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Abstract: A linguistic cubic hesitant variable (LCHV) is a hybrid form of linguistic values in group
decision-making environments. It is composed of an interval language variable and multiple
single-valued language variables given by different decision-makers (DMs). Due to the uncertainty
and hesitation of DMs, the numbers of language variables in different LCHVs are unequal. Thus,
the least common multiple number (LCMN) extension method was adopted. Based on the included
angle and distance of two LCHVs, we presented two cosine similarity measures and developed
a multiple attribute group decision-making (MAGDM) approach. An example of engineer selection
was used to implement the proposed LCHV MAGDM method and demonstrate the simplicity and
feasibility of the proposed method. The sensitivity analysis of weight changes for the two measures
showed that the similarity measure based on distance was more stable than the similarity measure
based on included angle in this application.

Keywords: cosine measure; the least common multiple number (LCMN); linguistic cubic hesitant
variable (LCHV); similarity measure; multiple attribute group decision-making

1. Introduction

In the age of big data, we use a large amount of data information to solve decision-making
(DM) problems in various fields, such as manufacturing domain [1], selection of power generation
technology [2], the selection of a transport service provider [3], etc. But not all evaluation information
is directly represented by a real number. How do we deal with existing fuzzy information? Thus,
decision-making theory and methods are still a critical research topic. Humans are more used to
evaluating in linguistic expression than numerical values. Since 1975, the concept of language variables
(LVs) was first proposed by Zadeh [4]. Then Herrera [5,6] used linguistic information to solve DM
problems [5,6]. Next, scholars introduced various aggregation operations [7–11] to handle linguistic
decision information. In some uncertain environments it is difficult for decision-makers to make
an assessment in a single-valued LV; they prefer to give the evaluation in an interval language variable
rather than a single-value language variable. An interval language variable is called an uncertain
linguistic value (ULV) [12]. In order to solve uncertain linguistic DM problems, many uncertain
linguistic aggregation operators were induced such as the ULV ordered weighted averaging (ULOWA)
operator [13], the UL hybrid geometric mean (ULHGM) operator [14], and the uncertain pure linguistic
hybrid harmonic averaging (UPLHHA) operator [15]. After that, the linguistic cubic variable (LCV)
was proposed by Ye [16]. The LCV is a hybrid linguistic evaluation form which consists of an interval
LV (ULV) and a single-valued LV. An LCV represents a comprehensive evaluation of an attribute given
by a group of people. Some LCV aggregation operators were developed such as the LCV weighted
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geometric averaging (LCVWGA) operator [16], the LCV weighted arithmetic averaging (LCVWAA)
operator [16], the LCV Dombi weighted geometric average (LCVDWGA) operator [17], and LCV
Dombi weighted arithmetic average (LCVDWAA) operator [17]. Based on these operators, scholars
developed corresponding approaches to solve MAGDM problems under a LCV environment.

Although LCV can express group decision-making information, the LCV cannot express the
evaluation values of the group objectively and accurately when the evaluation values given by
decision-makers differ greatly. For this reason, Ye [18] put forward another hybrid form of linguistic
values and defined it as a linguistic cubic hesitant variable (LCHV). In the case of group decision-making,
each of the decision-makers provides an evaluation over an attribute with an interval LV or single-valued
LV. We merged all the interval LVs into one interval LV and combined all the different single-valued
LVs into a hesitant linguistic set. Then, the interval LV and the hesitant linguistic set (HLS) together
constitute a new hybrid linguistic value form, which is called LCHV. Hesitant linguistic sets of different
LCHVs may have different lengths. Thus, it is difficult to directly aggregate two LCHVs with different
lengths. There are many methods to get uniform lengths for hesitant linguistic sets with different
lengths [19–22]. Among them, the least common multiple number (LCMN) of hesitant linguistic
elements as the extension size is more objective. According to the LCMN extension method, Ye [18]
presented the LCVWGA and LCVWAA aggregation operators, but the methods were implemented in
a given weight. The stability of this method has not been tested.

The similarity algorithm is an effective tool to measure the degree of similarity between two
fuzzy variables or fuzzy sets. The similarity measure has been widely applied to handle various
decision-making information such as trapezoidal fuzzy neutrosophic numbers information [23],
simplified neutrosophic hesitant fuzzy set information [24], linguistic neutrosophic numbers
information [25], neutrosophic cubic sets information [26], and hesitant linguistic neutrosophic
numbers information [27]. So far, there are no other studies on LCHVs except for the WGA and WAA
aggregation operators proposed by Ye [18]. In this study, two similarity measures were developed to
measure the degree of similarity between two LCHVs and a novel method is presented for solving
MAGDM problems with LCHV information.

The rest of this article is organized as follows. In Section 2, we briefly review LCHVs. Based on the
distance and included angle of two LCHVs, two cosine similarity measures are proposed in Section 3.
Then, based on the cosine similarity measures of the LCHVs, the weighted MAGDM methods are
presented in Section 4. An application example is presented to implement the proposed DM method
and the influence of hesitation extension on similarity is analyzed in Section 5. A sensitivity analysis
to change weights is performed in Section 6. Finally, we conclude the study and put forward future
prospects for research.

2. The Concept of Linguistic Cubic Hesitant Variables

The LCHV is a new hybrid linguistic variable form. Ye [18] first presented the definition of LCHV
as follow.

Definition 1. [18] Let S =
{
Lγ

∣∣∣γ ∈ [0, τ]
}

be an LTS, where τ is an even number. An LCHV V is

defined as V =
(
L̃u, L̃h

)
, where L̃u = [Lp, Lq] for Lp, Lq ∈ S and q ≥ p is an uncertain (interval) LV and

L̃h =
{
Lφβ

∣∣∣Lφβ ∈ S, β = 1, . . . , k
}

is a hesitant linguistic variable (HLV). The HLV is a set of k single-valued
LVs which are ranked in an ascending order.

For example, five experts are invited to assess the service management level of a hospital.
They give their assessments from a linguistic term set S = {L0 (none), L1 (very low), L2 (low), L3 (slightly
low), L4 (moderate), L5 (slightly high), L6 (high), L7 (very high), L8 (super high)}.Two experts give
interval LVs [L3, L5] and [L4, L6]. The other three experts give single-valued LVs—L5, L3, and L5.
Then we merge two interval LVs into one, such as [L3, L6]. Different single-valued variables form
a hesitation set as {L3, L5}. The newly constructed uncertain LV and hesitation set form a linguistic
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cubic hesitant variable (LCHV) described as ([L3, L6], {L3, L5}). The LCHV ([L3, L6], {L3, L5}) represents
the assessments of the five experts.

Definition 2. [18] Let V =
(
L̃u, L̃h

)
=

(
[Lp, Lq],

{
Lφ1, Lφ2, . . . , Lφβ

})
for Lp, Lq, Lφi ∈{

Lγ
∣∣∣γ ∈ [0, τ]

}
(i = 1, 2, . . . , β) be a LCHV. We classify it as follows:

(1) if φi ∈ [p, q](i = 1, 2, . . . , β) for p, q ∈ [0, τ], then V =
(
[Lp, Lq],

{
Lφ1, Lφ2, . . . , Lφβ

})
is

an internal LCHV.
(2) if φi < [p, q](i = 1, 2, . . . , β) for p, q,φi ∈ [0, τ], then V =

(
[Lp, Lq],

{
Lφ1, Lφ2, . . . , Lφβ

})
is

an external LCHV.

3. Cosine Measures of LCHVs

In the actual situation, the experts evaluated different objects with different hesitant degrees, so the
LCHVs obtained from the experts have various numbers of HLVs. In order to realize the similarity
measures between them, it is necessary to extend the HLVs to reach the same number of LVs. We used
the LCMN extension method [18] to extend the number of HLVs.

Assume that Vi =
(
L̃ui, L̃hi

)
=

(
[Lpi, Lqi],

{
Lφi1, Lφi2, . . . , Lφiαi

})
(i = 1, 2, . . . , k) is a set of LCHVs;

λ is the LCMN of (α1, α2, . . . , αk) for L̃hi (i = 1, 2, . . . , k). Then we can extend the LVs of each LCHVs
to the same number as the following extension forms:

Ve
1 =

[Lp1, Lq1],


λ︷                                                                                               ︸︸                                                                                               ︷

Lφ1
11, Lφ2

11, . . . , Lφλ/α1
11︸                       ︷︷                       ︸

λ/α1

, Lφ1
12, Lφ2

12, . . . , Lφλ/α1
12︸                       ︷︷                       ︸

λ/α1

, . . . , Lφ1
1α1

, Lφ2
1α1

, . . . , Lφλ/α1
1α1︸                         ︷︷                         ︸

λ/α1



,

Ve
2 =

[Lp2, Lq2],


λ︷                                                                                               ︸︸                                                                                               ︷

Lφ1
21, Lφ2

21, . . . , Lφλ/α2
21︸                       ︷︷                       ︸

λ/α2

, Lφ1
22, Lφ2

22, . . . , Lφλ/α1
22︸                       ︷︷                       ︸

λ/α2

, . . . , Lφ1
2α2

, Lφ2
2α2

, . . . , Lφλ/α2
2α2︸                         ︷︷                         ︸

λ/α2


,

. . . ,

Ve
k =

[Lpk, Lqk],


λ︷                                                                                              ︸︸                                                                                              ︷

Lφ1
k1, Lφ2

k1, . . . , Lφλ/αk
k1︸                      ︷︷                      ︸

λ/αk

, Lφ1
k2, Lφ2

k2, . . . , Lφλ/αk
k2︸                      ︷︷                      ︸

λ/αk

, . . . , Lφ1
kαk

, Lφ2
kαk

, . . . , Lφλ/αk
kαk︸                         ︷︷                         ︸

λ/αk



.

(1)

Example 1. Suppose V1 = ([L4, L5], {L4, L6, L7}) and V2 = ([L3, L5], {L4, L6}) are two LCHVs in the LTS
S =

{
Lγ

∣∣∣γ ∈ [0, 8]
}
. Then we can obtain the LCMN λ = 6 according to α1 = 3 and α2 = 2. Based on Equation

(1), the extended forms of the two LCHVs are as follows:
Ve

1 = ([L4, L5], {L4, L4, L6, L6, L7, L7}) and Ve
2 = ([L3, L5], {L4, L4, L4, L6, L6, L6}).

Definition 3. Let V1 =
(
[Lp1, Lq1],

{
Lφ11, Lφ12, . . . , Lφ1λ

})
and V2 =

(
[Lp2, Lq2],

{
Lφ21, Lφ22, . . . , Lφ2λ

})
be two LCHVs in the LTS S =

{
Lγ

∣∣∣γ ∈ [0, τ]
}
. The linguistic scale function is f (Lγ) =

γ
τ for γ ∈ [0, τ].

Then based on the distance and included angle of two LCHVs. The two cosine similarity measures between
LCHVs are presented below.
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(1) Cosine similarity measures on the basis of distance

SD
LCHV(V1, V2) =

1
2


cos

(
| f (Lp1)− f (Lp2)|+| f (Lq1)− f (Lq2)|

4 π
)

+ cos


λ∑

i=1
| f (Lφ1i)− f (Lφ2i)|

2λ π




= 1

2

cos
(
|p1−p2|+|q1−q2|

4τ π
)
+ cos


λ∑

i=1
|φ1i−φ2i|

2τλ π




(2)

(2) Cosine similarity measure on the basis of the included angle of the two LCHVs

SA
LCHV(V1, V2) = 1

2



f (Lp1) f (Lp2)+ f (Lq1) f (Lq2)√
( f (Lp1))

2+( f (Lq1))
2
√
( f (Lp2))

2+( f (Lq2))
2
+

λ∑
i=1

( f (Lφ1i) f (Lφ2i))√
λ∑

i=1
( f (Lφ1i))

2

√
λ∑

i=1
( f (Lφ2i))

2


= 1

2



p1×p2+q1×q2√
(p1)

2+(q1)
2
√
(p2)

2+(q2)
2
+

λ∑
i=1

φ1i×φ2i√
λ∑

i=1
(φ1i)

2

√
λ∑

i=1
(φ2i)

2



(3)

According to the Equations (2) and (3), the cosine similarity measures S
D
(V1, V2) and S

A
(V1, V2)

satisfy properties (q1)–(q3) as follows:
(q1) 0 ≤ SD

LCHV(V1, V2) ≤ 1, 0 ≤ SA
LCHV(V1, V2) ≤ 1.

(q2) SD
LCHV(V1, V2) = SD

LCHV(V2, V1), SA
LCHV(V1, V2) = SA

LCHV(V2, V1).
(q3) If V1 = V2, then SD

LCHV(V1, V2) = 1, SA
LCHV(V1, V2) = 1.

Proof. We will prove the properties (q1)–(q3) of SD
LCHV(V1, V2) first.

(q1) Let x =
∣∣∣ f (Lp1) − f (Lp2)

∣∣∣+ ∣∣∣ f (Lq1) − f (Lq2)
∣∣∣ for f (Lp1), f (Lq1), f (Lp2),.

f (Lq2) ∈ [0, 1] and Y =
λ∑

i=1

∣∣∣ f (Lφ1i) − f (Lφ2i)
∣∣∣ for f (Lφ1i), f (Lφ2i) ∈ [0, 1] where.

i = 1, 2, . . . λ. There exists 0 ≤ X ≤ 2 and 0 ≤ Y ≤ λ, then 0 ≤ cos(xπ/4) ≤ 1 and 0 ≤ cos(Yπ/2λ) ≤
1. Thus, we get 0 ≤ SD

LCHV(V1, V2) ≤ 1.
(q2) It is obvious.
(q3) If V1 = V2, there exists f (Lp1) = f (Lp2), f (Lq1) = f (Lq2), f (Lφ1i) = f (Lφ2i) for i = 1, 2, . . . λ.

Then SD
LCHV(V1, V2) = 1 holds.

The properties (q1)–(q3) of SLCHV
A
(V1, V2) can be proved as follows:

(q1) SA
LCHV(V1, V2) ≥ 0 is obvious. SA

LCHV(V1, V2) ≤ 1 can be proved as follows:
Based on the Cauchy–Schwarz formula for inequality:
(α1β1 + α2β2 + . . .+ αnβn)

2
≤ (α2

1 + α2
2 + . . . α2

n) × (β
2
1 + β2

2 + . . . β2
n), where

(α1,α2, . . . αn) ∈ Rn and (β1, β2, . . . βn) ∈ Rn , then the following equality holds.

f (Lp1) f (Lp2) + f (Lq1) f (Lq2) ≤

√
( f (Lp1))

2 + ( f (Lq1))
2
√
( f (Lp2))

2 + ( f (Lq2))
2 and

λ∑
i=1

( f (Lφ1i) f (Lφ2i)) ≤

√
λ∑

i=1
( f (Lφ1i))

2

√
λ∑

i=1
( f (Lφ2i))

2.

Hence, we can get the following results:
f (Lp1) f (Lp2)+ f (Lq1) f (Lq2)√

( f (Lp1))
2+( f (Lq1))

2
√
( f (Lp2))

2+( f (Lq2))
2
≤ 1 and
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λ∑
i=1

( f (Lφ1i) f (Lφ2i))√
λ∑

i=1
( f (Lφ1i))

2

√
λ∑

i=1
( f (Lφ2i))

2

≤ 1

According to Equation (3), we have SA
LCHV(V1, V2) ≤ 1. Thus, 0 ≤ SA

LCHV(V1, V2) ≤ 1 holds
(q2) It is obvious.
(q3) If V1 = V2, there exists f (Lp1) = f (Lp2), f (Lq1) − f (Lq2), f (Lφ1i) − f (Lφ2i) for i = 1, 2, . . . λ.

Then, we have the following equations.

f (Lp1) f (Lp2) + f (Lq1) f (Lq2) =

√
( f (Lp1))

2 + ( f (Lq1))
2
√
( f (Lp2))

2 + ( f (Lq2))
2 and

λ∑
i=1

( f (Lφ1i) f (Lφ2i)) =

√
λ∑

i=1
( f (Lφ1i))

2

√
λ∑

i=1
( f (Lφ2i))

2

Hence, SA
LCHV(V1, V2) = 1 holds. �

Definition 4. Let R = {Vr1, Vr2, . . . , Vrk} and G =
{
Vg1, Vg2, . . . , Vgk

}
be two HLCV sets, where Vri and Vgi

(i = 1, 2, . . . k) are HLCVS in the LTS S =
{
Lγ

∣∣∣γ ∈ [0, τ]
}
. If we take into account the weights of the elements

Vri and Vgi (i = 1, 2, . . . k), the similarity between R and G can be defined, respectively, as follows:

SωD
LCHVS(R, G) =

j=k∑
j=1

ω jSD
LCHV

(
Vrj, Vgj

)
(4)

SωA
LCHVS(R, G) =

j=k∑
j=1

ω jSA
LCHV

(
Vrj, Vgj

)
(5)

where ω j ∈ [0, 1] and
k∑

j=1
ω j = 1 for i = 1, 2, . . . , k.

In addition, the above two weighted cosine similarity measures SωD
LCHVS(R, G) and SωA

LCHVS(R, G)

also have following properties (q1)–(q3):
(q1) 0 ≤ SωD

LCHVS(R, G) ≤ 1, 0 ≤ SωA
LCHVS(R, G) ≤ 1;

(q2) SωD
LCHVS(R, G) = SωD

LCHVS(G, R), SωA
LCHVS(R, G) = SωA

LCHVS(G, R);
(q3) If R = G, then SωD

LCHVS(R, G) = 1, SωA
LCHVS(R, G) = 1.

The above proprieties (q1)~(q3) for SωD
LCHVS(R, G) and SωA

LCHVS(R, G) can be proved easily.

4. MAGDM Approach Based on Cosine Similarity Measures of LCHVs

Based on cosine similarity measures of LCHVs, we will propose an MAGDM method to solve
DM problems with LCHVs information.

Suppose V = {V1, V2, . . . , Vn} is the set of n alternatives and A = {A1, A2, . . . , Am} is the set of
m attributes in a case of MAGMD. When decision-makers make decisions about the Aj attribute
of the Vi alternative, each decision-maker can give an interval LV or a single-value LV from
the LTS S =

{
Lγ

∣∣∣γ ∈ [0, τ]
}
. The evaluation values about the Aj attribute of the Vi alternative

given by all decision-makers constitute an LCHV Vi j which is described as Vi j =
(
L̃ui j, L̃hi j

)
=([

Lpi j, Lqi j
]
,
{
Lφi j(1), Lφi j(2), . . . , Lφi j(αi j)

})
(i = 1, 2, . . . n; j = 1, 2, . . . m) for the uncertain LV ([Lpij, Lqij])

satisfies qi j ≥ pij and the HLV set L̃hij is ranked in an ascending order. Hence, all the assessed
LCHVs construct a decision matrix M = (Vij)n×m. Furthermore, ω j is the weight of attribute A j,

where ω j ∈ [0, 1] and
m∑

j=1
ω j = 1. Determining the weight values of the attribute ω j is important for

the objectivity of decision results. Some algorithms have presented to determine weight coefficients
such as the analytic hierarchy process (AHP) method [28], the Decision-Making and Trial Evaluation
Laboratory (DEMATEL)method [29], the best–worst (BWM) method [30], and the full consistency
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(FUCOM) method [31]. Each of them applies to different areas of decision-making. For instance,
the BWM was used for the selection of wagons for the internal transport of a logistics company [32] and
the location selection for round about construction [33]; the AHP was applied to evaluate university
web pages [34], etc.

According to the proposed cosine similarity measures, we developed an MAGDM method of
LCHVs using the following steps:

Step 1. Suppose αi j is the number of LVs in L̃hij for Vi j. The LCMN of(
α1 j,α2 j, . . . ,αnj

)
( j = 1, 2, . . . , m) is λ j. Extend the HLVs of

(̃
Lh1 j, L̃h2 j, . . . , L̃hnj

)
( j = 1, 2, . . . , m) to

reach the same number λ j. Based on the extension method mentioned above, we can extend one of the
LCHV in matrix M = (Vij)n×m as the following form:

Ve
i j =


[
Lpi j, Lqi j

]
,



λ j︷                                                                                                                   ︸︸                                                                                                                   ︷
Lφ1

i j(1), Lφ2
i j(1), . . . , Lφ

λ j/αi j
i j(1)︸                             ︷︷                             ︸

λ j/αi j

, Lφ1
i j(2), Lφ2

i j(2), . . . , Lφ
λ j/αi j
i j(3)︸                             ︷︷                             ︸

λ j/αi j

, . . . , Lφ1
i j(αi j), Lφ2

i j(αi j), . . . , Lφ
λ j/αi j
i j(αi j)︸                                 ︷︷                                 ︸

λ j/αi j



.

Then, we get the extension matrix below:

Me =

V1
e

V2
e

.

.

.
Vn

e



Ve
11 Ve

12 . . . Ve
1m

Ve
21 Ve

22 . . . Ve
2m

.

.

.

.

.

.

.

.

.

.

.

.
Ve

n1 Ve
n2 . . . Ve

nm



Step 2. Establish an ideal LCHV set as V∗ = (V∗1, V∗2, . . .V∗m) for V∗j =

[Lτ, Lτ],


λ j︷       ︸︸       ︷

Lτ, Lτ, . . . Lτ


 for

( j = 1, 2, . . . , m).
Step 3. According to Equation (2) or Equation (3), the cosine similarity can be measured between

Ve
i j and V∗j, then obtain SD

LCHV

(
Ve

i j, V∗j

)
or SA

LCHV

(
Ve

i j, V∗j

)
.

Step 4. Based on the weight of each attribute Aj (j = 1, 2, . . . , m), calculate the overall weighted
cosine similarity as follows:

SωD
LCHVS

(
Ve

i , V∗
)
=

j=m∑
j=1

ω jSD
LCHV

(
Ve

i j, V∗j
)

(6)

SωA
LCHVS

(
Ve

i , V∗
)
=

j=m∑
j=1

ω jSA
LCHV

(
Ve

i j, V∗j
)

(7)

where ω j ∈ [0, 1] and
m∑

j=1
ω j = 1.

Step 5. Rank the alternatives by the results of the overall weighted cosine similarity measure.
The better alternative is the one with the bigger cosine similarity measure result.
Step 6. End.
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5. Illustrative Example

Firstly, we cite an example to demonstrate the proposed MAGDM method in LCHVs is as feasible
as the existing method in actual applications. Then we compare and analyze the characteristics of the
proposed cosine similarity measures.

5.1. Illustrative Example

A computer company is looking for a software engineer. The four candidates, V1, V2, V3, and V4,
are selected by the human resources department from all of the applicants. They will be further
evaluated from three aspects by five experts. The requirements of the three aspects are innovation
capability, work experience, and self-confidence. w = (0.45, 0.35, 0.2) is the weight vector of the three
requirements. Then, the five experts evaluate each candidate Vi (i = 1, 2, 3, 4) over the three attributes
Aj (j = 1, 2, 3) by LCHVs. S = {L0 (none), L1 (very low), L2 (low), L3 (slightly low), L4 (moderate),
L5 (slightly high), L6 (high), L7 (very high), L8 (super high)}, and is the linguistic term set. The following
evaluation matrix consists of the LCHV information given by five experts.

D = (Vi j)4×3 =

V1

V2

V3

V 4


([L4, L6], {L5, L6}) ([L4, L6], {L4, L6, L7}) ([L4, L7], {L5, L6})

([L3, L5], {L4, L5, L6}) ([L5, L7], {L6, L7}) ([L4, L6], {L4, L5})

([L5, L7], {L5, L6}) ([L6, L7], {L4, L5, L6}) ([L5, L7], {L4, L6, L7})

([L6, L7], {L5, L6, L7}) ([L5, L7], {L5, L7}) ([L4, L6], {L6, L7})


Thus, the decision-making steps based on the distance cosine similarity measure are as follows:
Step 1. According to the number αi j of LVs in L̃hij for Vi j(i = 1, 2, 3, 4; j = 1, 2, 3), we can obtain

the LCMN of
(
α1 j,α2 j, . . . ,α4 j

)
( j = 1, 2, 3) as λ j = 6. Then we can extend each of the LCHV in matrix

M = (Vij)4×3 in the following form:

De = (Vi j)4×3 =

Ve
1

V2
e

V3
e

V4
e


([L4, L6], {L5, L5, L5, L6, L6, L6}) ([L4, L6], {L4, L4, L6, L6, L7, L7}) ([L4, L7], {L5, L5, L5, L6, L6, L6})

([L3, L5], {L4, L4, L5, L5, L6, L6}) ([L5, L7], {L6, L6, L6, L7, L7, L7}) ([L4, L6], {L4, L4, L4, L5, L5, L5})

([L5, L7], {L5, L5, L5, L6, L6, L6}) ([L6, L7], {L4, L4, L5, L5, L6, L6}) ([L5, L7], {L4, L4, L6, L6, L7, L7})

([L6, L7], {L5, L5, L6, L6, L7, L7}) ([L5, L7], {L5, L5, L5, L7, L7, L7}) ([L4, L6], {L6, L6, L6, L7, L7, L7})


Step 2. Establish the ideal LCHV set as V∗ = (V∗1, V∗2, . . .V∗j). Due to λ j = 6 for (j = 1, 2, 3), thus,

V∗j = ([L8, L8], {L8, L8, L8, L8, L8, L8}) for ( j = 1, 2, 3). If λ j is unequal, the size of V∗j is different.
Step 3. Calculate the cosine similarity measures between Ve

i j and V∗j based on Equation (2).
Suppose X1 = Ve

11 = ([L4, L6], {L5, L5, L5, L6, L6, L6}) and X2 = V∗1 = ([L8, L8], {L8, L8, L8, L8, L8, L8}),
we calculate SD

LCHV
(
Ve

11, V∗1
)

as below.

SD
LCHV(Ve

11, V∗1) = SD
LCHV(X1, X2) = 1

2


cos

(
| f (Lp1)− f (Lp2)|+| f (Lq1)− f (Lq2)|

4 π
)

+ cos


λ∑

i=1
| f (Lφ1i)− f (Lφ2i)|

2λ π




= 1

2

cos
(
|p1−p2|+|q1−q2|

4τ π
)
+ cos


λ∑

i=1
|φ1i−φ2i|

2τλ π




= 1
2

{
cos

(
|4−8|+|6−8|

4×8 π
)
+ cos

(
3|5−8|+3|6−8|

2×8×6 π
)}

= 1
2

{
cos

(
5

16π
)
+ cos

(
5

32π
)}

= 0.8567
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Similarly, we can get all the values of SD
LCHV

(
Vi j

e, V∗j

)
for (i = 1, 2, 3, 4) and ( j = 1, 2, 3)

SD
LCHV

(
V11

e, V∗1
)
= 0.8567, SD

LCHV
(
V12

e, V∗2
)
= 0.8642, SD

LCHV
(
V13

e, V∗3
)
= 0.8819;

SD
LCHV

(
V21

e, V∗1
)
= 0.7693, SD

LCHV
(
V22

e, V∗2
)
= 0.9404, SD

LCHV
(
V23

e, V∗3
)
= 0.8022;

SD
LCHV

(
V31

e, V∗1
)
= 0.9029, SD

LCHV
(
V32

e, V∗2
)
= 0.9194, SD

LCHV
(
V33

e, V∗3
)
= 0.9104;

SD
LCHV

(
V41

e, V∗1
)
= 0.9404, SD

LCHV
(
V42

e, V∗2
)
= 0.9239, SD

LCHV
(
V43

e, V∗3
)
= 0.8942.

Step 4. Through Equation (6), we can get the overall weighted distance cosine similarity as follows:

SωD
LCHVS

(
Ve

1, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

1 j, V∗j
)
= 0.45× 0.8567 + 0.35× 0.8642 + 0.2× 0.8819 = 0.8644

SωD
LCHVS

(
Ve

2, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

2 j, V∗j
)
= 0.45× 0.7693 + 0.35× 0.9404 + 0.2× 0.8022 = 0.8358

SωD
LCHVS

(
Ve

3, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

3 j, V∗j
)
= 0.45× 0.9029 + 0.35× 0.9194 + 0.2× 0.9104 = 0.9102

SωD
LCHVS

(
Ve

4, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

4 j, V∗j
)
= 0.45× 0.9404 + 0.35× 0.9239 + 0.2× 0.8942 = 0.9254

Step 5. Using the similarity results, we can rank the four candidates as v4 � v3 � v1 � v2.
Similarly, according to the included angle cosine similarity measure of the two LCHVs in Equation

(3), suppose X1 = Ve
11 = ([L4, L6], {L5, L5, L5, L6, L6, L6}) and X2 = V∗1 = ([L8, L8], {L8, L8, L8, L8, L8, L8}),

we calculate SA
LCHV

(
V11

e, V∗1
)

as below.

sA
LCHV

(
V11

e, V∗1
)

= SA
LCHV(X1, X2) = 1

2



f (Lp1) f (Lp2)+ f (Lq1) f (Lq2)√
( f (Lp1))

2+( f (Lq1))
2
√
( f (Lp2))

2+( f (Lq2))
2
+

λ∑
i=1

( f (Lφ1i) f (Lφ2i))√
λ∑

i=1
( f (Lφ1i))

2

√
λ∑

i=1
( f (Lφ2i))

2


= 1

2



p1×p2+q1×q2√
(p1)

2+(q1)
2
√
(p2)

2+(q2)
2
+

λ∑
i=1

φ1i×φ2i√
λ∑

i=1
(φ1i)

2

√
λ∑

i=1
(φ2i)

2


= 1

2

{
4×8+6×8

√

42+62
√

82+82
+ 5×8+5×8+5×8+6×8+6×8+6×8

√

3×52+3×62
√

6×82

}
= 1

2

{
5
√

26
+ 33
√

1098

}
= 0.9882

In the same way, we can obtain the cosine similarity values of each attribute SA
LCHV

(
Vi j

e, V∗j

)
for

(i = 1, 2, 3, 4) and ( j = 1, 2, 3) as following.

SA
LCHV

(
V11

e, V∗1
)
= 0.9882, SA

LCHV
(
V12

e, V∗2
)
= 0.9786, SA

LCHV
(
V31

e, V∗3
)
= 0.9803;

SA
LCHV

(
V21

e, V∗1
)
= 0.9785, SA

LCHV
(
V22

e, V∗2
)
= 0.9917, SA

LCHV
(
V32

e, V∗3
)
= 0.9872;

SA
LCHV

(
V31

e, V∗1
)
= 0.9911, SA

LCHV
(
V23

e, V∗2
)
= 0.9965, SA

LCHV
(
V33

e, V∗3
)
= 0.9815;

SA
LCHV

(
V31

e, V∗1
)
= 0.9940, SA

LCHV
(
V24

e, V∗2
)
= 0.9864, SA

LCHV
(
V34

e, V∗3
)
= 0.9888.



Information 2019, 10, 168 9 of 13

by Equation (7), we get the overall weighted cosine similarity values as follows:

SωA
LCHVS

(
Ve

1, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

1 j, V∗j
)
= 0.45× 0.9882 + 0.35× 0.9786 + 0.2× 0.9803 = 0.9833

SωA
LCHVS

(
Ve

2, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

2 j, V∗j
)
= 0.45× 0.9785 + 0.35× 0.9917 + 0.2× 0.9872 = 0.9849

SωA
LCHVS

(
Ve

3, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

3 j, V∗j
)
= 0.45× 0.9911 + 0.35× 0.9965 + 0.2× 0.9815 = 0.9911

SωA
LCHVS

(
Ve

4, V∗
)
=

j=3∑
j=1

ω jSD
LCHV

(
Ve

4 j, V∗j
)
= 0.45× 0.9940 + 0.35× 0.9864 + 0.2× 0.9888 = 0.9903

From the above similarity results, we can see that the four alternatives are ranked as v3 � v4 � v2 �

v1. The rank order based on the included angle cosine similarity measure of two LCHVs is different
from the results based on the distance cosine similarity measure.

5.2. Related Comparison

Ye’s [18] proposed the LCHVWAA and LCHVWGA aggregation operators of LCHVs. Based on
the existing operators proposed by Ye [18] and the cosine similarity measures proposed in this paper,
the MAGDM results for the example 1 are shown in the Table 1.

Table 1. LCHV1 MAGDM2 results.

MAGDM Similarity or Score Ranking Order The Best

SωD
LCHVs

(
Ve

i , V∗
)

0.8644, 0.8358, 0.9102, 0.9254 v4 � v3 � v1 � v2 V4

SωA
LCHVs

(
Ve

i , V∗
)

0.9833, 0.9849, 0.9911, 0.9903 v3 � v4 � v2 � v1 V3
LCHVWAA3 [18] 5.3666, 5.3228, 5.8822, 6.1173 v4 � v3 � v1 � v2 V4
LCHVWGA4 [18] 5.3172, 5.0878, 5.8428, 6.0388 v4 � v3 � v1 � v2 V4

1 LCHV= linguistic cubic hesitant variable; 2 MAGDM = multiple attribute group decision making; 3 LCHVWAA =
linguistic cubic hesitant variable weighted arithmetic average; 4 LCHVWGA = linguistic cubic hesitant variable
weighted geometric average.

We can see from Table 1 that the results based on the distance cosine similarity measure are
consistent with the results provided by Ye [18]. But the results based on the included angle cosine
similarity measure are different from them.

5.3. Extension Analysis

In order to analyze the reason why we get different DM results based on two cosine
similarity measure methods, we give two LCHVs Z1 = ([L5, L7], {L4, L6}) and Z2 = ([L4, L6], {L5, L7}).
Suppose Z1 and Z2 are two LCHVs of a practical example. Suppose LCMN is 6, then Ze

1 =

([L5, L7], {L4, L4, L4, L6, L6, L6}) and Ze
2 = ([L4, L6], {L5, L5, L5, L7, L7, L7}) are the extensions of Z1 and

Z2. To compare the influence of the extension on the two cosine similarity measures, assume
V = ([L8, L8], {L8, L8}) and V∗ = ([L8, L8], {L8, L8, L8, L8, L8, L8}). We list the results of SD

LCHV(Zi, V),
SA

LCHV(Zi, V), SD
LCHV(Z∗i, V∗), SA

LCHV(Z∗i, V∗) for (i = 1, 2) in Table 2.

Table 2. Similarity measures before and after extension.

Distance Similarity Result Included Angle Similarity Result

SD
LCHV(Z1V) 0.9999 SA

LCHV(Z1V) 0.9831
SD

LCHV(Z2V) 0.9999 SA
LCHV(Z2, V) 0.9831

SD
LCHV(Z∗1, V∗) 0.9839 SA

LCHV(Z∗1, V∗) 0.9839
SD

LCHV(Z∗2, V∗) 0.9851 SA
LCHV(Z∗2, V∗) 0.9839
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From the table, we can see that SD
LCHV(Z1V) is equal to SD

LCHV(Z2V) and SA
LCHV(Z1V) is equal

to SA
LCHV(Z2, V) too. The ranges of the hesitation and uncertainty variables are interchanged in

the two HLVS. The results of two cosine measures are the same before extension. After extension,
the included angle cosine similarity measures between ideal LCHV are still the same, but the distance
cosine similarity measures between ideal LCHV are different. Moreover, the cosine similarity measures
between ideal LCHV based on the included angle are increased with the extension, but the cosine
similarity measures between ideal LCHV based on the distance are decreased. In this case, we can see
that the cosine similarity measure based on the distance is more sensitive to the extension of LCHVs.

6. Sensitivity Analysis to Change Weights

Scholars have proposed various models to analyze the stability of proposed multi-criteria
decision-making (MDM) methods [35,36]. As shown in the above section, different ranking results
were obtained with two similarity measure MDM methods. We usually choose the best alternative
according to the ranking results. The ranking results mostly depend on the values of weight coefficients.
We will perform a sensitivity analysis to assess how changes in the weights would change the ranking
of the alternatives. The sensitivity analysis is shown through eight scenarios with different weight
coefficients, as shown in Table 3.

The ranking results by scenarios is shown in Tables 4 and 5. Results show that rankings of
alternatives will change as the weight coefficient changes, as can be seen in the alternatives ranking in
Table 4. Similarity measures based on the distance method prefer the alternative V4, because alternative
V4 is ranked first in seven out of the eight scenarios. By comparing with the alternatives ranking in
Table 5, the alternatives V3 and V4, respectively, are the two best alternatives based on the included
angle cosine similarity measure method.

Sensitivity analysis showed that the two similarity measure methods were sensitive to changes in
weight. The similarity measure based on the distance method was relatively stable and mostly favored
alternative V4. The similarity measure based on the included angle method was more sensitive to
changes in weight and the ranking results changed dramatically, but the worst alternative was V1.

Table 3. Scenarios with different attribute weights.

Scenarios
Attribute Weight

A1 A2 A3

S-1: Uniform of Weight 0.33 0.33 0.33
S-2: Priority of Attribute A1 0.8 0.1 0.1
S-3: Priority of Attribute A2 0.1 0.8 0.1
S-4: Priority of Attribute A3 0.1 0.1 0.8

S-5: Priority of Attribute A1, A2 0.4 0.4 0.2
S-6: Priority of Attribute A2, A3 0.2 0.4 0.4
S-7: Priority of Attribute A1, A3 0.4 0.2 0.4

S-8: Given weight 0.45 0.3 0.25

Table 4. Alternatives ranking for different weight scenarios (distance similarity).

Alternative
Alternatives Ranking by Scenario

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8

V1 3 3 4 3 3 3 3 3
V2 4 4 3 4 4 4 4 4
V3 2 2 2 1 2 2 2 2
V4 1 1 1 2 1 1 1 1
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Table 5. Alternatives ranking for different weight scenarios (included angle similarity).

Alternative
Alternatives Ranking by Scenario

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8

V1 4 3 4 4 4 4 4 4
V2 3 4 2 2 3 3 3 3
V3 2 2 1 3 1 1 2 1
V4 1 1 3 1 2 2 1 2

7. Conclusions

Under an MAGDM environment, the distance and included angle cosine similarity measures were
firstly applied to deal with LCHV information in this paper. Next, we established a novel MAGDM
approach on the basis of the LCMN extension and the cosine similarity measures of LCHVs. Then,
a practical example was presented to implement the proposed DM method. Although the approaches
can solve the MAGDM problem, the DM results of the two methods were different in the example case.
Later, we compared and discussed the impact of the extension on the two cosine similarity measures.
Finally, we analyzed the sensitivity of the two methods to weights. We summarize the main highlights
of the proposed method below.

(1) Cosine similarity measures based on distance and included angle were used to solve a MAGDM
problem with LCHV information for the first time. By using the linguistic scale function, the calculation
process of similarity measures was simple and the number of calculations small.

(2) In order to demonstrate the stability of the proposed methods, the sensitivity analysis to weight
change was performed. By comparison, the similarity measure based on the distance method was
a better fit for the engineer selection case.

(3) Although the LCMN extension method was more objective, this paper provides a preliminary
analysis of the influence of hesitation extension on similarity measures.

In the future, we could do more research on LCHV MAGDM. For instance, we can forward
aggregation operators or measure methods which are not affected by the degree of hesitation.
More models are used to analyze stability of the proposed LCHV MAGDM methods in order that
decision-makers choose appropriate methods based on the stability. We also can apply the proposed
methods to various fields.

Author Contributions: J.Y. proposed the cosine similarity measure operators. X.L. presented the MAGDM
methods and comparative analysis. All authors wrote the paper together.
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