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Abstract: Improving reliability is one of the major concerns of scientific workflow scheduling in
clouds. The ever-growing computational complexity and data size of workflows present challenges
to fault-tolerant workflow scheduling. Therefore, it is essential to design a cost-effective fault-tolerant
scheduling approach for large-scale workflows. In this paper, we propose a dynamic fault-tolerant
workflow scheduling (DFTWS) approach with hybrid spatial and temporal re-execution schemes.
First, DFTWS calculates the time attributes of tasks and identifies the critical path of workflow in
advance. Then, DFTWS assigns appropriate virtual machine (VM) for each task according to the task
urgency and budget quota in the phase of initial resource allocation. Finally, DFTWS performs online
scheduling, which makes real-time fault-tolerant decisions based on failure type and task criticality
throughout workflow execution. The proposed algorithm is evaluated on real-world workflows.
Furthermore, the factors that affect the performance of DFTWS are analyzed. The experimental
results demonstrate that DFTWS achieves a trade-off between high reliability and low cost objectives
in cloud computing environments.
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1. Introduction

In recent years, scientific workflow has been applied widely as a new paradigm of data
analysis and scientific computation [1]. Scientific Workflow can be regarded as an orchestration
form of the relationships between computational tasks and data transmissions [2]. However,
the growing computational complexity and data size of scientific workflows increase the demand
for a high-performance execution environment [3]. Deploying and running workflows in clouds is
an effective solution for the advantages of cloud environments, such as flexible service provision,
high cost efficiency and guaranteed Quality of Service (QoS) [4].

Scientific workflows are usually composed of heterogeneous components, including components
inherited from legacy applications and newly developed. Clouds offer a customized execution
environment for these components through virtualization technology. In addition, workflows can be
deployed and executed in clouds that provide a virtually infinite resource pool in a pay-as-you-go
manner [5]. In this way, workflows can acquire and release cloud resources on-demand to achieve
a cost-effective operating mode. These advantages enable clouds to become a preferred execution
environment for scientific workflows.

However, there are also challenges for workflows running in clouds because failures occur more
frequently due to the complexity and dynamic of both workflow and cloud [6]. Failures tend to
interrupt the continuous execution and significantly affect the performance of workflows, especially
for large-scale, long-running ones [7]. To provide customers with seamless experience, it is critical to
make scientific workflow scheduling fault-tolerant.
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Because many scientific workflows are time-aware, their successful completion depends not
only on the correct computational results, but also on the time instants at which these results become
available [8]. A deadline limitation is set for a workflow that is a time by which the workflow
must complete the processing step and produce the computational result [9]. Without an effective
fault-tolerant scheduling scheme, failures will cause deadline-aware workflows cannot complete on
time. In this situation, the QoS is severely affected, although the results might be obtained after the
deadline. Therefore, fault-tolerant workflow scheduling becomes necessary and important because it
makes workflows be able to successfully complete before the deadline.

In failure-prone environments, an effective workflow scheduling approach should not only
able to map tasks on to heterogeneous resources, but to deal with failures throughout workflow
executions as well. In this paper, we propose a dynamic fault-tolerant workflow scheduling with
hybrid spatial-temporal re-execution, called DFTWS. To improve the time efficiency of workflow
scheduling, DFTWS separates the scheduling process into initial resource allocation and online
workflow scheduling. Meanwhile, DFTWS dynamically implements spatial and temporal re-execution
schemes according to the task property and the failure type to achieve a balance between reliability
and cost.

The main contributions of this paper are as follows. First, all static information of a workflow
is abstracted and calculated in advance, including a set of time attributes and the critical path (CP).
Second, a budget division method is designed to divide the total workflow budget into appropriate
quotas for all tasks, which are used to rent suitable VM instances. Third, DFTWS scheduling approach is
applied through the real-time execution of workflows, which dynamically employs spatial re-execution
(SRE) and temporal re-execution (TRE) scheme in different failure scenarios. SRE scheme is adopted
for critical tasks or tasks with permanent failures to maintain high reliability, while TRE scheme for
non-critical tasks with transient failures to improve cost efficiency.

The remainder of the paper is organized as follows. The related works are reviewed in Section 2.
Section 3 describes the preliminaries of fault-tolerant workflow scheduling, including cloud system,
workflow model and fault tolerance schemes. Section 4 introduces the proposed DFTWS algorithm.
Section 5 presents the experiments on the performance of DFTWS using real-world scientific workflows,
and analyze the factors that influence the performance of DFTWS. The conclusions of the paper are
given in Section 6.

2. Related Work

Scientific workflow scheduling is one of the important issues in cloud computing, which has
been widely studied in recent years [10]. Some surveys on workflow scheduling have been made.
For instance, the taxonomy and survey of fault-tolerant workflow management systems in cloud and
distributed computing environments are summarized in [7]. It details the objects, problems, techniques
and solutions involved in workflow scheduling. Masdari et al. conduct a comprehensive analysis on
workflow scheduling schemes [11]. Additionally, it makes a category of workflow scheduling schemes
according to the types and objectives, including metaheuristic-based [12–14], heuristic [15–19] and
hybrid metaheuristic and heuristic [20–22] scheduling. A total of 23 scheduling schemes are analyzed
and classified based on the proposed classification criteria. These works provide an outline of the
problems and solutions of workflow scheduling.

To focus on development and use of scientific workflows, scientific workflow management
system is proposed. The Kepler system addresses many of the core requirements and provides
support for Web service-based workflows and Grid extensions [23]. Pegasus is an automatic
execution simulation and data analysis platform for workflows, which has been widely used by many
researchers and originations for more than a decade. Besides the reliable, scalable workflow simulation
environment, Pegasus also offers a batch of real-world workflow models and a set of synthetic
workflow generators [24]. The simulation platform and workflow dataset provide convenience and
benchmark for the researchers on workflow scheduling.
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According to the phase of creating and executing scheduling scheme, workflow scheduling can
be divided into two types: static and dynamic [25]. Static workflow scheduling completes resource
planning on the compile phase, which generally requires preliminary information of workflow and
cloud resources. Fard et al. present a general framework and heuristic algorithm for multi-objective
static scheduling of scientific workflows in heterogeneous computing environments [26]. Rodriguez
et al. propose a static cost-minimization, deadline-constrained heuristic for scheduling a scientific
workflow application in a cloud environment [9]. The static scheme requires task information in
advance, including their sizes, service demands and estimated execution cost. It is easier for a
scheduler to adapt a static scheme. The dynamic scheme makes and executes online scheduling
decisions according to the real-time performance of workflows. Shi et al. present a dynamic constraint
workflow scheduling algorithm to meet the requirements of the bi-criteria scheduling issue, which uses
a two-phase heuristic algorithm for multiple-optimal solution [27]. However, it calls for a longer
running time. An elastic resource provisioning and task scheduling mechanism is proposed to perform
scientific workflows and submitted at unpredictable time in cloud. It is designed to finish as many
high-priority workflows as possible by considering the budget and deadline aspects, which lead to a
high cost [28]. Dynamic scheme is more suitable for executing on-demand variable workflows because
it doesn’t need as much information as static one. However, dynamic scheme becomes more complex
since it has to monitor and update the real-time system information [29].

Redundancy is one of the commonly used fault-tolerant mechanisms, which can be realized either
in space or in time [30]. Spatial redundancy means providing additional resources to execute the same
task on duplication or replication of resources to provide resilience. For example, parallel execution
is a typical spatial redundancy scheme. Parallel execution is running a task on multiple resources
simultaneously to guarantee a viable result, which results in a high spatial cost [31]. By contrast,
temporal redundancy relaxes time constraint to provide more time for re-executing the failed task on
the original resources [32]. Re-execution can be either done on another resource or the same resource,
that is SRE and TRE, respectively.

To make full use of the advantages of dynamic fault tolerance, DFTWS separates the scheduling
process into initial resource allocation and online fault tolerant scheduling. The initial resource
allocation scheme can be decided based on the information of workflows and cloud resources before
a workflow is executed, and fault handling strategies can be carried out during execution process.
Moreover, SRE and TRE are adopted as the fault-tolerant schemes with the aim of improving reliability
and resource utilization simultaneously.

3. Preliminaries

In this section, we introduce cloud system, workflow model and the fault-tolerant schemes used
in this paper. To provide a clear description, the major notations used throughout of this paper are
summarized in Table 1.

Table 1. Major notations.

Notation Definition

ti the i-th task
ET(ti) Execution time of ti
CTij communication time between ti and tj
CP critical path
BDT(ti) budget quota of ti
R(ti, SRE) reliability of ti with spatial re-execution (SRE) scheme
R(ti, TRE) reliability of ti with temporal re-execution (TRE) scheme
VMT(ti) type of VM selected by ti
pr(VMT(ti)) price of VMT(ti)



Information 2019, 10, 169 4 of 18

Table 1. Cont.

Notation Definition

dur(VMT(ti)) length of service time of VMT(ti)
cost(ti, SRE) cost of ti with SRE scheme
cost(ti, TRE) cost of ti with TRE scheme
cost(G) total cost of workflow G
IST(ti) Instance start time of ti
EEST(ti) The earliest execution start time of ti
LEST(ti) The latest execution start time of ti
EEET(ti) The earliest execution end time of ti
RET(ti) Resilient execution time of ti
FP(ti) Failure probability of ti
AIST(ti) Actual instance start time of ti
AEST(ti) Actual execution start time of ti
AEET(ti) Actual execution end time of ti
FOT(ti) failure occurrence time of ti
FRT(ti) failure recovery time of ti
OVM(ti) Original VM to host ti
RVM(ti) redundant VM to take over the failed ti
DM deadline multiplier
FR failure rate

3.1. Cloud System

Cloud systems generally consist of amounts of distributed heterogeneous resources. Through
virtualization technology, a physical machine (PM) can typically hold multiple virtual machines.
Virtual machine (VM) is the basic processor unit in cloud systems.

To meet various user requirements, cloud service providers offer different types of VMs at varying
prices. For example, Amazon EC2 provides a set of compute optimized C5 VM instances that are
suitable for compute-intensive workloads, and there are six specific types as shown in Table 2. Similarly,
we define a set of VM types VMT = {VMT1, VMT2, ..., VMTp} for our cloud system model, which has
p types of VMs.

Table 2. Compute optimized C5 VM instances in Amazon EC2.

Model vCPU Processing Capacity Mem Storage Price
(gigaFLOPS (GFLOPS)) (GiB) (USD/h)

c5d.large 2 384 4 1 × 50 NVMe SSD 0.096
c5d.xlarge 4 768 8 1 × 100 NVMe SSD 0.192
c5d.2xlarge 8 1536 16 1 × 200 NVMe SSD 0.384
c5d.4xlarge 16 3072 32 1 × 400 NVMe SSD 0.768
c5d.9xlarge 36 6912 72 1 × 900 NVMe SSD 1.728

c5d.18xlarge 72 13,824 144 1 × 900 NVMe SSD 3.456

3.2. Workflow Model

A workflow is composed by a set of tasks according to their dependencies. Workflow structure
indicates the temporal relationship between tasks, which is typically represented by Directed Acyclic
Graph (DAG). Each task of a workflow is represented by a node, and each control dependency or data
between tasks is represented by a directed edge in the DAG.

In this paper, the DAG of a workflow is defined as a tuple G = (T, M). T = {t1, t2, ..., tn} is the
set of nodes in G, where ti denotes the i-th task. Each task is a set of instructions. The size of a task is
measured by millions of instructions MIi. The execution time ETi of task ti depends on its task size
and the processing capacity of the VM hosts it. M is the adjacency matrix of G; each entity of M is
a directed edge, which means the precedence of a pair of tasks. The weight of an edge represents
the communication time CTij from node ti to tj, which depends on the data size and bandwidth.
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CTij = datasizei/B, where B is the bandwidth between the VMs hosting ti and tj. If there is no edge
from node ti to tj or they are allocated on the same VM instance, CTij = 0:

M =

e11 · · · e1n
...

. . .
...

en1 · · · enn

 =

CT11 · · · CT1n
...

. . .
...

CTn1 · · · CTnn

 . (1)

In a given G, the node without any predecessor is denoted as the entry node tentry and the node
without any successor is denoted as the exit node texit. There may be more than one entry node and exit
node in a workflow. To ensure the uniqueness of the entry node and exit node while not affecting the
scheduling, two pseudo nodes tentry and texit are added to the beginning and the end of G, respectively.
Since the pseudo nodes have no real tasks, their ETs are 0. The edges between the pseudo and original
entry nodes and the original and pseudo exit nodes are zero-weight, thereby, their CTs are 0 as well.

3.3. Fault Tolerance Schemes

For scientific workflows running in cloud environments, task failures are inevitable. There are
multiple failure causes. Generally, a task failure is caused by the failure of the VM or PM in which
the task is executed. Moreover, task failures can occur for some specific reasons, such as unavailable
resources, overutilization of resources, execution time exceeds than threshold value and so on [33].
If a task is not able to complete due to its internal or external reason, it is defined as a task failure in
this paper.

Two types of failure are considered in this paper, transient and permanent failures. The major
difference between them is failure duration. Transient failures (i.e., fail-recovery) are those that occur
temporarily and for a short period of time, while a permanent failure (i.e., fail-stop) is one that
continues to exist until the failure component is restarted or repaired. A fault-detection mechanism,
such as fail-signal or acceptance test [34,35], is used to detect failures.

Task failures might prolong the makespan of scientific workflows, which not only lead to the
increase of workforce and time, but also is the potential risk of service-level agreement (SLA) violation.
Fault tolerance is one of the most effective fault handling methods. Among various fault-tolerant
strategies, re-execution is a common and cost-effective scheme for improving the reliability of workflow
scheduling. Moreover, there are two ways to implement re-execution: re-executing on other resources
and re-executing on the recovered original resources, which are SRE and TRE. Their comparison is
summarized in Table 3.

Table 3. The comparison of re-execution schemes.

Re-Execution Scheme Characteristics

SRE

1. Re-execute failed tasks on other resources
2. Suitable for permanent faults
3. Applied to high timeliness or critical tasks
4. Low time cost, high space cost

TRE

1. Re-execute failed tasks on the original resources
2. Suitable for transient faults
3. Applied to low timeliness or non-critical tasks
4. High time cost, low space cost

3.3.1. Failure Model

In general, the occurrence of a failure is supposed to follow a failure density function f (t),
which describes the relative likelihood for the failure to occur at a given time:
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
f (t) = F′(t) = dF(t)

dt ,
s.t. f (t) ≥ 0,∫ +∞

−∞ f (τ)dτ = 1,
(2)

where F(t) is the failure distribution function, which describes a real-valued random variable t with
a given failure density function f (t) and will be found at a value less than or equal to t. The failure
distribution function F(t) is defined by

F(t) = P(−∞ ≤ t) =
∫ t
−∞ f (τ)dτ,

1− F(t) = P(t ≤ +∞) =
∫ +∞

t f (τ)dτ,
F(tb)− F(ta) = P(ta < t ≤ tb) =

∫ tb
ta

f (τ)dτ,
s.t. limt→−∞ F(t) = 0,

limt→+∞ F(t) = 1.

(3)

A failure expectation distribution value E(t) of a continuous failure is a value that describes the
weighted average of all possible failure time values that admits probability density function f (t),
which can be calculated by

E(t) =
∫ +∞

−∞
τ · f (τ)dτ. (4)

Poisson, exponential, Weibull, long-normal and uniform distribution are typical failure
distribution functions [7]. In this paper, the occurrence of a failure is assumed to follow a Poisson
distribution, which is commonly used in related works [36–41]. The reliability of a task in unit time t is
denoted by

R(t) = e−λt, (5)

where t is the constant failure rate per time unit for a task.

3.3.2. Cost Model

In commercial clouds, the cost model is determined by the payment mode that generally charges
users according to the total service time of VMs. The execution cost of workflow is the sum of the
execution cost of all tasks:

cost(G) =
n

∑
i=1

cost(ti). (6)

For a task without failures, cost(ti) is calculated by

cost(ti) = pr(VMT(ti))× dur(VMT(ti)), (7)

where pr(VMT(ti)) and dur(VMT(ti)) are the unit price and service time of the VM instance runs
task ti.

For a task with SRE scheme, cost(ti) is calculated by

cost(ti, SRE) = pr(OVMT(ti))× dur(OVMT(ti)) + pr(RVMT(ti))× dur(RVMT(ti)), (8)

where OVMT(ti) and RVMT(ti) are the original and redundant VMT of task ti, dur(OVMT(ti)) is
the duration of task ti on the original VM instance before it fails, and dur(RVMT(ti)) is the duration
of task ti after it restarts on the redundant VM instance.

For a task with TRE scheme, cost(ti) is calculated by

cost(ti, TRE) = pr(OVMT(ti))× dur(OVMT(ti)), (9)
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where OVMT(ti) is the original VMT of task ti, because a task with TRE scheme remains on the same
VM instance. However, the duration of task ti is prolonged due to the occurrence and recovery of a
transient failure.

4. DFTWS Algorithm

This section introduces the proposed DFTWS algorithm, which includes three phases: Static
DAG Information Calculation, Initial Resource Allocation and Online Scheduling. In the first phase,
the static information of a DAG is calculated based on the information of the submitted workflow and
cloud resources. Appropriate VM instances are assigned to each task according to the budget quota in
the second phase. The last phase is to dynamically schedule the workflow with hybrid SRE and TRE
during the real-time execution.

4.1. Static DAG Information Calculation

In this phase, a group of static node information is firstly calculated, including time attributes and
failure probability. Then, the critical path is identified based on the static node information.

4.1.1. Static Node Information Calculation

Fault-tolerant workflow scheduling involves a number of important time attributes of tasks. To
facilitate initial resource allocation and online scheduling, the time attributes are calculated in advance.

• Average Execution Time (AET): The average execution time of a task on all available VMTs:

AET(ti) =
∑VMTk∈VMT ET(ti, VMTk)

|VMT|

=
∑VMTk∈VMT

tasksize(ti)
VMTk

|VMT| ,

(10)

where ET(ti, VMTk) is the execution time of task ti on the VM type of VMTk. VMT is the set
of available VM types, and |VMT| is the number of VM types. In most research works on
deadline-constrained workflow scheduling, the most powerful host is assigned for a task to
minimize its ET. It helps to achieve a significantly reduce on the makespan of workflows, but
calls for a tremendous cost, especially for large-scale workflows. In our model, the ET of each
task is estimated with AET in this phase, from a comprehensive perspective of cost and deadline.

• Instance Start Time (IST): the VM instance of task ti should start once there is a predecessor task
finish execution because it should be ready to receive the data handed down at that time:

IST(ti) = min
tp∈pred(ti)

EEET(tp), (11)

where pred(ti) is the set of predecessors of task ti, and EEET(tp) is the earliest execution end time
of task tp.

• The Earliest Execution Start Time (EEST): Once all data needed by ti are received from its
predecessors, it can start execution. Therefore,

EEST(ti) = max
tp∈pred(ti)

(EEET(tp) + CTpi)

= max
tp∈pred(ti)

(EEST(tp) + ET(ti) + CTpi).
(12)

• The Earliest Execution End Time (EEET): EEET is the end time of a task that starts at its EEST:

EEET(ti) = EEST(ti) + ET(ti). (13)
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• The Latest Execution Start Time (LEST): LEST is the latest start execution time of ti on the
assumption that none of its successors will fail and the entire workflow can just finish at the given
deadline DDL:

LEST(ti) = max
ts∈succ(ti)

(LEST(ts)− CTis − ET(ti)), (14)

where succ(ti) is the set of successors of ti. LEST is calculated in reverse order from texit to tentry.
Because ET(texit) = 0, LEST(texit) = DDL.

• Resilient Execution Time (RET): RET means the time range between EEET and LEST. RET
indicates the urgency of a task. A smaller RET means that the task is more urgent to execute:

RET(ti) = LEST(ti)− EEST(ti). (15)

• Failure Probability (FP): Because the possible failure time values that admits probability density
function f (t), which can be calculated by Equation (16), the failure probability FP is in proportion
to its active time.

FP(ti) =
∫ maxts∈succ(ti)

(EEET(ts)+CTis)

IST(ti))
τ · f (τ)dτ

∝ max
ts∈succ(ti)

(EEET(ti) + CTis)− IST(ti).
(16)

4.1.2. Critical Path Identification

In workflow scheduling, the critical path (CP) is the path with the longest execution duration
from tentry to texit of a workflow, also named the longest path. CP is one of the most indicators for
workflow scheduling. The makespan of a workflow is determined by its CP. The nodes along CP are
critical nodes that are generally the most time-consuming tasks. Any delay or failure of critical nodes
would directly impact the completion time of a workflow. Therefore, identifying CP is the basis of an
efficient resource allocation mechanism and an effective fault tolerant strategy for workflows.

The critical predecessor of a task ti is the predecessor of ti that is the last one to finish data delivery
to ti, that is, the predecessor of ti is task tp whose EEET(tp) + CTpi is maximal. Once the critical
predecessor of each task can be identified, the critical path of a workflow can be determined in a
recursive manner.

4.2. Initial Resource Allocation

In this subsection, we introduce how to allocate initial resources for all tasks, that is, how to select
an appropriate VM type for each task. Due to the total cost limit, it is impractical to choose the most
powerful type of VM for each task.

DFTWS takes RET as the reference in VMT selection because the failure or delay of tasks with
different RET have different impacts on the overall makespan of a workflow. A smaller RET means a
task is more urgent; thus, it needs a more powerful VM to complete execution quickly, which calls
for a higher budget quota. Otherwise, a task with enough resilient time to execute, a lower budget
quota should be assigned for it to rent an affordable VMT. We assume a total budget BDT is set for a
workflow. The calculation of BDT(ti) is as follows:

BDT(ti) =
1

RET(ti)
× 1

∑n
i=1 RET(ti)

× BDT. (17)

Once the BDT of a task is obtained, we can select a suitable VMT for it according to the duration
of the task and the prices of VMT candidates. VMT(ti) is determined by{

VMT(ti) ∈ {VMT1, VMT2, . . . , VMTp}
s.t. maxts∈succ(ti)

(EEET(ti) + CTis − AIST(ti))× pr(VMT(ti)) ≤ BDT(ti),
(18)
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where the s.t. expression indicates that the total expense of ti should be no more than its budget quota,
which supports it running on VMT(ti) for the period of task execution and data transmission. Because
the VM instance of ti cannot be shut down immediately after the execution finishes, it needs to deliver
data to its successors as well. If there are multiple VMTs that satisfy Equation (18), the VMT with the
highest price is selected for ti because a higher price refers to a better performance for a VMT. This
manner of VMT selection is to reduce execution time as much as possible within its budget quota. The
pseudo code of initial resource allocation is shown in Algorithm 1.

Algorithm 1 Initial Resource Allocation

Require: the workflow budget BDT and the VMT set {VMT1, VMT2, . . . , VMTp};
Ensure: the initial resource allocation for each task

1: for i = 0 to n + 1 do

2: calculate BDT(ti) with Equation (17);
3: if multiple VMT(ti) satisfy Equation (18) then

4: select the VMT(ti) with maximium pr(VMT(ti)) for ti;
5: end if
6: end for

4.3. Online Scheduling

During workflow execution, DFTWS dynamically deploys FT scheme for each task. Algorithm 2
illustrates the pseudo code of online scheduling. The first step is failure judgment. If there is no failure
occurs to the current task, it is executed on the designated VM by Algorithm 1. Otherwise, FT scheme
selection should be performed. DFTWS assigns priority to a task which is a critical node or experiences
a permanent failure because of their significant impact on the makespan of a workflow. Whether this
is a critical node and whether there is a permanent failure that happens to this node are denoted as
two conditions for FT scheme selection. The SRE scheme is applied as long as one of the above two
conditions is met. Otherwise, the TRE scheme is performed.

As for the SRE scheme, because different failure occurrence times (FOT) have different impacts on
the time attributes of a task; thereby, it needs different specific SRE operations, and results in different
execution costs. There are three cases for SRE as follows:

• Case1 (lines 4–6): FOT(ti) < IST(ti), the failure occurs before the instance of ti starts. In this case,
the original VM instance fails before ti starts on it; thus, a redundant VM instance is allocated for
ti. None of the time attributes is impacted. The execution cost of ti is calculated as follows:

cost(ti) = pr(RVMT(ti))× dur(RVMT(ti)), (19)

dur(RVMT(ti)) = max
ts∈succ(ti)

(AEET(ti) + CTis − IST(ti)), (20)

where RVM(ti) is the redundant VM takes over the failed task ti.
• Case2 (lines 7–10): IST(ti) ≤ FOT(ti) ≤ maxts∈succ(ti)

(AEET(ti) + CTis), the failure occurs
during the data transmission or execution of ti. In this case, a redundant VM instance starts to
take over ti at FOT(ti). Because data transfer to ti has started or finished on the original VM
instance, data retransmission is needed. Therefore, IST(ti), AEST(ti), AEET(ti) are impacted.
IST(ti) is delayed to FOT(ti). AEST(ti) = IST(ti) +maxtp∈pred(ti)

CTpi. AEET(ti) = AEST(ti) +

ET(ti, RVMT(ti)). The execution cost of ti is calculated as follows:

cost(ti) = pr(OVMT(ti))× dur(OVMT(ti)) + pr(RVMT(ti))× dur(RVMT(ti)), (21)

dur(OVMT(ti)) = FOT(ti)−OIST(ti), (22)
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dur(RVMT(ti)) = max
ts∈succ(ti)

(AEET(ti) + CTis − FOT(ti)). (23)

• Case3 (lines 11–13): maxts∈succ(ti)
(AEET(ti) + CTis) < FOT(ti), the failure occurs after all data

transfer from ti to ts finish. There is no harm to task ti. The execution cost of ti is calculated by

cost(ti) = pr(OVMT(ti))× dur(OVMT(ti)), (24)

dur(OVMT(ti)) = max
ts∈succ(ti)

(AEET(ti) + CTis − FOT(ti)). (25)

Algorithm 2 Online scheduling

for i = 0 to n + 1 do

2: if ti fails then

if (ti is a critical node) or (this is a permanent failure) then

4: if FOT(ti) < IST(ti) then

start a redundant node for ti at FOT(ti);
6: calculate cost(ti) using Equations (19) and (20);

else if IST(ti) ≤ FOT(ti) ≤ maxts∈succ(ti)
(AEET(ti) + CTis) then

8: start a redundant node for ti at FOT(ti);
update AIST(ti), AEST(ti) and AEET(ti);

10: calculate cost(ti) using Equations (21)–(23);
else if maxts∈succ(ti)

(AEET(ti) + CTis) < FOT(ti) then

12: start a redundant node for ti at FOT(ti);
calculate cost(ti) using Equations (24) and (25);

14: end if
else

16: if IST(ti)− rt ≤ FOT(ti) ≤ maxts∈succ(ti)
(AEET(ti) + CTis) then

wait failure node to recovery and re-execute;
18: update AEST(ti) and AEET(ti);

else

20: no TFT operation;
end if

22: calculate cost(ti) using Equations (26) and (27);
end if

24: else

no FT operation;
26: end if

end for

Likewise, different FOTs have different impacts on the time attributes of the task for the TRE
scheme; thus, they need different specific TRE operations, and result in different execution costs.
Unlike permanent failures, transient failures can automatically recover after a short period of time.
Let rt denotes the length of time required by a transient failure to recovery. In addition, we assume a
unified rt for all tasks, which is commonly used in the research of transient failures [42]. There are two
cases for TRE as follows:

• Case 1 (lines 16–18): IST(ti) − rt ≤ FOT(ti) ≤ maxts∈succ(ti)
(AEET(ti) + CTis), the failure

occurs during the execution or data transmission of ti, that is, the transient failure recovers
after the instance of ti starts, and before all data transfer from ti to ts finish. In this case, the VM
instance fails and then recovers, so task ti requests data retransmission from all its predecessors.
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Therefore, its IST(ti) does not change, AEST(ti) is delayed to FOT(ti) + rt + maxtp∈pred(ti)
CTpi,

and AEET(ti) = AEST(ti) + ET(ti, VMT(ti)).
• Case 2 (lines 19–20): FOT(ti) < AIST(ti) − rt or maxts∈succ(ti)

(AEET(ti) + CTis) < FOT(ti),
the transient failure does not occur during the data transmission or execution of ti, that is,
the failure occurs and recovers before the VM instance of ti starts, or after all data transfer from ti
to ts finish. In this case, none of the time attributes are impacted.

Transient failure only affects the time attributes of ti, whereas ti remains running on the same
VM instance. Therefore, the execution cost of ti in these two cases of TRE scheme can be calculated as
follows, which corresponds to line 22:

cost(ti) = pr(VMT(ti))× dur(VMT(ti)), (26)

dur(VMT(ti)) = max
ts∈succ(ti)

(AEET(ti) + CTis − AIST(ti)), (27)

where AEET(ti) is determined by the specific failure scenarios described above.

5. Experiment

In this section, we conduct a series of experiments on real-world workflows to evaluate the
performance of DFTWS and analyze the impact factors on the performance.

5.1. Experimental Setup

To evaluate the performance of DFTWS, we adopt five typical types of workflows provided by
Pegasus project [24], including CyberShake, Epigenomics, Inspiral, Montage and sRNA identification
protocol using high-throughput technology (SIPHT), which are complex scientific workflows from
different domains including geology, astronomy, physics, life sciences and biology. These workflow
models have been widely used in workflow scheduling and performance evaluation.

Figure 1 shows the structures of these workflow models, and Table 4 lists their attributes,
including the number of tasks (NoT), number of edges (NoE), task runtimes (TR) and average task
runtimes (ATR).

(a) CyberShake (b) Epigen (c) Inspiral (d) Montage (e) SIPHT

Figure 1. The structure of real-world scientific workflows.

Table 4. The parameters of real-world scientific workflows.

Workflow NoT NoE TR ATR

CyberShake 100 193 [0.57, 164.74] 22.37
Epigenomics 100 122 [0.02, 23571.36] 4034.00

Inspiral 100 121 [4.25, 670.45] 210.24
Montage 100 233 [0.83, 13.85] 10.79

SIPHT 97 111 [0.06, 2891.24] 179.17
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There is an array of metrics to measure the performance of fault-tolerant workflow scheduling
algorithms, and each metric provides a different evaluation aspect. Among various metrics, we select
two common used ones: reliability and FT cost ratio:

1. Reliability is defined as the ratio of successfully completed workflows over all submitted
workflows within their DDLs.

2. FT cost ratio is defined as the percentage of FT cost over the total execution of a workflow with
DFTWS, which further includes SRE and TRE cost ratio. Because workflows differ in the execution
cost even if no failure occurs, it is more accurate to use FT cost ratio, rather than the absolute FT
cost, to measure the performance of DFTWS and analyze the factors affecting the performance.

To achieve a detailed analysis of the performance of DFTWS, three major impact factors of DFTWS
are analyzed, including deadline multiplier (DM), failure rate (FR) and workflow structure.

5.2. Impact of DM

DM refers to a given DDL divided by the minimum completion time of a workflow without
failures that equals to the length of CP (CPL). Therefore, DM = DDL/CPL. A smaller DM means a
stricter time limitation for workflow execution.

To evaluate the impact of DM, we conduct a group of experiments on these five workflows. In this
group of experiments, DM increases from 1.00 to 1.50, and the increasing step is 0.05. FR is set as 0.1.
Failures include permanent and transient failures. There are 10 subgroups, the ratio of transient failure
increases from 0 to 100%, with the increasing step of 10%. The test results of these 10 subgroups are
averaged to eliminate the impact the specific ratio of transient and permanent failures.

Figure 2 depicts the results of the reliabilities of all workflows with DFTWS with the increasing
DM. It can be found that, as DM increases, the reliabilities of all five of these types of workflows turn
out an uptrend. The reliabilities increase gradually as DM increase from 1.0 to around 1.25, and then
become stable at 100% when DM is bigger than around 1.25. This indicates that the reliability is lower
with a small DM, and rises as DM increases.

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

DM

0%

20%

40%

60%

80%

100%

R
e

li
a

b
il

it
y

CyberShake Epigenomics Inspiral Montage SIPHT

Figure 2. Reliabilities of workflows with the increasing deadline multiplier (DM).

This phenomenon is caused by the dynamic re-execution schemes of DFTWS. Unlike the parallel
execution whether or not failures happen, the dynamic re-execution schemes act when there are
failures actually occur. This is the reason why DFTWS is sensitive to a smaller DM, since there is not
sufficient time for DFTWS to eliminate the influence of all failures. This suggests that a stricter DM has
a more obvious impact on the performance of DFTWS on reliability, whereas DFTWS can maintain
workflow reliability in a high level with a lenient limit of completion time. Although the timeliness
of dynamic re-execution schemes are inferior to parallel execution, the costs of dynamic re-execution
schemes are much lower than parallel execution.
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The results of FT cost ratio of all workflows with DFTWS under an increasing DM and a fixed FR
are depicted in Figure 3. In each subfigure, the overall height of a bar is the FT cost ratio with a specific
value of DM, which further include a part of SRE cost ratio (the blue part) and a part of TRE cost ratio
(the orange part).

As Figure 3 shows, the FT, SRE and TRE cost ratio of each workflow basically remains stable
with the increasing DM. The FT cost ratios of CyberShake, Epigenomics, Inspiral, Montage and SIPHT
are around 3.1%, 0.9%, 3.0%, 2.3% and 4.8%, respectively. This indicates that the FT cost ratio is not
affected by DM because the change of DM does not affect the manner of failure handling of DFTWS.
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(d) Montage
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Figure 3. Fault-tolerant (FT) cost ratio of workflows with the increasing deadline multiplier (DM).

5.3. Impact of FR

To evaluate the impact of FR on the performance of DFTWS, we conduct another group of
experiments on the five types of workflows. In this group of experiments, DM is set as 1.25. FR is set
in [0, 0.1], and the increasing step is 0.01. There are also 10 subgroups with the same setting and goal
as designed in Section 5.2.

Figure 4 depicts the results of the reliabilities of all workflows with DFTWS with the increasing
FR. It can be found that the reliabilities of all workflows decline as FR increases. This is because fewer
tasks can be completed in the given DDL because more time is spent on handling failed tasks. Contrary
to the strong uptrend of reliabilities with the increasing DM, a gentle downtrend is observed for all
workflows, and the average reliability of each workflow is higher. This indicates that DFTWS can deal
with the increasing FR well in order to maintain workflows in a higher reliability range.

The results of FT cost ratio of all workflows with DFTWS under an increasing FR and a fixed
DM are depicted in Figure 5. It can be observed that the FT, SRE and TRE cost ratio of each workflow
increase gradually with the increase FR because handling more failed tasks results in the rising FT cost
while the execution cost remains constant. Therefore, the FT cost ratio rises as FR increases.

The average FT cost ratio is relatively lower of all workflows with DFTWS. DFTWS uses around
1.8%, 0.8%, 1.9%, 1.7% and 2.8% FT cost to tolerant 5% failures. This suggests DFTWS is a cost-effective
fault-tolerant workflow scheduling approach.
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Figure 4. Reliabilities of workflows with the increasing failure rate (FR).
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(d) Montage
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Figure 5. Fault-tolerant (FT) cost ratio of workflows with the increasing failure rate (FR).

5.4. Impact of Workflow Structure

In Sections 5.2 and 5.3, it can be found that, in addition to the similar trend of reliabilities and
FT cost ratio of all workflows, there are also some detailed differences among these workflows. For
example, Epigenomics has a steady and the highest level of reliability, while the reliability of Montage
is the lowest and shows the sharpest uptrend. Additionally, the average of FT cost ratio of Epigenomics
is less than 1%, whereas SIPHT results in more than 4% the average of FT cost ratio under the same
settings. Intuitively, the disparities should be caused by structural difference among these workflows.

To further analyze the impact of workflow structure on the performance of DFTWS, we conduct a
group of comprehensive experiments on these workflows. Unlike the previous groups of experiments
that focus on either DM or FR, both of them are considered simultaneously in this group. DM is set
from 1.00 to 1.50, and the increasing step is 0.05. FR is set from 15% to 5%, and the decreasing step is
1%. The results of reliability and FT cost ratio of each workflow under increasing DM and decreasing
FR are shown in Figures 6 and 7, respectively.
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Figure 6. Reliability of real-world workflows with increasing DM and decreasing FR.
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Figure 7. FT cost ratio of real-world workflows with increasing DM and decreasing FR.

Among all workflows, the reliability of Montage is the lowest and shows the sharpest uptrend,
while Epigenomics has a steady and the highest level of reliability. This indicates that Montage is the
most sensitive one to DM, whereas Epigenomics is the most stable one. Because DM = DDL/CPL,
a smaller DM means the DDL is closer to CPL. If a path has a similar length to CPL, thus, it is more
likely to be affected by a smaller DM as well. Moreover, more such paths mean more tasks will be
affected by a smaller DM. In addition, a workflow with similar PLs is more vulnerable to a tight
deadline because its CP is more likely to change. Whether the CP will change depends on the number
of CPs, the location where the failure occurs and the time needed to handle the failure. Four cases are
summarized as follows:

1. If a critical node fails and the workflow only has one CP, the CP does not change, but the CP
length (CPL) is increased.
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2. If a critical node fails and the workflow has multiple CPs, the length of the CPs with the failed
node are increased, and they are still the CPs. However, the CPs without the failed node turn into
non-critical paths (NCPs).

3. If a non-critical node fails, the lengths of all the paths with this failed node are increased. If any of
these paths becomes longer than the original CP, it turns into the new CP. The original CP turns
into NPC.

4. If a non-critical node fails, but none of the prolonged paths with this failed node is longer than
the original CP; both the CP and CPL do not change.

In general, if the distribution of PL is more even, there will be more tasks that are limited by a
small DM; thus, the reliability will be lower. Meanwhile, if the distribution of PL is more even, it is
more likely to change the CP of the workflow. CP change tends to disrupt the fault-tolerant schemes,
leading to a lower reliability.

Based on the above analysis, we compute the standard deviation of path length std(PL) for each
workflow. The results are in the 4-th column of Table 5. It can be found that std(PL) of Montage is the
smallest, 1.91. This indicates that the lengths of all paths of Montage are close to each other. Therefore,
Montage suffers the most serious impact of a small DM. In contrast, Epigenomics is basically not
affected by a small DM because its std(PL) is the biggest.

Table 5. Structural parameters of five types of workflows. Number of paths (NoP); average path length
(APL); standard deviation of path length (std(PL)); number of critical tasks (NoCT); critical path length
(CPL); the ratio of critical path length over total task runtime (CPL/TTR); standard deviation of task
runtime (std(TR)).

Workflow NoP APL std(PL) NoCT CPL CPL/TTR std(TR)

CyberShake 96 166.06 38.93 5 228.29 0.1021 26.69
Epigenomics 24 228,470 3663.10 9 29,873.00 0.0741 7254.90

Inspiral 218 898.41 159.13 7 1332.80 0.0634 226.16
Montage 1920 69.89 1.91 10 70.72 0.0655 2.31

SIPHT 133 904.97 1170.51 6 4475 0.2575 521.51

As Figure 7 shows, SIPHT obtains the highest FT cost ratio, while Epigenomics achieves the
lowest one under the same setting of FR. The same phenomenon can be found in Section 5.4 as well.
The previous results show that SRE cost comprises most of FT cost. At the same time, failed critical
task is the major cause of SRE cost. Therefore, the ratio of the length of CP (CPL) over the total task
runtime (TTR) can indicate FT cost ratio. Thus, we calculate CPL/TTR as shown in the 7th column of
Table 5. Indeed, CPL/TTR of SIPHT is the biggest, 0.2575. However, CPL/TTR of Epigenomics is not
the smallest, which is close to Inspiral and Montage. Thus, what is the deeper reason?

To dig into the previous issue, we further analyze the formation of the CPs of Epigenomics,
Inspiral and Montage. We calculate their standard deviations of runtimes std(TR) as shown in the
last column of Table 5. The extremely large std(TR) of Epigenomics indicates that the distribution of
runtime of Epigenomics is highly skewed. A very small minority of critical tasks account for the vast
majority of CPL, although they have fewer advantages on numbers. However, under the fixed FR,
the failure probabilities of these critical tasks with extremely large runtimes are much lower because
of their low quantity proportion. Therefore, Epigenomics achieves a very low FT cost ratio among
all workflows.

In addition, let’s review Figures 3 and 5, it can be found that only Montage has a bigger TRE
cost ratio (orange part of bars), while the TRE cost ratio of the other four workflows are quite small,
which are barely visible. This is because the runtimes of all tasks of Montage are distributed much
more evenly than the others; its std(TR) is only 2.31. In this situation, the non-critical tasks have
similar runtimes with critical ones. Therefore, the TRE cost ratio caused by non-critical tasks becomes
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a part to be reckoned with. This suggests that the proportion of TRE increases for the workflows with
similar runtimes of tasks.

5.5. Experimental Summary

Based on the above experimental results and analysis, some summarizations are made.
The reliability and cost of a workflow are affected by DM, FR and workflow structure. When workflow
structure is not considered, DM is the main factor affecting the ability of reliability maintaining of
DFTWS. A small DM remarkably weakens the ability of reliability maintaining of DFTWS while a
lenient deadline can facilitate DFTWS to enhance the performance so that workflow reliability can
be kept in a high range. The ratio of FT cost depends on FR. Moreover, DFTWS maintains high
reliability for workflows with low FT cost ratio. This indicates that DFTWS achieves a good balance
between the requirements of high reliability and low cost. From the perspective of workflow structure,
different structures have different impacts on the performance of DFTWS. Moreover, we find that the
distribution of PL, the distribution of TR and the ratio of CPL over total TR are the major factors that
lead to the performance differences of DFTWS on all workflows.

6. Conclusions

In cloud environments, fault tolerance is significant for workflow scheduling. In this paper,
we propose DFTWS, a dynamic fault-tolerant workflow scheduling approach with hybrid
spatial-temporal re-execution. DFTWS first calculates the static DAG information, including calculating
time attributes of each node, identifying the critical path and nodes. After that, DFTWS conducts
initial resource allocation based on the static DAG information before executing workflow, and then
makes real-time scheduling decisions dynamically based on failure type and task criticality throughout
workflow execution. By separating resource allocation and online scheduling, DFTWS improves the
time efficiency of fault-tolerant workflow scheduling. To achieve the trade-off between reliability and
cost, DFTWS adopts hybrid SRE and TRE instead of parallel execution. Therefore, DFTWS guarantees
the reliability and controls the cost of workflows simultaneously.

Comprehensive experiments are conducted on real-world workflows. We analyze the impacts of
DM, FR and workflow structure on the reliability and cost of workflows with DFTWS. The experimental
results demonstrate that DFTWS is an effective solution for fault-tolerant workflow scheduling.

According to the experimental analysis, it can be found that there are different performance
metrics for assessing a fault-tolerant workflow scheduling approach, which are generally contradictory,
like reliability and cost. Meanwhile, there are multiple factors that affect the performance of a
fault-tolerant workflow scheduling approach. Therefore, no single fault-tolerant workflow scheduling
approach is the best one for all type workflows under varying conditions. As future work, we plan to
design a flexible fault-tolerant scheme selecting or combining the approach for workflow scheduling
in Cloud computing environments.
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