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Abstract: The information contained within Call Details records (CDRs) of mobile networks can
be used to study the operational efficacy of cellular networks and behavioural pattern of mobile
subscribers. In this study, we extract actionable insights from the CDR data and show that there
exists a strong spatiotemporal predictability in real network traffic patterns. This knowledge can
be leveraged by the mobile operators for effective network planning such as resource management
and optimization. Motivated by this, we perform the spatiotemporal analysis of CDR data publicly
available from Telecom Italia. Thus, on the basis of spatiotemporal insights, we propose a framework
for mobile traffic classification. Experimental results show that the proposed model based on machine
learning technique is able to accurately model and classify the network traffic patterns. Furthermore,
we demonstrate the application of such insights for resource optimisation.

Keywords: call details record; data analytics; machine learning; mobile networks

1. Introduction

With the mammoth development in mobile and the internet of things (IoT) technologies, it can
be anticipated that in next generation-networks (NGN) everything will be connected. The number of
mobile devices such as smart phones, tablets, and wearable devices are on the rise exponentially. So,
the next generation-networks will be considered as worldwide wireless networks (WWWN). According
to a report provided by Ericsson, in future there will be billions of connected devices [1]. Such a huge
connectivity of wireless devices will increase the data traffic volume largely. During the last decade,
4000 fold increase occurred in the data volume and it will increase further in next-generation networks
(NGN) [2]. According to CISCO report, wireless traffic is generating 24 Exabyte (EB) data per month
and it is continuously growing [3].

Mobile network traces provide extensive information about the network and its subscribers’
behavior. However, the analysis and modeling of network traces is a non-trivial task [4]. The existing
solutions for understanding and modeling of network traces and its pattern provide limited
information. As the key factors affecting the network traffic variations are still needed further research.
Such limitations, increase the operation cost of the cellular network and degrade the quality of service
especially in densely populated areas.

The useful insights obtained from the network traffic analysis are highly valuable for network
operators as well as network subscribers mainly in the case of ultra-dense networks [5,6]. If the
cellular network traffic patterns are accurately predicted and modeled, then the network operators
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can sub-divide the network coverage area into different sub-regions according to the predicted traffic
pattern. Hence, network resources can be distributed to sub-regions according to their traffic conditions.
Such traffic modeling would be beneficial for mobile users in terms of better quality of service.
In addition, the network traffic optimization would also be helpful for network operators in making
efficient operational schemes [7].

Motivated from the above work, in this article, we classify and monitor the network traces of a real
cellular network by applying a clustering based artificial neural network model. The network traces
analyzed in this work are call details record (CDR). The CDR data contains both spatial and temporal
information. On the basis of the spatiotemporal feature of CDR data, we performed spatial and
temporal analysis separately and extracted useful insights about the subscribers as well as the network.
These insights will be helpful in meeting QoS requirements of NGN and improving throughput.
The main contributions of this work are as under:

• We analyze the CDR data of large scale cellular network. The dataset contains the CDR activity
for Milan city. Such a vast dataset helps us to understand and model the network traffic for urban,
suburban and rural areas.

• We perform the spatiotemporal analysis of CDR data. For a spatiotemporal analysis of CDR data,
we also investigate the spatial and temporal correlation for understanding and extracting mobile
traffic patterns.

• We utilize machine learning’s unsupervised clustering algorithm for categorizing the mobile
traffic patterns in different groups/classes. Then using the clustering results, we train a neural
network for classification of network traffic.

• Lastly, we present a generic data-driven resource allocation approach for cellular networks.
The approach utilizes unsupervised clustering and a trained neural network to classify cells in a
cluster according to the respective activity level.

The rest of the paper is organized as follows: In Section 2, we present the related work. Section 3
presents the system model and description of the dataset. Section 4 introduces the reader to the
underlying dynamic nature and spatio-temporal characteristics of the CDR data at hand, which
then forms the basis for network activity classification and prediction using these spatio-temporal
characteristics. In Section 5, we describe the proposed clustering based classification model. A generic
data-driven resource allocation/management approach for cellular network is presented in Section 6.
Finally, we conclude our work in Section 7.

2. Related Work

Understanding of network traces produces numerous benefits for social network analysis [8,9]
as well as for cellular network analysis [10,11]. The network traces are divided into two categories
(i) traces obtained from the mobile devices (ii) traces obtained from the mobile operators. In the first
category, network information such as network performance, geographic information, service quality,
throughput, and latency are monitored automatically by the applications (APPs) running on the mobile
devices [12,13]. The limitation of this approach is that the network information/traces are obtained
only for a limited number of users who have the app installed on their devices. So the insights obtained
from such network traces are not applicable for monitoring the large-scale mobile network. On the
other hand, the traces obtained from network operator provide a bundle of information such as users
mobility, service quality, network performance etc for an entire cellular network [14,15]. The insights
obtained from these traces are very useful for monitoring the network as well as the behavior of the
users [16,17]. The dataset utilized in our work is for a densely populated area, and obtained from the
network operator.

During the last decade, the cellular network traces have been mainly analyzed for monitoring
human mobility pattern. Deville et al. [18] performed the spatiotemporal analysis of call details record
data for estimating the population density. Ficek et al. [19] performed a spatiotemporal analysis of
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CDRs for understanding user mobility. Some other works for understanding the individuals and
collective mobility are presented in [20–23].

From last few years, the network traces are largely exploited for understanding and modeling the
network dynamics. Lee et al. [24] described that Log normal distribution efficiently approximated
the network traffic density. Wang et al. [25] also performed the spatiotemporal analysis of cellular
traces and showed that the cellular traces follow trimodal distribution. In addition, Kashif et al. [26]
analyzed network traces for anomaly detection and traffic prediction for cellular networks.

Unlike the existing work, in this article, we focus on a spatiotemporal analysis of CDRs for
optimizing and categorizing network traffic. The categorization of network traces will be helpful in
efficiently monitoring and optimizing network traffic.

3. System Model and Dataset Description

In this section, we discuss the framework of the proposed system model and describe the
description of the observed dataset. In proposed architecture, the area of the city (Milan) is divided
into four subregions namely, high activity area, medium activity area, low activity area and very
low activity area. This division is based on the CDR activity level of the mobile phone’s subscribers.
The high activity area mainly consists of the city center where many shopping malls, buildings,
hospitals, and other busy centers are located. The areas in the surroundings of the city center are
considered to be located in the medium activity area. Similarly, the areas far away from the city center
are low activity and very low activity areas. Figure 1 represents the overall framework.

Figure 1. Overall architecture.

The overall system model presented in our work comprises of three stages: (i) data preparation
and analysis step, (ii) clustering analysis step and (iii) CDRs classification step. Figure 2 represents the
layered structure of the proposed model.

In the proposed model, firstly CDR data is collected and stored. The available data is
spatiotemporal, so spatial and temporal analysis are performed for observing the spatial and temporal
dependencies. Then, from clustering analysis, the CDR activities are categorized into different groups
according to spatiotemporal variation and the entire region is divided into four different sub-regions.
After the clustering analysis, an artificial neural network (ANN) is trained based on the clustering
results for classification of future network traffic (CDRs). The clustering analysis is performed prior
to the training of ANN for transforming the problem from unsupervised to a supervised multi-class
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classification problem. The proposed model is named as clustering based ANN (C-ANN) model.
The overall system model is represented in Figure 3.

Figure 2. Major Steps.

Figure 3. System model.

3.1. Description of Dataset

The dataset used for analysis is for Telecom Italia for the city of Milano and is made public in
2014 after the contest of Big data challenge [27]. This is spatiotemporal data because it contains both
spatial and temporal aspects of subscribers and networks. Temporally, two months data is divided
into days where each day data is further aggregated on 10 min interval. On the other hand, spatially
data is divided into grids. The whole city of Milan is divided into 100 × 100 grids whereas each grid
has an area of 0.05 square kilometers [27]. Figure 4 represents the layout of spatial grids distributed
over the city of Milan, Italy.

Figure 4. 100 × 100 grids distribution over Milan.

Table 1 represents samples of this dataset. The dataset consists of the following fields. (i) Cell ID,
which represents the location of cells(grids), (ii) Timestamp, shows the time of the CDR activity, (iii)
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Received/Sent SMS, it represents the number of SMS received and sent at each time step, and (IV)
Incoming/outgoing calls, shows the number of incoming and outgoing calls.

Table 1. Telecom Italia dataset fields.

Cell ID Timestamp Recevied SMS Activity Sent SMS Activity Incoming Calls Activity Outgoing Calls Activity

1 10 0.2724 0.1127 0.0035 0.0807
10 20 0.0101 0.0693 0.0573 0.0446

3.2. Data Preparation

The obtained dataset was in raw form, so the dataset has the different type of impurities and
irregularities. Such irregularities include missing values, unrecognized numbers, and misleading
patterns. So data must be prepared before performing the analytical step. Data preparation is helpful
in improving output quality and reducing processing overhead.

As the dataset is temporarily aggregated on 10 min time interval, but in dataset values at some
timestamps are missing. As the CDR activity is happening before and after missing value’s time
interval. So it is obvious that the CDR activity will be also happening at missing value’s time interval.
So for handling missing values in the dataset, missing values are replaced with the average values of
the previous and next timestamp values. The expression for finding the missing CDRs is shown in
Equation (1)

CDRmissing =
CDRt−1 + CDRt+1

2
(1)

With the help of expression presented in Equation (1), the proposed framework can work for
partially available information. For example, wherever required, we have taken an average of previous
and next value to get the current missing value.

4. Spatio-Temporal Approach

As after the data preprocessing, we summarize data in three columns. The first column has
information about grid ID (Grid ID represents the location of the activity in Milan city). The second
column contains the time of the particular activity and third activity level (we sum up the values of
received SMS, sent SMS out, incoming calls and outgoing calls and named it as activity level). We may
better understand dynamic nature of CDR data by analyzing it in both spatial and temporal context.
This static analysis signifies the relationship of CDR activity in both spatial and time domains. Based
on the spatio-temporal charecteristics, we develop a framework for mobile traffic classification.

4.1. Spatial Approach

In the spatial approach, we have fixed the temporal variation. CDRs activities at a specific time
period are observed over the entire city of Milan. For this purpose, the data of a specific day is taken.
After data preparation step, the data is further aggregated on the three-hour interval. Hence, we have
data at eight different time slots for an overall period of 24 h. In this way, CDR activity of the entire
Milan city is observed for a day.

The variation in CDR activities for a whole city of Milan at a specific time interval (12 pm to
3 pm) is shown in Figure 5. For ease of visualization, the Milan city divided into 100 × 100 grids is
downsample to 5 × 5 grid size. Figure 5 shows spatial variation of CDR activities with both 100 × 100
and 5 × 5 grid size. We can clearly detect the variation in CDR activities from 5 × 5 grid size in
Figure 5. It is obvious that the CDR activities are high at the center of the city and as we move away
from the center the CDR activity reduces. Similarly, the variation in CDR activities for a whole day
is represented in Figure 6 with grid size of 5 × 5. It is clear from Figure 6 that the variation in CDR
activities follows the same pattern for the whole day.



Information 2019, 10, 192 6 of 17

Figure 5. Spatial variaton of CDR activity over Milan at a specific time instant.

Figure 6. Spatial Variation of CDR activities over the City of Milan for one day’s Time intervals.

Spatial Correlation

It is observed that the CDRs activities are not distributed uniformly over the city of Milan because
of different dynamics of Milan sub-regions such as commercial, residential, rural etc. A popular and
widely adapted parameter, Pearson correlation coefficient r is used for measuring the variation in
spatial correlation [28]. The variation in spatial correlation among the targeted grids, for example,
the grids in the center of the city, and grids in the surrounding of the targeted grids is calculated
with Pearson correlation coefficient. Equation (2) represents the mathematical expression of Pearson
correlation coefficient.

r =
cov(gi,j, gi′ ,j′ )

σi,jσi′ ,j′
(2)

where σ is the standard deviation, cov represents the covariance, gi,j is the target grid and gi′ ,j′

represents the grid in the vicinity of the target grid. Figure 7 represents the variation in spatial
correlation for the entire city of Milan. As we already downsampled the 100 × 100 grids of Milan
into grid size of 5 × 5. So in 5 × 5 grid size, one cell represents 400 grids. In Figure 7, the centre cell
(3,3) represents grids number 4801 to 5200 and the first cell (1,1) in Figure 7 shows the grids from 1
to 400. Hence, the center cell (3,3) is considered as the target cell for Pearson correlation calculation.
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It is observed that the spatial correlation is high between the targeted cell and the cells near to target
cell and spatial correlation is low between the target cell and the cells far away from the target cells.
Hence, the spatial correlation is dependent on the distances between cells. On the other hand, another
interesting fact is observed from Figure 7, as the cell (2,3) and (4,3) are at the same distance from the
target cell (3,3) but spatial correlation differs a lot. This phenomenon shows that spatial correlation is
also location dependent.

Figure 7. Spatial correlation.

Hence, from the spatial analysis of CDR activities, the spatial feature can be extracted. The CDR
activities of entire Milan region are divided into different domains such as CDR activities from a
high-interest area, medium interest area, and low-interest area.

4.2. Temporal Approach

In the temporal approach, we have fixed the spatial variation and observed the CDR activities for
a day, a week and a month. To fix the spatial variation, we observed CDR activities for a specific grid.
The simulations results for temporal analysis show that CDR activities are very high in the evening and
very low at midnight. The time-series curves for CDR activity are shown in Figures 8 and 9. In Figure 8
the temporal variation of CDR activities aggregated on ten minutes interval over a period of one day
is shown, whereas the varaition in CDR activities aggregated on one hour interval over a period of
one week is shown in Figure 9. We have sum up the values of incoming calls and outgoing calls to
quantify the activity level, as represented in Equation (3):

ActivityLevel = SMSin + SMSout + Callin + Callout (3)

Figure 8. Variation of CDR activity over Milan for 24 hours.

It is shown in Figure 8 that CDR activity is increasing from midnight to morning, then decreasing
from noon to afternoon and increasing from evening to mid-night. Similar pattern of CDR activities
are observed for a day, a week and a month. The CDR activity over a week period is represented in
Figure 9.
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Figure 9. Variation of CDR activity over a week period.

Temporal Correlation

Temporal correlation is observed for measuring the temporal dependencies in the CDRs.
Autocorrelation function (ACF) is widely used for measuring temporal variation of time series
data [29]. For observing the temporal dependencies in time series, ACF calculates the correlation of
time series with the previous observations of the same time series called lags (this is also termed as
serial correlation). Equation (4) shows the mathematical representation of temporal correlation.

ρτ =
∑T

t=τ+1(yt − ŷ)(yt−τ − ŷ)

∑T
t=τ+1(yt − ŷ)2

(4)

where T is the total number of time steps in the time series and ŷ is the average value of time series
data. Figure 10 represents the autocorrelation function for 168 lags. 168 lags represent the temporal
dependencies of CDRs for a week period with a step size of one hour. From Figure 10, it is observed
that there is exist an hourly pattern in CDRs because autocorrelation function plot have peaks after
every 24 lags.

Figure 10. Temporal correlation over a week period.

So, from the temporal analysis, the temporal feature of CDR activities can be extracted. Temporally,
CDR activities can be divided into different domains such as CDR activities during off-peak hours,
on-peak hours and normal peak hours.
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5. Clustering Driven ANN Model (C-ANN)

After the spatiotemporal analysis of preprocessed data, the later step is to classify CDRs according
to their activity levels and spatiotemporal characteristics. For CDR activity classification, firstly,
clustering analysis is applied for observing the density of clusters. After that artificial neural network
is trained based on the clustering results. The overall classification framework is shown in the Figure 11.

Figure 11. Activity classification with a clustering driven ANN model.

5.1. Clustering Analysis

5.1.1. Gaussian Mixture Models (GMM) Clustering

Machine learning’s clustering algorithm is adopted for grouping the CDR activities according
to their activity level and spatiotemporal characteristics. To identify patterns of variations in CDR
activities over the whole city of Milan, CDR activities of entire region are passed through clustering
scheme. We applied GMM based clustering scheme on our dataset. One motivation for using GMM is
the use of a probabilistic approach for cluster assignment in GMM, which is otherwise not found in
k-means clustering and thus, k-means fails to perform well in certain scenarios. In GMM, the cluster is
formed on the basis of the probability of each point belonging to an associated cluster. GMM is loosely
considered as an extension of k-means with enhanced accuracy. The GMM clustering algorithm is
summarized in Algorithm 1.

Algorithm 1: GMM algorithm
Initialisation:

µk : mean of the distribution
Σk : covariance matrix
πk : mixing coefficients

1 Compute the latent variable γk
2 Again calculate and update the values of the parametres (µk,Σk,πk) using the current value of

γk
3 Compute log-likelihood function.
4 Put some convergence criterion
5 if log likelihood value← converged then
6 stop;
7 else
8 return to Step 2;
9 end
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GMM based clustering analysis on activity data results in four different clusters categorized in
different activity-types, as very high activity, high activity, medium activity, and very low activity
cluster. Figure 12 represents the GMM based clustering approach at a specific time instant, different
clusters are shown with different colors. From Figure 12, it is observed that the cluster form in the
center of the region, consists of very high CDR activities. So we named it as very high activity cluster.
Similarly, the cluster form near the center of the region also consists of high CDR activities but lower
than the central cluster activities. On the other hand clusters further away from central region consists
of low CDR activities. Hence, based on the results of clustering analysis, the entire is divided into
different sub-regions/groups. For understanding the spatiotemporal as well as the dynamic nature
of the source (mobile users), the clustering results at different time instants of a day are shown in
Figure 13.

Figure 12. GMM Clustering.

Figure 13. GMM Clustering at different time instants of a day.

5.1.2. The Criterion for Number of Clusters

Typically, a higher number of clusters leads to over-fitting in the model. To avoid the over-fitting
in the clustering model some analytical approaches such as Bayesian information criterion (BIC) and
Akaike information criterion (AIC) are adapted. We have plotted BIC and AIC for GMM model.
The minimum values of BIC and AIC determine the optimum number of clusters for the model.
The BIC and AIC curves for our dataset are shown in Figure 14. From Figure 14, it is observed that
using three or four clusters (k = 3, 4) provides an optimal choice for our data.
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Figure 14. AIC/BIC for curves for number of clusters.

5.2. C-ANN—Traffic Classification

The proposed clustering based artificial neural network model (C-ANN) is applied for observing
the future CDR activity class. With C-ANN, the CDRs activity classification is converted from
unsupervised to supervised multi-class classification problem. From the categorical distribution
of CDR activities obtained from clustering analysis, targets for C-ANN model are set. C-ANN model
classifies CDR activities according to activity levels and spatiotemporal characteristics. The inputs
of the C-ANN model are CDR activity level and spatial feature. A spatial feature is obtained from
the spatial analysis described in the prior section. The outputs of C-ANN model are multiple classes
named C0, C1, C2, and C3 (where C0 represents very high activity cluster/class, similarly C1, C2, C3
represents the cluster/class with medium, low and very low activity).

The CDRs of five days is used for training and testing of C-ANN model. Previously, data (CDRs)
is temporally aggregated on one hour time interval, for ease of processing and reducing data overhead.
CDR data is also temporally aggregated for three hours time interval for the whole city of Milan.
For training of C-ANN, we have used the CDR data temporally aggregated on three hours interval.
In this way, there are total eight-time slots for one day. As Milan city is spatially divided into 10,000
grids, so there are 80,000 samples for one day and for five days activities, there is a total of 0.4 million
samples. From these samples, 80% samples are used for training and 20% samples for testing of the
C-ANN model. Though, it is the simplest approach but outperforms for CDRs activity classification.

Performance Evaluation

In our C-ANN model for activity classification, loss and accuracy are adopted as performance
metrics. As in the proposed model, our aim is multi-class classification, so categorical cross entropy is
used as a loss function. Simulation results show that training losses and testing losses are decreasing
as the number of epochs is increasing. It is shown in Figure 15 that the training loss is decreasing
rapidly in the first three epochs and after that reach to a stable state. The testing loss also follows the
training loss. This phenomenon shows that the model is fast converging and time efficient. Similarly,
training and testing accuracies are increasing as the number of epochs is increasing and reach a stable
state after some epochs. Figures 15 and 16 represent training and testing losses and accuracies curves
for C-ANN model of activity classification.
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Figure 15. Training and testing losses of C-ANN Model.

Figure 16. Training and testing accuracy of C-ANN Model.

Further, C-ANN based classification model can be used in many real-world network scenarios
such as spectrum distribution or small cells deployment. For example, the proposed model can be
used to identify low and high activity regions. Thus, additional small cells and spectrum can then be
allocated to the high activity region. In this way, QoS would be improved and energy consumption
would be reduced. For such case, the accuracy of the model is very important, if the proposed
model is not able to identify the region accurately then the quality of service will greatly be affected.
In next-generation networks, there will be ultra densification of small cells and billions of mobile
devices/user equipment, so such type of model is heavily needed for efficient deployment of small
cells and improvement in QoS.

6. Insights into CDRs Driven Traffic Optimization Approach

It is observed, from the spatiotemporal analysis performed in Section IV, that network traces
have time-varying as well as space varying characteristics. These spatiotemporal characteristics are
beneficial for deploying as well as optimizing the cellular network.

In conventional scenarios, resources deployment were not optimized due to lack of advancements
in data analytics tool. With the useful insights obtained from the spatiotemporal analysis of network
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traces, cellular network operators are able to make intelligent decisions which aid in network
optimization. The extracted information is also helpful in understanding and predicting future
trends of the network traces [30].

The knowledge extracted from spatiotemporal analysis help in predicting the resource
requirements at different geographical locations at a specific time perioid. In addition, the mobility
pattern of the user is also predcited. For example, in events with big gatherings (say, a soccer world
cup match), huge crowd is typically attracted to the venue, which results in network congestion at
the particular location for a specific period of time. Hence, with this predicted insights obtained from
spatiotemporal analytics, network operators deploy extra resources at the region of interest, which
help in avoiding network congestion.

It is a well understood phenomena that resource allocation (such as energy, bandwidth) can be
optimized if it is made adaptive based on the specific needs in a geographic location or at a specific
time. Similar tasks on optimization can be found in other works where the data analytics is the key
behind the optimization. For example, in [31], the authors adopt big data analysis methods to divide
densely deployed base stations into groups. Then, each group of base stations are managed with
networking mechanisms independently. In this way, the complexity of the networking mechanisms is
reduced. Similarly, in [32], it is well described that machine learning based analysis sets a wonderful
platform for capacity optimization and topology management in networks. Further motivation can be
drawn on the dynamic bandwidth allocation scheme as presented in [33]. In particular, the authors
in [33] identify that the user and network related information carried in the network data, were seldom
employed to improve a network’s performance. Similarly, the importance of useful insights obtained
from data analysis is elaborated for different scenarios in studies undertaken in [34,35].

As we have also observed from the temporal analysis of network traces, that the user follows a
specific temporal pattern for a day and week. So the resources can be distributed according to peak
hours and off-peak hours. In this way, a large number of network resources can be saved from wasting
otherwise, due to low activity.

From the useful insights of spatiotemporal analysis of network traces (CDRs) and traffic
classification framework, we have proposed an approach for optimizing network resources. In the
proposed approach, cluster set G is divided into k clusters, each cluster is then allocated network
resources according to CDR activity level. When cells in the cluster set are assigned to different clusters
(according to the respective CDR activity level), a new grid set of optimized cells Ct will arise. As in
our proposed approach optimize a network grid after every h hours (3 h in our case) through an offline
process that collects CDR data and calculates the spatial and temporal feature sets F of CDR activity
data for last h hours. Hence, resources are allocated to grids according to their cluster membership.
The proposed approach is summarized in in Algorithm 2.
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Algorithm 2: CDR activity class prediction based optimum resource allocation
Input:

F: Feature set, (Spatial feature, Temporal feature)
G: Grid set (G = (

{
gi j

}i=100,j=100
i=1,j=1 Where gi j represents a single grid element in 100× 100

Milan grid),
ACDR:Activity data of network cells belongs to grid element gi j,

k: No. of clusters
Ck=1−N : Cluster categories according to activity data
Output:

Ct: List of optimized resouce allocations for the
cells in the grid

1 Network Resource Allocation (F, ACDR, G )
2 while cells from Grid set G not in k clusters do
3 Cp = Predict cluster memberships for cells in Grid set G
4 Allocate Network resources to each cell in G according to cluster membership and assign it

to Optimized Set Ct
5 end
6 return Ct

Figure 17 further demonstrates the utilization of overall framework. Figure 17 shows that first of
all CDRs are collected. As the obtained CDRs contain a large amount of data, so data preprocessing is
performed prior to analyzing these records. After CDR preprocessing step, the data is in ready-to-use
format and is sent to analysis phase. From CDR analysis step, the spatial and temporal insights within
the data are extracted. After spatiotemporal analysis, the CDRs are sent to traffic optimization phase
where the records are classified according to the activity level and spatiotemporal characteristics.

Figure 17. Demonstration of CDRs driven framework.

In the proposed optimization framework, CDR collection and traffic optimization are online
processes that directly interact with the network infrastructure continuously. While CDR preprocessing
and analysis are offline processes that start a certain time period (a parameter decided based on density
and activity levels in the cluster), apply proposed technique on CDR data from the inactivity period,
predict network activity for the next quantum and suggest fresh network parameters to the traffic
optimizer. Thus, the proposed method uses unsupervised machine learning to extract spatiotemporal
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features to prepare training data set for the supervised learning algorithm that actually tags the activity
levels based on spatial and temporal features.

7. Conclusions and Future Direction

This article elaborates the potential benefits of CDR data analytics in mobile networks. Our work
provides an effective spatiotemporal analysis approach to understand and monitor the mobile traffic
patterns of large scale city. Experimental results show that the useful insights extracted from CDR data
would be very helpful in optimizing mobile network resources. These findings help to understand
the spatial and temporal dynamics of the traffic pattern in a comprehensive way. The framework for
optimizing network traffic is built on the basis of insights obtained from CDR data analytics. Thus, we
believe our classification framework for mobile traffic partitioning is enhanced network performance
and QoS requirements.

The useful insights obtained from spatiotemporal analytics of CDRs are helpful in subscribers’
behavior profiling, resources consumption profiling, and mobility profiling. These useful insights will
perform a key role in policy making and the provision of services for the implementation of smart
cities and urban computing.
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