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Abstract: In this paper, we propose a latent feature group learning (LFGL) algorithm to discover the
feature grouping structures and subspace clusters for high-dimensional data. The feature grouping
structures, which are learned in an analytical way, can enhance the accuracy and efficiency of
high-dimensional data clustering. In LFGL algorithm, the Darwinian evolutionary process is used
to explore the optimal feature grouping structures, which are coded as chromosomes in the genetic
algorithm. The feature grouping weighting k-means algorithm is used as the fitness function to
evaluate the chromosomes or feature grouping structures in each generation of evolution. To better
handle the diverse densities of clusters in high-dimensional data, the original feature grouping
weighting k-means is revised with the mass-based dissimilarity measure rather than the Euclidean
distance measure and the feature weights are optimized as a nonnegative matrix factorization
problem under the orthogonal constraint of feature weight matrix. The genetic operations of mutation
and crossover are used to generate the new chromosomes for next generation. In comparison
with the well-known clustering algorithms, LFGL algorithm produced encouraging experimental
results on real world datasets, which demonstrated the better performance of LFGL when clustering
high-dimensional data.

Keywords: subspace clustering; feature grouping; genetic algorithm; high-dimensional data analysis;
evolutionary computing

1. Introduction

High-dimensional data analysis is a challenging task in the domains of machine learning and
artificial intelligence. Thousands of features in high-dimensional data cause a high complexity
when using the existing tools for low-dimensional data to cluster high-dimensional data [1].
High-dimensional data often contain many redundant, irrelevant and noise features, which affect
the clustering results. In the past decades, many subspace clustering algorithms have been proposed
to handle high-dimensional data, aiming at finding clusters from subspaces of data rather than the
entire data space [2]. Among the various subspace clustering methods, soft subspace clustering is an
important technique. It assigns the weights to individual features and uses the weights to identify
important features where the subspace structures of clusters can be discovered [3,4].

The individual feature weighting method suffers from the high-dimensionality of data with
hundreds of thousands of features. The first problem is that the feature weights produced by the
individual feature weighting method are unstable. For example, experimental results reveal that the
individual feature weights can converge to similar values in low-dimensional data [5]. However,
with the increase of data dimensionality, the feature weights calculated with different initial values
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become unstable and no longer converge [6]. The second problem is that many weak features exist in
high-dimensional data so it is hard to recover the subspace cluster structure from the data. The third
problem is that the clusters are often buried in many noise features.

To tackle the above-mentioned problems, the feature grouping weighting k-means algorithm
named FG-k-means [7] is proposed for high-dimensional data. In FG-k-means, the features are divided
into a small set of feature groups, where each being treated as a group feature in the low dimensional
space of feature groups. High-dimensional data that are clustered on the group features and the clusters
in different subspaces of group features are discovered by assigning the weights to group features [6].
Because the group features generalize the information of individual features in high-dimensional data,
the FG-k-means algorithm performs better than the clustering algorithms, which cluster the data on
the individual features. One limitation of FG-k-means is that the feature groups have to be known
in advance. However, very few high-dimensional datasets in the real world have the feature groups
available. This requirement limits the practical use of FG-k-means algorithm.

In this paper, we propose a latent feature group learning (LFGL) algorithm to automatically
learn the latent feature groups in the process of subspace clustering for high-dimensional data.
This algorithm consists of two levels of optimizations. The outer level of optimization uses the
Darwinian evolutionary process to learn the optimal structure of feature groups. In this process, the
feature group structures are coded as the chromosomes in genetic algorithm and the best chromosome
is selected through evolutions of generations. The inner level of optimization is used in each generation
to evaluate the chromosomes and select the stronger ones for genetic operations to generate the new
chromosomes in the next generation of the Darwinian evolution process. The FG-k-means algorithm is
used in the inner level of optimization as the fitness function for chromosome selection. To effectively
deal with complex high-dimensional data, two revisions are made in the FG-k-means algorithm.
The mass-based dissimilarity measure is used to replace the Euclidean distance in calculating the
dissimilarity between objects so the different densities of clusters can be better handled. The feature
grouping and group weights are optimized with a convex penalty relaxation method by using the
orthogonal constraint to ensure the orthogonality among the feature groups. The relaxation problem
is solved with the process of nonnegative matrix factorization. At the outer level of optimization,
mutation and crossover operations are used to manipulate chromosomes for the next generation.
We conducted experiments on six gene datasets and one text dataset. We compared the results of LFGL
algorithm with five existing algorithms. Encouraging experimental results were obtained by LFGL
algorithm, which demonstrated the better performance of proposed LFGL algorithm.

The remainder of this paper is organized as follows. In Section 2, we review some related work.
In Section 3, we present the latent feature grouping model for projection of high-dimensional data
to a low-dimensional space. Section 4 presents the LFGL algorithm. The experimental results are
presented and discussed in Section 5. The conclusions are drawn in Section 6.

2. Related Work

In the past decade, the soft subspace clustering has been an important research topic in cluster
analysis [4–21]. The representative works are summarized as follows.

• Huang et al. [5] proposed W-k-means clustering algorithm which can automatically compute
the feature weights in k-means clustering process. W-k-means extends the standard k-means
algorithm with one additional step to compute the feature weights at each iteration of clustering
process. The feature weight is inversely proportional to the sum of within-cluster variances of
feature. As such, noise features can be identified and their effects on the clustering result are
significantly reduced. Amorim et al. [22] extended W-k-means algorithm with Minkowski’s metric
and assigned the Minkowski’s exponent that coincides with the exponent to feature weights.

• Hoff [17] proposed a multivariate Dirichlet process mixture model, which is based on a Pólya urn
cluster model for the multivariate means and variances. The model is learned by a Markov chain
Monte Carlo process. However, its computational cost is prohibitive. Fan et al. [23] proposed
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a variational inference framework for unsupervised non-Gaussian feature selection, in the context
of the finite generalized Dirichlet (GD) mixture-based clustering. Under the proposed principled
variational framework, it simultaneously estimates all the involved parameters and determines
the complexity (i.e., both model and feature selection) of GD mixture.

• Domeniconi et al. [16] proposed the locally adaptive clustering (LAC) algorithm, which assigns
a weight for each feature in the cluster. They used an iterative algorithm to minimize the objective
function. Cheng et al. [21] proposed another weighting k-means approach very similar to LAC, but
allowing for incorporation of further constraints. Jing et al. [4] proposed the entropy weighting
K-means (EWKM) algorithm, which also assigns a weight to each feature in each cluster. Different
from LAC, EWKM extends the standard k-means algorithm with one additional step to compute
the feature weights for each cluster at each iteration. The weight is inversely proportional to the
sum of within-cluster variances of feature in the cluster.

• Tsai and Chiu [19] developed a feature weights self-adjustment mechanism for k-means clustering
on the relational datasets, in which the feature weights are automatically computed by minimizing
the within-cluster discrepancy and maximizing the between-cluster discrepancy simultaneously.
Deng et al. [20] proposed an enhanced soft subspace clustering algorithm (ESSC) which
employs both within-cluster and between-cluster information in the subspace clustering process.
Xia et al. [24] proposed a multi-objective-evolutionary-approach-based soft subspace clustering
(MOEASSC) algorithm which optimizes two minimization objective functions simultaneously by
using a multi-objective evolutionary approach. They also proposed a two-step method to reduce
the difficulty in identifying the subspace of each cluster, the cluster memberships of objects and
the number of clusters.

• Chen et al. [7] proposed a two-level weighting method named FG-k-means for multi-view data in
which two types of weights are employed: a view weight is assigned to each view to identify the
view compactness and a feature weight is also assigned to each feature in a view to identify the
feature contribution. Cai et al. [25] used FG-k-means for text clustering. They first used the topic
model LDA to partition the words into several groups and then used FG-k-means to cluster the
text data. The experimental results show that the word grouping method improves the clustering
performance on text data. Gan et al. [26] extended FG-k-means to generate the feature groups
automatically by clustering the features weights. The objective function of clustering feature
weights is added as a penalty term to the objective function of FG-k-means. This indicates that
there is a much higher chance to construct all informative abstract features than all informative
individual features.

3. Latent Feature Group Projection in Subspace Clustering

Although many features are used to describe data in the high-dimensional space, few of them are
needed to distinguish a specific cluster from others. Thus, the subspace clustering algorithms [4,5,16,24]
obtain better performance than that of general k-means algorithm. As the number of dimension
increases, the strategy of searching subspace of decisive features in the entire space often leads to the
suboptimal results because of the existence of many noise features [6]. Meanwhile, it deteriorates the
performance of subspace clustering.

To solve the above-mentioned problem, we project the high-dimensional objects into the
low-dimensional latent feature group space. The features in the high-dimensional spaces are not
fully independent. Rather, they gather together into nearly mutually exclusive groups. However, the
feature groups are unknown in most real world datasets and they are latent in high-dimensional data.
To make the projection possible, we need to design an effective learning process that can automatically
find the latent feature groups and cluster the objects in the subspace of feature groups. We use two
steps to solve this problem. The first step is to build a latent feature grouping model that enables to
express the feature partition. The second step is to embed the latent feature grouping model into the
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objective function of subspace clustering process, so that grouping features and clustering data can be
performed simultaneously.

Figure 1 illustrates the latent feature grouping model. The left column shows the features in
a dataset Xi,j ∈ Rn×m. The feature set A = {x1, x2, · · · , xm} are mapped into t groups {g1, g2, · · · , gt}
in the middle column. We can see that each feature is mapped to only one group, which ensures the
exclusiveness of features in different groups. The mapping can be defined in a partition matrix V0

in which the row indicates the feature groups and the column indicates the features. If a feature i is
mapped to the feature group j, the element (i, j) is assigned to 1. Otherwise, it is assigned to 0. Because
of the exclusiveness, each column in V0 has only one element with value 1. The rest are 0s. When
a feature i is mapped to the feature group j, we also assign a weight to the feature to indicate the
feature importance in the group. The feature weights are represented in the weight matrix Vl , where l
is a cluster. We let Vl = V0 ◦ Vl . The feature groups are also weighted with W ∈ Rt

+ to result in the
weighted group values {g(x)1, g(x)2, · · · , g(x)t} shown in the right column. The weights of feature
groups identify the importance of the feature groups in determining each cluster. Formally, we can
write the latent feature grouping model as

g(x) = Wl(V0 ◦Vl)xT . (1)

Figure 1. Latent feature grouping model.

Below, we use a simple example to illustrate Equation (1). The matrix

Wl =

 0.1 0 0
0 0.2 0
0 0 0.7

 (2)

provides the weights of feature groups in cluster l with the normalized constraint ∑ wl = 1. A partition
of six features into three groups is specified in the partition matrix V0 as

V0 =


A1 A2 A3 A4 A5 A6

G1 1 1 0 0 0 0
G2 0 0 0 1 0 1
G3 0 0 1 0 1 0

, (3)
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where the rows of V0 represent the feature groups and the element 1 in each column indicates the
feature group to which the feature is assigned. The features in each group are also weighted on the
importance of each feature in the feature group of each cluster. The weighting scheme for cluster l is
represented as the following weight matrix

Vl =


A1 A2 A3 A4 A5 A6

G1 0.89 0.46 0 0 0 0
G2 0 0 0 0.60 0 0.80
G3 0 0 0.35 0 0.94 0

. (4)

The none zero elements in Vl are the same as those in V0. Vls are initialized and optimized on the
constraint of VlVT

l = I, thus we have

6

∑
j=1

v2
i,j = 1, for 1 ≤ i ≤ 3. (5)

Since Vl = V0 ◦Vl , the feature group structure V0 and the individual feature weights Vl in each
cluster can be optimized separately. In the current feature grouping weighting algorithms such as
FG-k-means, V0 is supposed to be known in advance and Vls are optimized in the clustering process.
However, V0 is usually unknown. Therefore, the current algorithms are not able to learn the feature
grouping structure automatically. With the latent feature grouping model in Equation (1), we are able
to learn V0 in the latent feature group learning algorithm described in the next section.

4. Latent Feature Group Learning Algorithm

In this section, we introduce the latent feature group learning (LFGL) algorithm which can search
the optimal latent feature groups and computes the group weights and individual feature weights
for each cluster. This is automatically achieved in two levels of optimization. The outer level uses the
Darwinian evolution process to select the optimal feature grouping structure V0. The inner level uses
the revised FG-k-means algorithm to evaluate each feature grouping structure. In the following, we
first present the revised FG-k-means. Then, we present the Darwinian evolution process for selecting
the optimal feature grouping structure.

4.1. Revised FG-k-Means

In LFGL algorithm, each given feature grouping structure V0 is evaluated by the revised
FG-k-means on input dataset. The objective function of revised FG-k-means is defined as

P(U, Z, V, W) =
k

∑
l=1

[
n

∑
i=1

T

∑
t=1

∑
j∈Gt

hi,lwl,tvl,jd(xi,j, zl,j) + λ
T

∑
t=1

wl,t log(wl,t)] (6)

subject to 

k
∑

l=1
hi,l = 1, i = 1, 2, · · · , n

k
∑

l=1
wl = 1

VlVT
l = I

, (7)

where X = {xi | xi ∈ Rm}n
i=1 is the set of n objects with m features, H = {hi,l | hi,l ∈ {0, 1}} is the set

of membership indicators of n objects in k clusters, Z = {zl | zl ∈ Rm}k
l=1 is the set of k cluster centers,

and Vl is specified based on V0, i.e., Vl = V0 ◦Vl .
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There are two revisions made on the original FG-k-means [7]. The mass-based dissimilarity is
used to replace the Euclidean distance and the orthogonal constraint is set on the matrices of individual
feature weights Vl . Below, we discuss the techniques to solve the aforementioned optimization problem.

4.2. The Mass-Based Dissimilarity

Due to the dimensionality curse in the high-dimensional space, the Euclidean distances between
objects tend to be similar. To overcome this problem, we choose to use the mass-based dissimilarity
studied in [27]. This dissimilarity measures the mass dissimilarity depending on data distribution, i.e.,
the probability mass of the smallest region covering the two objects. It provides a more effective match
than the distance measures in the nearest neighbor search for k-nn classifiers and information retrieval.
It is named mp-dissimilarity and defined in the same form as lp-norm, except that the dissimilarity in
dimension i is the probability mass in a region P(Ri(x; y)) rather than the distance ‖xi − yi‖.

Let D be the data domain with the probability density F. The mass-based dissimilarity of objects x
and y in D is defined as P(R(x, y|H; D)), where H ∈ H(D) is a hierarchical model to partition the data
space into non-overlapping and non-empty regions. The smallest local region R(x, y|H; D) covering x
and y with regard to H and D is defined as

R(x, y|H; D) = arg min
{x,y}∈r

∑
l∈D

1(l ∈ r), (8)

where 1(·) is an indicator function.
The mass-based dissimilarity measure of x and y with regard to H and D is defined as the

probability of R(x, y|H; D), i.e.,

d(x, y) = EH(D)[PFR(x, y|H; D)], (9)

where PF(i) is the probability with regard to F and the expectation is taken over all models inH(D).
In practice, the mass-based dissimilarity is estimated from a finite number of models Hi ∈ H(D),
i = 1, 2, · · · , t as

d(x, y) =
1
t

t

∑
i=1

P̃(R(x, y|Hi; D)), (10)

where P̃(R) = 1
|D| ∑z∈D 1(z) ∈ R. Note that d(x, y) is the smallest local region covering x and y and it

is analogous to the shortest distance between x and y used in the geometric model.

4.3. Optimization of Equation (6)

We minimize the objective function in Equation (6) by iteratively solving the following four
minimization problems:

1. Problem P1: Fix Z = Ẑ, V = V̂ and W = Ŵ, and solve the reduced problem P(U). Problem P1 is
solved by {

ui,l = 1, if Dl ≤ Ds for 1 ≤ s ≤ k
ui,s = 0, otherwise

, (11)

where Ds = ∑T
t=1 ws,t ∑j∈Gt vs,jd(xi,j, zs,j).

2. Problem P2: Fix U = Û, V = V̂ and W = Ŵ, and solve the reduced problem P(Z). Problem P2 is
solved by updating the centers of the clusters by Algorithm 1.
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Algorithm 1 Cluster center updating.

Input: U,W,V.
Output: The updating cluster centers Z.

1: Generate a similarity matrix S ∈ Rn∗n, where si,j = sj,i = ui,jd(xi, xj);
2: Generate a distance sum matrix Ssum ∈ R1∗n, where si = ∑n

j=1 sj,i;
3: Generate a density matrix D ∈ R1∗n, find the smallest value in every column m of D ∗U and

consider the corresponding object as the center of cluster m for m = 1, 2, · · · , k.
4: return Z;

3. Problem P3: Fix U = Û, Z = Ẑ, and V = V̂, and solve the reduced problem P(W). Problem P3 is
solved by the following Theorem 1.

Theorem 1. Let U = Û, Z = Ẑ, and V = V̂ be fixed and λ > 0, P(W) is minimized iff

wl,t = exp
−El,j

λ
/ ∑

j∈Gt

exp
−El,j

λ
, (12)

where

Dl,t =
n

∑
i=1

ûi,l v̂l,jd(xi,j, ẑl,j). (13)

Proof. Given U = Û, Z = Ẑ and V = V̂, we minimize the objective function with respect to W. Since
there exists a set of k× T constraints ∑T

t=1 wl,t = 1, we form the Lagrangian by isolating the terms
which contain {wl,1, wl,2, · · · , wl,t} and adding the appropriate Lagrangian multipliers as

L{wl,1,wl,2,··· ,wl,T} =
T

∑
t=1

[wl,tDl,t + λ
T

∑
t=1

∑
j∈Gt

wl,t log wl,tvl,j log vl,j + γl,t( ∑
j∈Gt

wl,t − 1)], (14)

where Dl,t is a constant in the tth feature group on the lth cluster for fixed U = Û, Z = Ẑ and V = V̂.
By setting the gradient of L{wl,1,wl,2,··· ,wl,T} with respect to γ and wl,t to zero, we obtain

∂L{wl,1,wl,2,··· ,wl,T}
∂γ

=
T

∑
t=1

wl,t − 1 = 0 (15)

and
∂L{wl,1,wl,2,··· ,wl,T}

∂wl,t
= Dl,t + λ ∑

j∈Gt

vl,j log vl,j(1 + log wl,t) + γ = 0, (16)

where t is the index of feature group to which the jth feature is assigned. Then, we obtain

wl,t = exp
−Dl,t

λ
/

T

∑
t=1

exp
−Dl,t

λ
. (17)

4. Problem P4: Fix U = Û, Z = Ẑ, and W = Ŵ, and solve the reduced problem P(V). Problem P4 is
solved as follows. Because of the additivity of objective function in Equation (6), the matrix W
can be divided into k subproblems for k clusters, respectively. Let

Ql = diag(wl)
Tdiag (wl) (18)
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and
qi,l = hi,l (xi − zl) , (19)

then the lth subproblem of original problem can be written as

min
V∈Rt×m

+

n

∑
i=1

qT
i,lV

T
l QlVlqi,l

s.t. VlVT
l = I

. (20)

The subproblem in Equation (20) has the nonnegative and orthogonal constraints on matrix
Vl , which makes the problem NP-hard to solve directly. The methods used here are analogous to
that of nonnegative matrix factorization (NMF). We replace the orthogonal constraint with a F-norm
measurement of orthogonality as the relaxation, i.e.,

min
V∈Rt×m

+

n

∑
i=1

qT
i,lV

TQlVqi,l +
η

2
(VVT − I)2

F, (21)

where η ≥ 0 is a parameter to control the orthogonality of V explicitly. The Lagrangian of
Equation (21) is

L(V, Λ) =
n

∑
i=1

qT
i,lV

TQlVqi,l +
η

2
(VVT − I)2

F − tr(ΛVT), (22)

where Λ is the Lagrange multiplier for constraint V ∈ Rt×m
+ . By ∇V L = 0, we have

2QVSST + 2η(VVT − I)V −Λ = 0, (23)

where S = [q1,l , q2,l , . . . , qn,l ] ∈ Rm×n. According to the KKT complementary condition on [V]i,j ≥ 0,
by making a Hadamard product with V on both sides of Equation (23), we obtain

(QVSST + η(VVT − I)V) ◦V = 0. (24)

The multiplicative updating rule for Vl is derived as

Vi,j ← Vi,j
[QV(SST)− + ηV]i,j

[QV(SST)+ + ηVVTV]i,j
, (25)

where η is a parameter to control the orthogonality among different rows of V, and ()+ and ()− are
the operators to get the positive and negative parts of the input matrix, respectively, i.e.,

[(A)+]i,j =

{
[A]i,j if [A]i,j > 0

0 otherwise
(26)

and

[(A)−]i,j =

{
|[A]i,j]| if [A]i,j < 0

0 otherwise
. (27)

In the next section, we introduce the method to optimize the latent feature grouping structure V0.

4.4. Evolutionary Method to Select the Best Feature Grouping Structure V0

The Darwinian evolutionary process [28] is used to search the best feature grouping structure V0.
In this process, the feature grouping structures V0 are encoded as the chromosomes and the revised
FG-k-means is used as the fitness function to evaluate the chromosomes. The best V0 is selected through
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the evolutions of generations. To our knowledge, this is the first attempt to use the evolutionary process
to search the best feature grouping structure from high-dimensional data.

We first present a classical evolutionary method where the population looks for the best grouping
from the feature set. Each individual chromosome encodes a feature grouping structure V0. The
chromosome Ai,g of the ith individual in the gth generation is defined as

Ai,g = (Vi,g
1 , · · · , Vi,g

k , · · · , Vi,g
m ), (28)

where Ai,g is a binary sequence with length t, Vi,g
k is the kth column of matrix V0 and m is the number

of features in the dataset. For example, the matrix V0 in Equation (3) is encoded as

Ai,g = {(1, 0, 0), (1, 0, 0), (0, 0, 1), (0, 1, 0), (0, 0, 1), (0, 1, 0)}. (29)

We can see that each binary sequence Vi,g
k has only one element as 1 and the rest as 0. This

is a constraint on the structure of chromosomes. To start the evolutionary process, there are 20
chromosomes that are generated randomly as the first generation of individuals. To generate the
binary sequences for each chromosome, one position is randomly selected from t possible positions
and is set as value 1. The remaining t− 1 positions are set as 0.

After all chromosomes are initialized, they are evaluated by the revised FG-k-means algorithm.
From each chromosome, the matrix V0 is constructed. The matrix Vl is initialized by solving VlVT

l = I.
Since the solutions are not unique, the different initial Vls for different clusters are initialized. Then,
the initial Vls are obtained by Vl = V0 ◦Vl .

The initial feature group weights and initial cluster centers are generated and selected randomly.
The number of clusters k is given. The revised FG-k-means algorithm is executed on the input dataset
once for each chromosome to produce one clustering result. The Bayesian information criterion (BIC)
is used to evaluate the clustering result and score the chromosome. After all chromosomes are scored,
the genetic operations such as selection, crossover and mutation are applied to the chromosomes to
produce the new individual chromosomes for next generation as follows.

• There are 10 strongest chromosomes which are selected with the highest scores.
• The crossover is performed in the following steps. The 10 chromosomes are randomly grouped

into five pairs. For each pair of chromosome i and chromosome j, the corresponding binary
sequence Vi,g

k and V j,g
k are compared. If two sequences are same, the sequence is copied as the

new generation of Vs,g+1
k . For the remaining pairs of different binary sequences, we randomly

select one sequence from one chromosome to replace the corresponding sequence of another
chromosome by the probability αk ∈ [0, 1]. Finally, we encode V0 as a new chromosome in the
next generation. The rule to generate Vs,g+1

k is defined as

Vs,g+1
k =

{
Vi,g

k if Vi,g
k = V j,g

k or αk ≥ 0.5

V j,g
k otherwise

, (30)

where αk is randomly generated for each Vs,g+1
k .

• For the process of mutation, we randomly choose five chromosomes from 10 alternative
chromosomes. For each chromosome Ai,g, we randomly generate a new chromosome Arand

k =

(Vrand
1 , · · · , Vrand

k , · · · , Vrand
m ). The rule to generate Vi,g+1

k is

Vi,g+1
k =

{
Vi,g

k if αk ≥ 0.5

Vrand
k otherwise

, (31)

where αk is randomly generated for each Vi,g+1
k .
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In this way, we generate 10 new chromosomes and combine them with the 10 strongest chromosomes
to form a new population for exploration and exploitation in the next generation of evolution.

4.5. LFGL Algorithm

The process of learning the latent feature grouping structure V0 consists of three stages, i.e., the
individual feature weights, the feature group weights and a chromosome score from the input dataset.
The initialization stage generates the first generation of 20 chromosomes representing 20 initial V0s.
The second stage uses the revised FG-k-means algorithm to score the 20 chromosomes. The third stage
selects the 10 strongest chromosomes according to the scores and performs the genetic operations
on the selected chromosomes to produce the new generation of chromosomes for evolution. This
process continues until the termination criterion is met. The evolution process of LFGL algorithm is
summarized in Algorithm 2.

Algorithm 2 LFGL algorithm.

Input: The dataset X, the number of clusters k, two positive parameters λ and η, the number of feature

groups t.
Output: Local optimal values ofH, Z , V , andW .

1: Initialize 20 chromosomes representing 20 different possibilities of feature grouping;
2: For each chromosome, we initializeW by sampling the positive values [wl ]i ∼ N (1, 0.01), then

normalize wl so that 1Twl = 1;
3: Initialize V with the method mentioned in Section 4.4 to build V matrix, then normalize Vl so that

the `2-norm of each row Vl of is 1;
4: Randomly choose k cluster centers Z0;
5: Update Ht+1, Zt+1, Wt+1 and Vt+1, respectively;
6: The objective function P obtains its local minimum value, then update Vt+1 and go back to Step 9;
7: Calculate BIC of 20 clustering results from 20 chromosomes, choose the best 10 ones and make 10

new chromosomes by crossover and mutation;
8: Repeat ten times and find the best solution of clustering.

5. Experiments

We tested the performance of LFGL algorithm on several datasets in high dimensions. The results
were compared with five existing clustering algorithms: k-means [29,30], TWKM [6], EWKM [4],
LAC [16] and FG-k-means [7].

5.1. Datasets

Seven high-dimensional datasets in the real world were used to evaluate LFGL algorithm, where
six genetic datasets were downloaded from http://archive.ics.uci.edu/ml/datasets.html and one
text dataset was obtained from http://www.escience.cn/people/fpnie/papers.html. The common
characteristics of these datasets are small numbers of objects with large numbers of features. The
details of the datasets are listed in Table 1.

http://archive.ics.uci.edu/ml/datasets.html
http://www.escience.cn/people/fpnie/papers.html
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Table 1. Dataset Description.

Dataset Objects Features Classes

SRBCT 63 2308 4
Lymphoma 62 4026 3

Prostate 102 6033 2
Adenocarcinoma 76 9868 2

Breast2classes 77 4870 2
CNS 60 7129 2

WebKB texas 814 4029 7

5.2. Evaluation Measures

Five measures were used to evaluate the clustering results of six algorithms. Each algorithm was
run on each dataset 100 times to produce 100 results. The average value of 100 results on each dataset
corresponding to each algorithm was used as the measure of algorithm. Let L be the partition of
a dataset by the labeled classes and L̂ the partition of the clustering result by algorithms. The confusion
matrix can be generated, as shown in Table 2, to calculate the correspondence between the true clusters
and results. The elements of TP, FN, FP and TN are the numbers of objects satisfying both true and
predicted conditions. The five measures are defined based on the confusion matrix as follows.

• Accuracy is defined as

Accuracy =
TP + TN

TP + FP + TN + FN
; (32)

• Rand Index is defined as

Rand Index =
TP + FN

TP + FP + TN + FN
; (33)

• Precision is defined as
Precision =

TP
TP + FP

; (34)

• Recall is defined as
Recall =

TP
TP + FN

; (35)

• F-measure is defined as
F-measure =

2 ∗ Precision ∗ Recall
Precision + Recall

. (36)

Table 2. Confusion matrix.

Data Predicted Positive Predicted Negative

True condition positive True Positive (TP) False Negative (FN)
True condition negative False Positive (FP) True Negative (TN)

5.3. Parameters Settings

In Algorithm 2, we include two parameters λ and η which may impact the performance of LFGL.
We set the parameter λ as {1, 2, 3, 4, 5, 8, 10, 14, 16, 20} and η as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For each
combination of λ and η, we ran LFGL 100 times and recorded the five measurements mentioned
above. We ran the tests on dataset Prostate. The results are illustrated in Figure 2. We did not
observe significant rule of the parameters. Hence, λ = 1 and η = 1 were determined for the
followed experiments.
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Figure 2. The parameter control for Prostate dataset.

5.4. Clustering Results and Analysis

The clustering results on six genetic datasets and the text dataset are shown in Table 3. From the
results, we can see that LFGL algorithm outperformed all five other clustering algorithms on most
datasets. If we consider all clustering results, LFGL algorithm significantly outperformed all other
five clustering algorithms on Prostate dataset. On other datasets, LFGL algorithm produced similar
results as the five other clustering algorithms. These results show that LFGL algorithm is effective
in clustering high-dimensional data. LFGL algorithm is established particularly with a target on the
Genetic datasets to investigate the relations between human genes and diseases. It is an extra gain that
it also performed well on the text dataset.
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Table 3. Summary of clustering results corresponding to six clustering algorithms.

Data Evaluation k-Means EWKM TWKM LAC FG-k-Means LFGL

SRBCT Rand Index 0.661 0.603 0.654 0.597 0.654 0.777
Accuracy 0.528 0.476 0.530 0.413 0.555 0.512
Precision 0.376 0.304 0.366 0.296 0.375 0.351

Recall 0.353 0.344 0.380 0.339 0.385 0.428
F-Measure 0.293 0.163 0.359 0.293 0.287 0.339

Lymphoma Rand Index 0.727 0.804 0.612 0.488 0.921 0.929
Accuracy 0.855 0.838 0.755 0.419 0.951 0.845
Precision 0.844 0.854 0.677 0.488 0.966 0.663

Recall 0.563 0.736 0.441 0.336 0.857 0.926
F-Measure 0.675 0.791 0.534 0.488 0.918 0.771

Prostate Rand Index 0.507 0.504 0.507 0.495 0.509 0.524
Accuracy 0.578 0.606 0.576 0.500 0.578 0.593
Precision 0.503 0.49 0.502 0.491 0.500 0.507

Recall 0.541 0.515 0.573 0.510 0.523 0.671
F-Measure 0.521 0.507 0.532 0.491 0.511 0.579

Adenocarcinoma Rand Index 0.528 0.730 0.605 0.588 0.552 0.730
Accuracy 0.842 0.842 0.832 0.615 0.842 0.843
Precision 0.722 0.743 0.731 0.642 0.708 0.738

Recall 0.576 0.964 0.723 0.562 0.661 0.807
F-Measure 0.641 0.839 0.719 0.692 0.682 0.768

Breast2classes Rand Index 0.546 0.507 0.479 0.491 0.508 0.547
Accuracy 0.662 0.584 0.574 0.470 0.584 0.611
Precision 0.537 0.507 0.452 0.404 0.506 0.523

Recall 0.696 0.757 0.608 0.603 0.682 0.763
F-Measure 0.607 0.608 0.527 0.481 0.599 0.611

CNS Rand Index 0.493 0.506 0.496 0.500 0.512 0.544
Accuracy 0.661 0.661 0.661 0.615 0.555 0.595
Precision 0.531 0.542 0.536 0.507 0.540 0.485

Recall 0.583 0.584 0.545 0.609 0.683 0.737
F-Measure 0.556 0.559 0.539 0.513 0.540 0.485

WebKB texas Rand Index 0.507 0.507 0.496 0.488 0.501 0.523
Accuracy 0.578 0.563 0.516 0.528 0.545 0.593
Precision 0.502 0.502 0.492 0.509 0.496 0.511

Recall 0.757 0.514 0.557 0.562 0.564 0.612
F-Measure 0.603 0.508 0.520 0.513 0.496 0.507

5.5. Feature Grouping Analysis

We conducted the experiments to investigate the trend of evolution of chromosomes, i.e., the
feature grouping structure V0 in the evolutionary process. Figure 3 shows the results on the dataset
SRBCT. Figure 3a shows the Rand Index measures of 10 strongest chromosomes in different generations.
We can see that the clustering results of LFGL algorithm improved with the increase of generations in
the evolutionary process and became stable after some generations. This indicates that the evolutionary
process optimized the clustering through searching the optimal feature grouping structure V0. Figure 3b
shows the standard deviations of mutual dissimilarities between 10 strongest chromosomes in each
generation. We can see the continuous dropping of standard deviation with the increase of generations.
This indicates that the strongest chromosomes tended to become similar during the evolution, which
implies the convergence of optimal feature grouping structure.
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Figure 3. The comparison of chromosomes during the evolution process.

6. Conclusions and Future Works

In this paper, we present a new method to automatically find the latent feature grouping structure
in high-dimensional data. The latent feature group learning (LFGL) algorithm is proposed to cluster
high-dimensional data from subspaces of feature groups and individual features. The Darwinian
evolution process is used to search the optimal group structures. The revised FG-k-means is used to
evaluate the feature grouping and cluster the data. The experimental results on different kinds of
datasets show that LFGL algorithm outperformed five existing clustering algorithms. Meanwhile, the
results of clustering were evaluated for the accuracy of feature groupings. The future works will mainly
focus on two directions. First, we will seek real applications for LFGL algorithm. The integration of
LFGL algorithm with feature selection [31,32] to improve the generalization of learning algorithm
will be very promising future work. Second, we will extend LFGL algorithm to big data analysis and
management [33,34].
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