 22.6

X(0)
14

0.04 0.1 0.1 0.0 0.1 0.6 1.0 1.6 2.4 2.1 1.0 0.1 10.0 22.3

X(0)
15

0.05 0.1 0.1 0.0 0.1 0.6 1.0 1.6 2.4 2.2 1.0 0.1 9.9 22.0

X(0)
16

0.1 0.5 0.5 0.0 0.2 0.7 1.2 1.9 2.9 2.5 1.4 0.5 9.0 20.4

X(0)
17

0.15 1.1 1.1 0.1 0.2 0.7 1.3 2.2 3.3 3.0 2.0 1.1 7.9 18.6

X(0)
18

0.2 2.0 2.0 0.2 0.5 1.2 1.5 2.5 3.8 3.7 2.8 2.0 6.5 16.7

X(0)
19

0.25 3.1 3.0 0.3 0.8 2.1 2.8 3.0 4.6 4.5 3.7 3.0 5.0 14.6

X(0)
20

0.3 4.4 4.3 0.6 1.3 3.5 4.9 5.3 5.4 5.7 5.0 4.3 3.8 12.5

X(0)
21

0.35 6.0 6.0 0.9 2.1 5.6 8.0 9.2 7.0 6.9 6.5 6.0 3.4 10.3

X(0)
22

0.4 7.7 7.9 1.3 3.1 8.6 12.6 15.1 10.9 9.0 8.3 7.9 3.5 8.8

X(0)
23

0.45 9.7 10.0 1.8 4.5 12.9 19.2 23.7 17.5 12.6 10.6 10.0 5.7 8.2

X(0)
24

0.5 12.0 12.8 2.3 6.3 18.8 28.7 36.1 27.0 19.2 13.7 12.8 8.1 7.7

X(0)
25

0.55 15.1 16.2 3.0 8.7 27.1 41.9 53.7 40.3 28.1 19.4 16.2 10.6 7.8

X(0)
26

0.6 18.8 22.3 3.8 11.9 38.5 60.5 78.6 58.7 40.1 27.1 22.3 13.1 9.5

X(0)
27

0.65 25.1 30.0 4.6 16.2 54.2 86.2 - 83.6 55.9 36.8 30.0 15.6 11.9

X(0)
28

0.7 32.6 39.3 5.5 21.8 75.7 - - - 76.2 48.8 39.3 18.0 14.2

X(0)
29

0.8 51.5 63.4 7.5 38.8 - - - - - 81.2 63.4 23.4 18.6

X(0)
30

0.9 75.5 96.0 9.6 68.3 - - - - - - 96.0 28.6 22.3

X(0)
31

1 - - 11.6 - - - - - - - - 33.7 25.5
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Furthermore, the prediction results of the GM(1,1) with fractional-order operators in this example
are screened. Excluding the result of MAPE greater than 40%, the sequence of −a ∈ (−0.5, 0.5) is
retained. We generate the MAPE distribution plot of the fractional-order GM(1,1) with respect to
the different combinations of values of development coefficient and order, as shown in Figure 2.
When −a = 0 and r = 1, there is a singular point. Thus, the exponential function cannot be used to
simulate a constant sequence.
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Figure 2. Error distribution of GM(1,1) with fractional-order operators.

From Table 2, we draw the following conclusions.
(i) If r = 0, direct modeling using raw data sequences has minimal MAPE.
(ii) If r , 0 and −a is negative, the experimental data sequence is an exponential attenuation

sequence. Both the discrete GM(1,1) and the GM(1,1) have larger MAPE. The smaller the value of
−a, the faster the attenuation speed, and the larger the simulation error of the discrete GM(1,1) and
GM(1,1). The GM(1,1) with fractional-order operators has higher simulation accuracy when r ∈ (0, 0.5).

(iii) If r , 0 and −a ∈ (−0.2, 0.2), the discrete GM(1,1) and the GM(1,1) have almost the same high
simulation accuracy. The GM(1,1) with fractional-order operators has higher simulation accuracy
when r = 1.

(iv) If r , 0 and −a > 0.5, the simulation accuracy of the discrete GM(1,1) and the GM(1,1) is
reduced, and the GM(1,1) with fractional-order operators with larger values of order has higher
simulation accuracy.

The value of nonhomogeneous coefficient b in Equation (12) affects the accuracy of modeling fitting.
When b = 0, it is a homogeneous exponential sequence. As the value of b increases,

the nonhomogeneous exponential sequence is reflected in the upward shift of the homogeneous
exponential sequence. Taking b = 0.3, 0.7, 1, 1.5, 2, and 3 as examples, under the different value of −a,
the MAPE of the nonhomogeneous coefficient and order is shown in Figure 3.

(i) If −a < −0.1, under different values of b, there are two minimum points of MAPE where the
value of order in 0 < r < 1 and r > 1. Furthermore, the larger the value of b, the larger the corresponding
value of order is.
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(ii) If −0.02 < −a < 0.02, the MAPE is the smallest when r = 0. The value of r increases firstly and
then decreases. When r = 1, another minimum point of MAPE is obtained. When r > 1, the MAPE
increases rapidly with the value of r.

(iii) If −a > 0.5, the MAPE of GM(1,1) with optimal fractional-order operators is greater than 5%,
indicating that these data are not suitable for the GM(1,1) with fractional-order operators.
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4. Conclusions

This paper presented the modeling method for the fractional-order GM(1,1). Experimental data
sequences were generated, and the fitting MAPE distribution graph of the fractional-order GM(1,1) with
different values of order and development coefficient was generated via numerical simulation. MAPE
of the GM(1,1), the discrete GM(1,1), and fractional-order GM(1,1) was compared. The research shows
that the GM(1,1) is a special case of the fractional-order GM(1,1) where r = 1. The fractional-order
GM(1,1) is better than the classic grey prediction models, GM(1,1), and discrete GM(1,1). The fitting
accuracy effectively expands the bound of grey model applications. The advantage of this method is
that it can obtain better fitting accuracy by combining the optimal order algorithm, but the optimal
algorithm will increase the computational complexity of model solving. This model only considers the
equidistant sequence, and the nonequidistant sequence is also an application scenario worth studying.
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Appendix A

% This is the MATLAB program code for the fractional-order GM(1,1).
clear all;
% X0 is the original data sequence.
X0 = [8.21 9.52 10.51 12.72 14.84 17.89 21.22 26.79];
% r is the order of fractional-order GM(1,1). If r = 1, the model is GM(1,1).
r = 1;
n = numel(X0);
% Xr is the r-order accumulating generation sequence of the X0. If r = 0, the model is direct modeling

GM(1,1).
if r == 0

Xr = X0;
else

for k = 1:n
tmp = 0;
for i = 1:k

cc2(k,i) = gamma(r + k − i)/(gamma(k – i + 1)*gamma(r));
tmp = tmp + cc2(k,i)*X0(i);

end
Xr(k) = tmp;

end
end
% Zr is the neighboring mean production sequence of Xr.
for I = 2:n;

Zr(i − 1) = (Xr(i) + Xr(i − 1))/2;
end;
% Xr_1 is the first order reducing generation sequence of Xr.
Xr_1(1) = X0(1);
for k = 2:n;
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Xr_1(k) = Xr(k) − Xr(k − 1);
end;
% Calculate the coefficient of fractional-order reducing generation operator.
for k = 1:n;

for i = 0:k-1;
if k – i ≥ 1

cc1(k,i + 1) = (−1)ˆi*gamma(r+1)/(gamma(i + 1)*gamma(r − i + 1));
else;

cc1(k,i + 1) = 0;
end;

end;
end;
% Calculate the value of B and Y.
B = ones(n − 1,2);
Y = ones(n − 1,1);
for i = 1:n − 1;

Y(i,1) = Xr_1(i + 1);
B(i,1) = −Zr(i);

end;
% Calculate the value of a and b.
E = inv(B’*B)*B’*Y;
a = E(1);
b = E(2);
% Calculate the simulated value of Xr.
XrF(1) = X0(1);
for k = 2:n

XrF(k) = (X0(1)-b/a)*exp(-a*(k-1))+b/a;
end
% Calculate the simulated data of X0.
if r == 0

X0F = XrF;
else

for k = 1:n
tmp = 0;
for i = 1:k

tmp = tmp + XrF(k + 1 − i)*cc1(k,i);
end
X0F(k) = tmp;

end
end
% Generate the MAPE checklist.
A = zeros(n,5);
A(1,1) = 1;
A(1,2) = X0(1);
for k = 2:n;

A(k,1) = k;
A(k,2) = X0(k);
A(k,3) = X0F(k);
A(k,4) = A(k,2)-A(k,3);
A(k,5) = 100*abs(A(k,4))/A(k,2);
A(k,6) = A(k,4)ˆ2;

end;
% Calculate the Mean Absolute Percentage Error (MAPE) and Mean Squared Error of the Model.
MAPE = mean(A(2:n,5));
MSE = mean(A(2:n,6));



Information 2019, 10, 167 12 of 13

clc;
% Output the original data sequence X0.
disp(‘The original sequence X0 is:’);
disp(X0);
% Output the error checklist.
disp(‘The error checklist is:’);
disp(‘ No. Original data Simulated data Simulation error APE ‘);
disp(A(:,1:5));
disp([‘The MAPE(Mean Absolute Percentage Error) is: ‘,num2str(MAPE)]);
disp([‘The MSE(Mean Squared Error) is: ‘,num2str(MSE)]);
% Draw the graph of the original sequence X0 and the simulated sequence X0F.
k = 1:1:n;
plot(k,X0,’+-’,k,X0F,’*-’);
legend(‘Original data’,’Simulated data’,0);
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