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Abstract: Academic collaboration networks can be formed by grouping different faculty members into
a single group. Grouping these faculty members together is a complex process that involves searching
multiple web pages in order to collect and analyze information, and establishing new connections
among prospective collaborators. A recommender system (RS) for academic collaborations can help
reduce the time and effort required to establish a new collaboration. Content-based recommendation
system make recommendations based on similarity without taking social context into consideration.
Hybrid recommender systems can be used to combine similarity and social context. In this paper,
we propose a weighting method that can be used to combine two or more social context factors in
a recommendation engine that leverages an exponential random graph model (ERGM) based on
historical network data. We demonstrate our approach using real data from collaborations with
faculty members at the College of Computer and Information Sciences (CCIS) in Saudi Arabia. Our
results demonstrate that weighting social context factors helps increase recommendation accuracy for
new users.

Keywords: academic collaboration; recommender system; context aware; collaborator recommender
system; exponential random graph model

1. Introduction

Scientific collaboration is one of the defining features of modern science [1]. The quality of higher
education has been linked to effective collaborations [2]. Additionally, collaborations can lead to
high-impact research and development with many commercial applications. However, collaborations
require researchers to build a social network consisting of people with similar scientific interests,
and finding such people can require substantial time and effort. A recommendation system (RS)
facilitates the process of identifying and finding academic collaborators, thereby increasing the number
of collaborations.

Many collaborator RSs have been developed in recent years, but most are based on traditional
approaches, such as the content-based approach, and employ fairly simple user models. These
approaches ignore the fact that users interact with each other within a particular context and that the
preferences of collaborators within one context may differ from those in another. A generic hypothesis of
network science is that an actor’s position in a network can determine the constraints and opportunities
that he or she will encounter; therefore, identifying that position is critical for predicting outcomes
and behavior [3]. Moreover, evidence from the literature [4,5] suggests that collaboration patterns
and dynamics vary across scientific communities, fields, and individuals, which makes it important
to consider the context of a collaboration before making recommendations. A context-independent
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collaborator RS could lose predictive power because potentially useful information from multiple
contexts would be ignored.

Context-aware RSs generate more relevant recommendations by adapting recommendations to
the specific contextual situation of a user. According to [6], “Context is any information that can be
used to characterize the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and applications
themselves.” Depending on the type of data used, four types of contexts are identified: the physical
context represents physical attributes; the social context represents the presence and role of other
people around the user; the interaction-media context describes the device used to access the system;
and the modal context represents the user’s current state of mind [7].

Hybrid recommender systems can be used to combine similarity and social context information.
Hybrid approaches make recommendations by combining two or more methods to maximize the
strengths of different approaches and overcome a given approach’s limitations. Different hybrid methods
have been suggested in the literature [8]. A popular approach for hybridization in recommender systems
is the weighted method. In the weighted method, different methods are implemented separately and
their predictions combined.

Few studies have combined user similarity and social context, and even fewer studies have
discussed methods to weight relevant contextual factors. This research proposes an approach for
context-aware recommender systems (RSs) that combine research area similarity with social contextual
information. This approach includes a method for weighting similarity and different social context
factors. The approach is based on modeling historical collaboration using an extended version of a
class of principled statistical models called exponential random graph models (ERGMs), that involve
several estimating, validating, and simulation experiments.

The remainder of the paper has been organized as follows: Section 2 describes the background,
Section 3 examines related work, Section 4 provides an overview of our approach, Section 5 demonstrates
the implementation procedure and presents our results, and Section 6 discusses these results. Section 7
compares our approach with others, and, finally, Section 8 describes the research limitations and
suggestions for future work.

2. Background

2.1. Collaboration and Social Context

Collaborations can be viewed as social graphs in which nodes are members and edges exist
between two nodes if those members have collaborated together. Using the social network perspective
allows us to apply social network analysis.

Social network analysis (SNA) can be used to determine the social context of nodes (individuals)
in the network. An important contextual property in social network analysis is centrality. High
centrality scores identify nodes with the greatest structural importance in networks. Different centrality
measures are used to measure different influence and power attributes of nodes in the network. Some
of these well-known measures are as follows: degree, which allows us to find nodes that exchange
with numerous others and make their views noticeable; betweenness, which allows us to find nodes
critical to collaborations across communities and information flow in the network; and eigenvectors,
which allows us to find nodes that are not necessarily important, but that are connected to other
important nodes. Table 1 displays a summary of some centrality measures and the formulas used to
mathematically quantify these measures.
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Table 1. Centrality Measures.

Centrality Measure Definition Formula

Closeness centrality Measure of relative node i
distances to the n other nodes.

(n− 1)/
∑
j
`(i, j)

`(i, j) is the length of the path between i and j.

Betweenness Centrality
Measure of extent to which a

node lies between other nodes
in the network.

∑
i, j,k

[
Pk(i, j)
P(i, j)

]
[
(n−1)(n−2)

2

]
P(i, j) is the number of shortest paths

between i and j.
Pk(i, j) is the number of shortest paths

between i and j that k lies on.

Eigenvector Centrality
Measure of node centrality

that takes into account
neighbors’ centralities.

Ci = a
∑

j: f riend o f i C j
Ci proportional to

∑
j gi jC j

Kats Centrality Measures node influence
within a network.

∞∑
k=1

n∑
j=1
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)
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2.2. Exponential Random Graph Model

ERGM is a statistical model for examining relational data with complex dependencies. ERGM
can help us determine how large of a role different factors play in creating relationships between
actors and forming a network. Three types of factors can be examined using ERGM: structural factors
derived from network topological structure; fixed actor attributes, such as birthplace and gender; and
variable actor attributes, such as affiliation, rank, influence, and power. More formally, ERGM assigns
a probability value to a graph equal to the sum of network configurations weighted by parameters
inside an exponential [9,10]. Each parameter corresponds to a network factor.

The general form of ERGM is given by the following equation:

Pr(X = x|θ) =
1

c(θ)
exp

(
θT s(x)

)
, (1)

where

• Pr(X = x|θ) is the probability of the entire graph being conditional on parameters represented by
θ;

• c(θ) is a normalizing constant;
• θT is a vector of parameters associated with the graph statistics; and
• s(x) is a vector of the graph statistics.

3. Related Work

3.1. Recommending Collaborators

Considering the complex nature of academic collaboration, a variety of studies have addressed
RSs from different angles. For example, Damiani et al. [11] investigated the impact of RSs on team
processes in computer–supported collaboration environments, which indicated that collaborator RSs
increase users engagement.

In [12], the authors proposed different types of RSs that aim to enhance and increase collaboration
among researchers in different scientific communities by pointing to other projects, researchers, and
related topics. In [13], the authors suggested developing an RS that focuses on helping undergraduate
students by recommending research opportunities. In [14], the authors discussed their challenges and
experiences developing research article RSs for digital libraries and references.
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In addition, a variety of methods have been proposed and used in the literature for collaborator
RSs. Although collaborative filtering (CF) is the most commonly used approach for RSs, pure CF is
difficult to implement in these systems primarily because a CF system will work only if group users
have rated some of the same items. There is no way a new item can be recommended to a user until
another user has rated it. Alternatively, many content- and hybrid-based collaborator RSs have been
proposed. Most of the reviewed literature on collaborator RSs adopt methods that fall into one of two
categories: CBF approaches and hybrid-filtering approaches.

Content-based filtering (CBF) methods extract researchers’ academic features using tags, user
profiles, publications, and other criteria. For example, Lopes et al. [15] used researchers’ publication
areas and the vector space model (VSM) to make collaboration recommendations. Gollapalli et al. [16]
suggested models for computing the similarity between researchers based on expertise extracted
from their publications and academic home pages. Content-based filtering exhibits several desirable
properties, such as scalability. Furthermore, this approach works well for predicting items that are new
to the system, as the only process required is to calculate the similarity between the item and the user
profile. There are, however, some drawbacks to this method. As a consequence of the recommendations
being based exclusively on the user’s profile, these recommendations may become overspecialized.
In addition, such recommendations require constant updates to user profiles.

However, in CBF, extracting user profiles and gathering all the different aspects is a demanding
task. Moreover, features used to describe users’ interests are usually finite and predetermined. Another
important limitation is that CBF is unable to capture the semantics of users’ interests. Finally, two users
are indistinguishable if they are represented by the same set of features.

Hybrid filtering approaches make recommendations by combining two or more different
approaches to maximize the strengths of different approaches and overcome a given approach’s
limitations. Many approaches can be combined to meet specific application requirements. For example,
social network analysis has emerged as a source of information that can be used to feed RSs with
additional information in order to increase predication accuracy. In addition, SNA can be used to gain
insight into the social context of individuals in the network.

In the following section we focus on collaborator recommender systems that leverage the social
context of users.

3.2. Recommending Collaborators Based on Social Context

This section focuses on hybrid RSs that combine SNA with other approaches. Many approaches
based on social context have been proposed in the literature. For example, in [17] the authors proposed
a hybrid algorithm combining expertise and social network information to recommend experts. In [18],
the authors suggested a multi-theoretical and multi-level framework that combines social theory, SNA
measures, and node attributes for the similar task of recommending topic experts. In [19], the authors
combined semantic links and SNA on an academic social network to make recommendations based on
the similarity between the target researcher and other researchers along a two-layer network using
a spreading activation algorithm [20]. The goal of the spreading activation process is to identify the
nodes that correspond strongly to a given activated node and measure the similarities of nodes.

In [21], the authors used community detection and a content-based approach to recommend
knowledge experts in a semantic social network of experts. In [22], the authors combined keyword
similarity with properties derived from social network properties (such as distance). In [23], the authors
proposed an approach for recommending influential co-authors by combining centrality and similarity.
In [24], the authors combined two areas of similarity, namely the importance and activity measures
of researchers, to make recommendations. In [25], the authors used a random walk algorithm to
recommend collaborators. Random walks have proven to be a powerful mathematical tool for
extracting information from the ensemble of paths between entities in a graph.

In [26], the authors proposed to enhance content-based RSs using academic social networks
to suggest the most relevant items to members of these online societies. Their approach takes
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advantage of the interest and preferences of a user’s friends and colleagues in providing more
accurate recommendations.

Most collaborator recommender systems (RSs) based on social context linearly combine similarity
and social factors based on heuristics [27,28]. A heuristic is a solution, but one that will not explore
all possible states of a problem. However, evidence from the literature suggests that collaboration
dynamics can differ from discipline to discipline and even from location to location [28–31]. Only a few
studies have examined the possibility of different in hybrid collaborator recommender systems [23,28].
In [28], the authors randomly experimented with different weights to find the optimal combinations
for two social context factors. In [23], the authors gave users the responsibility of adjusting the weights
for a single social context factor. Our approach, however, allows us to take many social context factors
into consideration and systematically select weights without overwhelming users with the task of
selecting weights.

3.3. RSs Based on the ERGM

Researchers in [18] pointed out advancements in social network analysis and the potential
usefulness of social network modeling techniques such as ERGM in selecting relevant factors for
recommending topic experts. Other researchers have proposed recommendation approaches using
ERGM [32,33].

Our stratagem for the use of ERGM differs from those described in the previously mentioned
studies because we use ERGM on academic collaboration networks. In addition, we have used an
extended form of ERGM that takes into account actors’ attributes. Both approaches, as proposed
by [32,33], focus on the network’s topological structure and do not include actors’ attributes.

4. Methodology Used

This paper proposes a method for a context-aware collaborator RS that consists of two phases
(Figure 1). The first phase aims to weight different contextual factors using ERGM and historical
collaboration data. The output from this phase is the estimated weights for the given factors; these
weights are used in the second phase to make recommendations. The following section describes each
phase in greater detail.
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Figure 1. Method overview.

4.1. Phase One: Estimating Weights

In this phase, the weights of social contextual factors are estimated using ERGM. This process is
based on the framework proposed by [9]. Estimating can be done using a statistical software suite that
includes the ERGM package, such as “R”. This process involves selecting parameters and estimating
and evaluating weights (Figure 2).
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Estimating is computationally intensive, involves multiple steps, and may require changing or
updating parameters until the model converges (Figure 2). The final output from this phase is the
estimated weight for each contextual factor. The four steps are:

• Historical collaboration data: Historical collaboration data play an important role in building and
testing context-aware RSs. Historical collaboration data are data related to the collaborations of
a group of researchers in a particular scientific community from a previous time period. These
data include historical collaboration networks, research areas of individuals in the collaboration
network, and centrality scores for these individuals. The observed collaboration network is a
historical collaboration network.

• Selecting parameters: Contextual parameters that match the theories about collaboration factors
must be selected. For example, because it is assumed that researchers choose to collaborate with
similar and influential researchers, the following parameters are selected: research areas; social
context parameters used to measure influence, such as degree centrality; betweenness centrality;
and eigenvector centrality. These parameters represent different actor attributes. In addition,
standard parameters corresponding to network topology can be included [34]. Each parameter
corresponds to a network configuration, which in turn corresponds to a network theory.

• Estimating: Estimating can involve systematically searching through possible parameter values
until the right estimate is achieved. The outputs are the estimated weights for the chosen
parameters. These values are validated through evaluation.

• Evaluating: The estimated parameters are evaluated using goodness of fit (GOF), which is a
statistical approach for assessing how well estimated parameters fit the observed data using a
t-ratio [33]. This method is included in the ERGM package and involves a simulation of networks
using estimated parameters and summary statistics. The statistics of simulated networks are
compared with the actual network using a t-ratio.

4.2. Phase Two: Making Recommendations

Phase 2 involves making recommendations using the RS, which incorporates different contextual
factors and their weights. A weighted hybridization method is used where social contextual factors
and research areas are combined linearly, each with a different weight (Figure 3):
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Making recommendations for each user involves selecting faculty members with similar research
areas, calculating the social context for each member in the network, scoring potential collaborators,
and making recommendations based on scores. To identify the social context of potential collaborators,
three centrality measures are used: degree centrality, betweenness centrality, and eigenvector.

More specifically, the following equation is used for each user to score all other members in the
network:

Score (v) = θr ∗ResearchArea + θ f 1 ∗Context(Degree,v)+

θ f 2 ∗Context(Betweenness,v) + Context(Eignevector,v)
(2)

where

• ResearchArea is a variable that shows whether a given user and collaborator v have similar
research areas;

• θx is the weight for the given factor x; and
• Context(x,v) is the value of context factor x for potential collaborator v.

5. Implementation

Historical collaboration data that consist of publications and research areas for faculty members
in 2013 were collected from the following data sources:

• Scopus: Scopus is one of largest abstract and citation databases for peer-reviewed literature,
including scientific journals, books, and conference proceedings. Publications from two years
(2013, 2014) were collected for faculty members associated with the College of Computer and
Information Sciences (CCIS) that are indexed by Scopus.

• College annual report: The college annual report details the main activities and achievements of
students and faculty members each year. This information includes a list of the different types of
publications for each faculty member indexed in Scopus and in other citation databases.

• Faculty websites: Every faculty has a webpage hosted on the university server that includes
information about each faculty member and their teaching and research activities.

A collaboration network was constructed using a collaboration matrix and consisted of CCIS
members from five different departments: computer science, computer engineering, information
systems, software engineering, and information technology. Each department was assigned a different
color (Figure 4). The network consisted of 168 nodes and 212 links, in which each node represented a
faculty member. A link between two members indicates that the members collaborated in writing a
book, conference paper, or journal article in 2013.

Phase 1 began by loading all the nodes and their research areas into the network and calculating
their different centrality scores (degree centrality, betweenness centrality, and eigenvector centrality).
The weights of the research area and different contextual factors were estimated. MPnet software was
used (developed by the University of Melbourne) [34,35] to estimate, evaluate, and simulate the ERGM.
More specifically, the following parameters were included:

• Research_Match, which demonstrates the significance that similar research areas have
on collaboration;

• Degree_Activity, which illustrates the significance that degree centrality has on collaboration;
• Betweenness_Activity, which indicates the significance of betweenness centrality;
• Eigenvector_Activity, which identifies the significance that eigenvector centrality has

on collaboration;
• Edges, which is a network topology parameter in ERGM; and
• Alternative Triangulation (AT), which is a network topology parameter that represents transitivity.

This parameter demonstrates the significance that a common collaborator has on collaboration.
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Table 2 contains the estimation results and t-ratio values. An asterisk indicates that the parameter
value is significant. Each parameter represents a different factor. The negative edge parameter indicates
that the collaboration network is sparse, while the positive AT parameter indicates that there is a
positive tendency toward transitivity. Transitivity means that if member a is connected to member b,
and b is connected to member c, the probability of a connection between a and c is higher than any
other pair of nodes in the network. Degree_Activity demonstrates that there is a positive tendency
toward collaborating with members with a high degree of centrality. Finally, the results demonstrate
that there is a positive tendency toward collaborating with other similar members in main research
areas (Research_Match).

Table 2. Estimated weights.

Parameter Weight t-Ratio

Edge −7.1686 −0.012 *
Alternative Triangulation (AT) 1.1855 0.015 *

Betweenness_Activity −1.5488 0.02 *
Degree_Activity 3.1432 −0.011 *

Eigenvector_Activity −0.1549 −0.035
Research_Match 1.3129 0.046 *

Table 3 displays the results of evaluating the model. The goodness of fit (GOF) indicates whether
a specific model represents particular network structures well. Evaluation of the model was completed
with the parameter values to simulate a distribution of graphs consistent with the model. The t-value
is calculated by comparing the observed data with the collected statistics. If |t| < 2.0, then the model
plausibly explains those features of the data. For the estimated model, the GOF values for all parameters
were less than 2.0.
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Table 3. The goodness of fit (GOF) values.

Parameter GOF t-Value

Edge −0.039
AT 0.037

Betweenness_Activity −0.064
Degree_Activity −0.062

Eigenvector_Activity −0.139
Research_Match 0.253

6. Evaluation

The RS is evaluated with data derived from Scopus regarding collaborations of CCIS faculty in
2014. Members who had at least a degree value equal to three were included (29 members: 14 old and
15 new). The dataset was divided into two groups:

• Group 1—Old: Old users are faculty members who collaborated in 2013 and 2014.
• Group 2—New: New users consist of new members who joined the CCIS network in 2014.

Three different scenarios for each group were generated to demonstrate the value of identifying
relevant contextual factors and their weights:

• Scenario 1—ERGM: This scenario uses weights for contextual factors calculated using the ERGM.
• Scenario 2—Equal: This scenario considers equal weights for all contextual factors.
• Scenario 3—Random: This scenario uses random weights for contextual factors.

Finally, eight collaborators were recommended to each member in each scenario, and the results
were compared with actual collaborators’ data. Four types of relevant results were identified for
each group:

• true positives (tp): These are the correctly predicted collaborators.
• true negatives (tn): These are the correctly predicted negative values.
• false positives (fp): These occur when a collaborator is predicted but the actual data show this

prediction to be false.
• false negatives (fn): These occur when the RS fails to produce an accurate prediction.

Three standard and common metrics for classification tasks in RSs are used: precision, recall, and
F1 [36]. Both precision and recall are based on an understanding and measure of relevance:

Precision =
tp

tp + f p
(3)

Recall =
tp

tp + f n
(4)

Precision can be expressed as precision at k, where k is the length of the list of recommended items
(e.g., P@1). There is usually a trade-off between precision and recall; when precision increases, recall
also increases. There is, however, a measure of accuracy F1 that combines both precision and recall:

F1 =
2 ∗ precision ∗ recall
precision + recall

(5)

6.1. Old Users

Old users are faculty members with old collaboration data. Part of their data was used to build
the RS model, while the other part was used in evaluation. Data from the year 2013 were used for
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modeling and data from 2014 for testing. Eight recommendations were generated for each user for
each of the following scenarios: ERGM, equal, and random.

Figure 5 illustrates the precision for each scenario. The x-axis shows the number of recommended
collaborators. Initially, the ERGM scenario (Scenario 1) performed worse than the other scenarios.
However, after generating a few more recommendations, the ERGM approach achieved the highest
accuracy. The reason we presume is because for older users only part of their historical data was used
to construct the network and make recommendations.Information 2019, 10, x FOR PEER REVIEW 10 of 16 
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Figure 6 demonstrates the recall for each scenario. The x-axis shows the number of recommended
collaborators. The recall for all scenarios increases with each subsequent recommendation. The graph
also indicates that after the first few recommendations, the precision ERGM approach began to increase
more rapidly than the other scenarios.
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Figure 7 illustrates F1 for each scenario. The x-axis shows the number of recommended
collaborators. The graph indicates that after the first few recommendations, the F1 score for the
ERGM approach increases recommendation precision (Scenario 1).
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Figure 7. F1 for old users.

The evaluation produced mixed results for old users; the ERGM approach enhanced
recommendation accuracy, but only after a few faulty recommendations. The reason behind these
mixed results for older users is that potentially useful information, such as current collaborations,
is not taken into consideration when generating recommendations for older users. However, evidence
from the literature suggests that existing collaborations affect future collaborations [37]. Additionally,
best practices for scientific collaboration state that closing triangles (i.e., collaborating with one’s
collaborators’ collaborators) is important [38].

6.2. New Users

New users include both users who have just joined CCIS and those whose past collaboration data
are unavailable. In many RSs, these users suffer a cold-start problem, which arises from the fact that
there is no previously recorded interaction for these users. Figure 8 displays precision for all three
scenarios. The ERGM scenario generates the highest precision for new users, while the equal scenario
results in higher precision than the random scenario.
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Figure 9 illustrates recall for the three scenarios. The ERGM scenario increases the recall for new
users more than for the other scenarios.
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Figure 10 illustrates F1 for the three scenarios. The ERGM scenario increases F1 for new users
more than the other scenarios do, while the random scenario results in the worst performance.
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7. Comparison with Other Methods

We compared the performance of ERGM with COCOON CORE [23]. COCOON makes
recommendations by combining two collaboration factors (similarity and betweenness) and asking
users to adjust the weights of both factors. We used equal weight for both similarity and betweenness
(50% value).

We conducted a set of experiments using 26 users from their actual 2014 Scopus collaboration
data. For each user we recommended three collaborators using two methods, ERGM and COCOON,
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and we compared the results of both approaches with the actual collaboration data. Figure 11 shows
ERGM outperforming COCOON. The precision rate of ERGM is 36.1%, in comparison with 12.5%
for COCOON. The recall rate of ERGM is 24.3%, which is higher than the recall rate of 8.4% with
COCOON. Additionally, the F1 of ERGM is 29.1%, which is higher than the 10.1% for COCOON.
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8. Discussion and Research Limitations

Recommending collaborators involves different social and academic considerations.
The complexity of the problem was addressed in this research by focusing on the primary issue
of selecting weights for relevant contextual collaboration factors. A method to select and weight
different social contextual factors was proposed using historical data and ERGM. The results indicated
that using ERGM to weight contextual factors in hybrid RSs can increase recommendation accuracy,
especially for new members. However, our work has several limitations. First, the main research area,
as stated by faculty members, was used to represent research interest and similarity. This representation
is limited and allows for an indication of only binary similarity (i.e., two members either do or do
not have the same research area). Identifying the research similarity of members is a complex task,
however, and has been the focus of many works that address the subject from different angles, such as
topic modeling [39] and semantic analysis [40].

Second, the evaluation was set in the context of CCIS, but the approach can also be examined
for other networks. However, building an ERGM model for large networks may require the use of
statistical sampling techniques, such as snowballing (Pattison et al. [10]) to reduce computational
complexity. In addition, the proposed method was evaluated on CCIS members using real data. This
approach restricted the dataset size. The approach should be tested on additional data. Moreover,
other evaluation approaches can be used such as user surveys to evaluate perceived accuracy.

In addition, the experiments indicated that the ERGM scenario outperforms other scenarios for
new users across all measures. The equal scenario performs better than the random scenario for
new users; however, mixed results were obtained for old users, implying that the ERGM scenario
outperforms other scenarios only after making some inaccurate recommendations. This outcome
suggests that this study’s approach might be advantageously mixed with other approaches for old
users. In addition, the outcome speaks to the usefulness of the approach for new users in cold-start
situations [41].
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9. Conclusions

In this paper, a method was proposed for a hybrid collaborator recommender system to weigh
different social context factors using historical data and ERGM. Results indicate that using ERGM to
weight social context factors increases recommendation accuracy, especially for new members.

As a future scope of this work, we plan to assess our method using additional datasets that include
different attributes. Furthermore, we plan to extend our model in order to include varying degrees of
research similarity.
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1. Milojević, S. Modes of collaboration in modern science: Beyond power laws and preferential attachment.
J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1410–1423. [CrossRef]

2. Jain, R.K.; Triandis, H.C.; Weick, C.W. Universities and Basic Research. In Managing Research, Development,
and Innovation; John Wiley & Sons, Inc.: New York, NY, USA, 2010; pp. 296–314.

3. Borgatti, S.P.; Everett, M.G.; Johnson, J.C. Analyzing Social Networks; SAGE Publications Ltd.: Thousand Oaks,
CA, USA; London, UK, 2013.

4. Bozeman, B.; Boardman, C. Research Collaboration and Team Science; Springer: Cham, Switzerland, 2014.
5. Khalid, N.H.; Ibrahim, R.; Selamat, A.; Kadir, M.R.A. Collaboration patterns of researchers using Social

Network Analysis approach. In Proceedings of the 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 1632–1637.

6. Abowd, G.D.; Dey, A.K.; Brown, P.J.; Davies, N.; Smith, M.; Steggles, P. Towards a Better Understanding
of Context and Context-Awareness. In Handheld and Ubiquitous Computing; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 304–307. [CrossRef]

7. Adomavicius, G.; Tuzhilin, A. Context-aware recommender systems. In Recommender Systems Handbook;
Springer: Berlin, Germany, 2015; pp. 191–226.

8. Burke, R. Hybrid Recommender Systems: Survey and Experiments. User Model User-Adap Inter. 2002, 12,
331–370. [CrossRef]

9. Robins, G.; Pattison, P.; Kalish, Y.; Lusher, D. An introduction to exponential random graph (p*) models for
social networks. Soc. Netw. 2007, 29, 173–191. [CrossRef]

10. Pattison, P.E.; Robins, G.L.; Snijders, T.A.B.; Wang, P. Conditional estimation of exponential random graph
models from snowball sampling designs. J. Math. Psychol. 2013, 57, 284–296. [CrossRef]

11. Damiani, E.; Ceravolo, P.; Frati, F.; Bellandi, V.; Maier, R.; Seeber, I.; Waldhart, G. Applying recommender
systems in collaboration environments. Comput. Hum. Behav. 2015, 51, 1124–1133. [CrossRef]

12. Wild, F.; Ochoa, X.; Heinze, N.; Crespo, R.M.; Quick, K. Bringing together what belongs together:
A recommender-system to foster academic collaboration. In Proceedings of the 1st STELLAR Alpine
Rendez-Vous 2009, Garmisch-Partenkirchen, Germany, 30 November–3 December 2009.

13. del-Rio, F.; Parra, D.; Kuzmicic, J.; Svec, E. Towards a Recommender System for Undergraduate Research.
arXiv 2017, arXiv:1706.06701.

14. Beel, J.; Dinesh, S. Real-World Recommender Systems for Academia: The Pain and Gain in Building,
Operating, and Researching them. In Proceedings of the 5th International Workshop on Bibliometric-enhanced
Information Retrieval (BIR2017), Aberdeen, UK, 9 April 2017; pp. 6–17.

15. Lopes, G.R.; da Silva, R.; de Oliveira, J.P.M. Applying Gini coefficient to quantify scientific collaboration
in researchers network. In Proceedings of the International Conference on Web Intelligence, Mining and
Semantics, Sogndal, Norway, 25–27 May 2011; p. 68.

16. Gollapalli, S.D.; Mitra, P.; Giles, C.L. Similar Researcher Search in Academic Environments. In Proceedings
of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, Washington, DC, USA, 10–14 June 2012;
pp. 167–170. [CrossRef]

http://dx.doi.org/10.1002/asi.21331
http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1016/j.socnet.2006.08.002
http://dx.doi.org/10.1016/j.jmp.2013.05.004
http://dx.doi.org/10.1016/j.chb.2015.02.045
http://dx.doi.org/10.1145/2232817.2232849


Information 2019, 10, 220 15 of 16

17. Lee, D.H.; Brusilovsky, P.; Schleyer, T. Recommending collaborators using social features and MeSH terms.
Proc. Am. Soc. Info. Sci. Technol. 2011, 48, 1–10. [CrossRef]

18. Fazel-Zarandi, M.; Devlin, H.J.; Huang, Y.; Contractor, N. Expert Recommendation Based on Social Drivers,
Social Network Analysis, and Semantic Data Representation. In Proceedings of the 2nd International
Workshop on Information Heterogeneity and Fusion in Recommender Systems, Chicago, IL, USA, 27 October
2011; pp. 41–48. [CrossRef]

19. Xu, Y.; Guo, X.; Hao, J.; Ma, J.; Lau, R.Y.K.; Xu, W. Combining social network and semantic concept analysis
for personalized academic researcher recommendation. Decis. Support Syst. 2012, 54, 564–573. [CrossRef]

20. Collins, A.M.; Loftus, E.F. A spreading-activation theory of semantic processing. Psychol. Rev. 1975, 82, 407.
[CrossRef]

21. Davoodi, E.; Kianmehr, K.; Afsharchi, M. A semantic social network-based expert recommender system.
Appl. Intell. 2013, 39, 1–13. [CrossRef]

22. Cohen, S.; Ebel, L. Recommending Collaborators Using Keywords. In Proceedings of the 22nd International
Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 959–962. [CrossRef]

23. Sie, R.L.L.; van Engelen, B.J.; Bitter-Rijpkema, M.; Sloep, P.B. COCOON CORE: CO-author REcommendations
Based on Betweenness Centrality and Interest Similarity. In Recommender Systems for Technology Enhanced
Learning; Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C., Eds.; Springer: New York, NY, USA, 2014;
pp. 267–282.

24. Huynh, T.; Takasu, A.; Masada, T.; Hoang, K. Collaborator Recommendation for Isolated Researchers.
In Proceedings of the 2014 28th International Conference on Advanced Information Networking and
Applications Workshops (WAINA), Victoria, BC, Canada, 13–16 May 2014; pp. 639–644. [CrossRef]

25. Xia, F.; Chen, Z.; Wang, W.; Li, J.; Yang, L.T. MVCWalker: Random Walk-Based Most Valuable Collaborators
Recommendation Exploiting Academic Factors. IEEE Trans. Emerg. Topics Comput. 2014, 2, 364–375.
[CrossRef]

26. Rohani, V.A.; Kasirun, Z.M.; Ratnavelu, K. An Enhanced Content-Based Recommender System for Academic
Social Networks. In Proceedings of the 2014 IEEE Fourth International Conference on Big Data and Cloud
Computing (BDCloud), Sydney, Australia, 3–5 December 2014; pp. 424–431.

27. Ye, M.; Liu, X.; Lee, W.-C. Exploring social influence for recommendation: A generative model approach.
In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Portland, OR, USA, 12–16 August 2012; pp. 671–680.

28. de Souza Junior, G.; Justel, C.M.; Duarte, J.C. Recommendation System for Social Networks based on the
Influence of Actors through Graph Analysis. In Proceedings of the 18th Latin-Iberoamerican Conference on
Operations Research, CLAIO 2016, Santiago de Chile, Chile, 2–6 October 2016.

29. Bozeman, B.; Corley, E. Scientists’ collaboration strategies: Implications for scientific and technical human
capital. Res. Policy. 2004, 33, 599–616. [CrossRef]

30. Bozeman, B.; Gaughan, M.; Youtie, J.; Slade, C.P.; Rimes, H. Research collaboration experiences, good and
bad: Dispatches from the front lines. Sci. Public Policy 2015, 43, 226–244. [CrossRef]

31. Gunawardena, S.; Weber, R.O. Recommending Collaborators for Multidisciplinary Academic Collaboration.
Available online: https://idea.library.drexel.edu/islandora/object/idea%3A3637/datastream/OBJ/view
(accessed on 23 June 2019).

32. Yang, D.H.; Su, Y. A Social Recommender System Based on Exponential Random Graph Model and Sentiment
Similarity. Appl. Mech. Mater. 2014, 488–489, 1326–1330. [CrossRef]

33. Yang, D.; Huang, C.; Wang, M. A social recommender system by combining social network and sentiment
similarity: A case study of healthcare. J. Inf. Sci. 2017, 43, 635–648. [CrossRef]

34. Hunter, D.R.; Goodreau, S.M.; Handcock, M.S. Goodness of fit of social network models. J. Am. Stat. Assoc.
2008, 103, 248–258. [CrossRef]

35. Wang, P.; Robins, G.L.; Pattison, P.E.; Koskinen, J.H. MPNet: Program for the Simulation and Estimation of
(p*) Exponential Random Graph Models for Multilevel Networks; Melbourne School of Psychological Sciences:
Melbourne, Australia, 2014.

36. Said, A. Evaluating the Accuracy and Utility of Recommender Systems. Ph.D. Thesis, Technische Universität
Berlin, Berlin, Germany, 2013.

37. Moody, J. The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999.
Am. Sociol. Rev. 2004, 69, 213–238. [CrossRef]

http://dx.doi.org/10.1002/meet.2011.14504801025
http://dx.doi.org/10.1145/2039320.2039326
http://dx.doi.org/10.1016/j.dss.2012.08.003
http://dx.doi.org/10.1037/0033-295X.82.6.407
http://dx.doi.org/10.1007/s10489-012-0389-1
http://dx.doi.org/10.1145/2487788.2488091
http://dx.doi.org/10.1109/WAINA.2014.105
http://dx.doi.org/10.1109/TETC.2014.2356505
http://dx.doi.org/10.1016/j.respol.2004.01.008
http://dx.doi.org/10.1093/scipol/scv035
https://idea.library.drexel.edu/islandora/object/idea%3A3637/datastream/OBJ/view
http://dx.doi.org/10.4028/www.scientific.net/AMM.488-489.1326
http://dx.doi.org/10.1177/0165551516657712
http://dx.doi.org/10.1198/016214507000000446
http://dx.doi.org/10.1177/000312240406900204


Information 2019, 10, 220 16 of 16

38. Parada, G.A.; Ceballos, H.G.; Cantu, F.J.; Rodriguez-Aceves, L. Recommending Intra-Institutional Scientific
Collaboration Through Coauthorship Network Visualization. In Proceedings of the 2013 Workshop on
Computational Scientometrics: Theory & Applications, San Francisco, CA, USA, 28 October 2013; pp. 7–12.
[CrossRef]

39. Soetjipto, R. Automatic Detection of Research Interest Using Topic Modeling. Master’s Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2013.

40. Osborne, F.; Motta, E. Mining semantic relations between research areas. In Proceedings of the 11th
International Semantic Web Conference, Boston, MA, USA, 11–15 November 2012; pp. 410–426.

41. Shapira, B.; Arazy, O.; Kumar, N. Improving Social Recommender Systems. IT Prof. 2009, 11, 38–44.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2508497.2508499
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Collaboration and Social Context 
	Exponential Random Graph Model 

	Related Work 
	Recommending Collaborators 
	Recommending Collaborators Based on Social Context 
	RSs Based on the ERGM 

	Methodology Used 
	Phase One: Estimating Weights 
	Phase Two: Making Recommendations 

	Implementation 
	Evaluation 
	Old Users 
	New Users 

	Comparison with Other Methods 
	Discussion and Research Limitations 
	Conclusions 
	References

