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Abstract: The widespread popularity of smart meters enables the collection of an immense amount of
fine-grained data, thereby realizing a two-way information flow between the grid and the customer,
along with personalized interaction services, such as precise demand response. These services
basically rely on the accurate estimation of electricity demand, and the key challenge lies in the high
volatility and uncertainty of load profiles and the tremendous communication pressure on the data
link or computing center. This study proposed a novel two-stage approach for estimating household
electricity demand based on edge deep sparse coding. In the first sparse coding stage, the status of
electrical devices was introduced into the deep non-negative k-means-singular value decomposition
(K-SVD) sparse algorithm to estimate the behavior of customers. The patterns extracted in the
first stage were used to train the long short-term memory (LSTM) network and forecast household
electricity demand in the subsequent 30 min. The developed method was implemented on the
Python platform and tested on AMPds dataset. The proposed method outperformed the multi-layer
perception (MLP) by 51.26%, the autoregressive integrated moving average model (ARIMA) by 36.62%,
and LSTM with shallow K-SVD by 16.4% in terms of mean absolute percent error (MAPE). In the
field of mean absolute error and root mean squared error, the improvement was 53.95% and 36.73%
compared with MLP, 28.47% and 23.36% compared with ARIMA, 11.38% and 18.16% compared with
LSTM with shallow K-SVD. The results of the experiments demonstrated that the proposed method
can provide considerable and stable improvement in household electricity demand estimation.

Keywords: deep K-SVD; household electricity demand estimation; patterns extraction; smart meters
data analytics

1. Introduction

Countries worldwide have committed to promoting and enhancing the efficiency and sustainability
of power grids in recent years. Meanwhile, the widespread popularity of advanced metering
infrastructure (AMI) enables the collection of an immense amount of fine-grained, real-time
consumption data [1]. The effective management and analysis of AMI data can facilitate a bidirectional
information flow and friendly interaction between customers and grids [2]. They also play a nontrivial
role in accurate demand response (DR) [3], power reliability and efficiency improvement [4], electricity
price design [5], and other personalized services [6,7].

The core of realizing these new services is to develop a highly accurate residential load forecast [8].
Two basic issues are associated with meter-level electricity consumption estimation. The first issue is
the challenge of data transmission, numeration, and storage. Most power supply companies currently
alleviate the tremendous pressure exerted on communication links and data storage computing power
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by simply reducing sampling frequency [9]. However, this method may result in the loss of effective
information and cannot satisfy precision and rapid interaction requirements. Therefore, alleviating
the communication and storage burden under the premise of ensuring the availability of effective
information is a prerequisite for the effective analysis of energy consumption data [10]. The second
issue is that high-resolution load data can no longer be limited to simple consumer segmentation
(i.e., industrial, commercial, and residential) [11,12], but should further utilize hidden value or useful
information to extract the electricity consumption behavior and lifestyle of consumers.

The data compression algorithm can be divided into lossless compression and lossy compression,
depending on whether the original data can be restored after reconstruction. The reconstruction
data are entirely the same as the raw data in lossless compression algorithms. By contrast, lossy
compression is focused on similarity search and information extraction [13] and plays a nontrivial
role in power load curve analysis [14]. Common lossy compression algorithms include discrete
fourier transform (DFT) [15], discrete wavelet transform (DWT) [16], principal component analysis
(PCA) [17], singular value decomposition (SVD) [18], and a combination of these methods. A load
data compression method was proposed in [13], wherein the load status and other load characteristics
were first introduced to process the data. The recoverable linear-time complexity data compression
algorithm proposed in [19] is suitable for an error-prone transmission line. Focusing on smart meter
data lossy compression, a non-negative k-means-singular value decomposition (K-SVD) algorithm
was analyzed in [20], and the extracted behavioral patterns were used only to classify consumers into
residents and small and medium-sized enterprises.

The electricity consumption behavior at the household or building levels has become a popular
research topic in recent years. Compared with load profiles aggregated at high voltage levels, load
profiles at the household level are frequently more volatile and sensitive to customer behavior or
environmental variables, such as temperature, relative humidity, and their higher-order terms and
interactions [21,22]. The load status of electrical appliances was first introduced to load forecasting
in [23]. However, the sparsity of load data was not considered to pretreat the immense amount
of original load data. Sparsity is a key characteristic in household-level load forecasting. Sparse
coding was proposed to model usage patterns in [24]. The case study indicated that including sparse
coding features led to a 10% improvement in forecast accuracy. A neural network prediction model
with k-means clustering, which is a type of sparse coding algorithm, was used for load estimation
in [25]. The K-SVD algorithm is a more flexible load curve coding method than k-means clustering.
In this algorithm, the load curve can be represented as a superposition of several typical modes.
In our previous study, an efficient edge sparse coding approach was proposed based on the K-SVD
algorithm for extracting hidden behavior patterns from load datasets prior to load estimation to reduce
communication, storage, and computation demands.

Deep learning has been applied in different industries, including smart grids. Designing deep
learning structures for household load profile forecasting applications remains an open research issue in
smart meter data analytics [26]. Theoretically, deep learning belongs to a type of special artificial neural
network and focuses on extracting high-level features by applying appropriate nonlinear functions
to hidden nodes to learn weights or filters in a greedy multi-layer [27]. However, features used for
input data preprocessing in [26] were simply related to the sequence of energy consumptions and date,
which may not reflect the user’s usage pattern effectively. In the current study, a two-stage household
electricity demand estimation approach based on edge deep sparse coding was proposed by combining
the concepts of deep learning and sparse coding. In the first stage, a 3-layer non-negative K-SVD
algorithm with several representative household appliance load data was implemented to extract deep
usage behavior patterns (DUBPs) as the input of the load forecasting. The load forecasting model
based on long short-term memory (LSTM) was used in the second stage to realize accurate forecasting
of household electricity demand. An edge sparse coding architecture to address the data deluge issue
was also proposed, which most studies on load forecasting, including [26], did not consider. The deep



Information 2019, 10, 224 3 of 16

K-SVD algorithm can be completed in the edge nodes and extracted DUBPs and the coefficient matrix
can be uploaded to the cloud computing center for further load forecasting and storage.

From the preceding analysis, the contributions of this study were as follows.

(1) A deep non-negative K-SVD algorithm, with an initial dictionary that consists of household
electricity load, was proposed. This algorithm can extract deeper and more valid usage patterns
that are conducive to the analysis and estimation of consumer behavior.

(2) An edge sparse coding architecture was proposed to address the data deluge issue. In this
architecture, deep sparse coding was completed in the edge nodes and then DUBPs or the
coefficient matrix were uploaded to the cloud computing center for storage and estimation.
This scheme considerably reduced the amount of data and effectively alleviated the communication
and storage burden of the data link.

(3) A novel two-stage estimation method for short-term household electricity consumption based on
a LSTM network was proposed. Actual meter data were used for verification and simulation, and
the results indicated that the proposed method achieved the best overall performance. It provided
a considerable and stable improvement in load forecasting accuracy.

The remainder of this paper has been organized as follows. Section 2 briefly introduced the
rationale for applying the deep K-SVD algorithm to usage pattern extraction and data pretreatment.
Section 3 presented the two-stage household electricity demand estimation approach based on the
deep K-SVD algorithm with household appliance data and LSTM. The edge sparse coding architecture
was also designed for different calculation and storage capacities of edge nodes. Section 4 described
the implementation of the experiment and case study using actual AMI data and compared the
performance of the proposed approach with previous state-of-the-art methods, namely, autoregressive
integrated moving average (ARIMA), multilayer perceptron (MLP), LSTM, LSTM with normal K-SVD,
LSTM with 3-layer deep K-SVD algorithm and algorithm proposed in [23]. Finally, conclusions have
been drawn in Section 5.

2. Deep K-SVD Algorithm

2.1. Basic K-SVD Algorithm

Data compression includes two phases—encoding and reconstruction. The encoder converts
the original load curve to an optimal format with less storage space and restores the load curve
with minimal reconstruction error. Sparse coding is inspired by the working mechanism of brain
neurons [28] and attempts to obtain a sparse and redundant dictionary set to describe the characteristics
of the original overall load.

Consider the given signal Y = [y1, y2, · · · , yM], which can be represented as a sparse linear

combination of basic vectors in the overcomplete dictionary matrix D =
[
d1, d2, · · · , dJ

]T
. In the load

analysis and decomposition problem, yi denotes the overall load and d j =
[
d j,1, d j,2, · · · , d j,N

]T
is the

jth UBPs, which has N dimensions same as the original signal. The sparse representation of Y can be
described as

minD,X
{
‖Y −DX‖2F

}
subject to

∀i, ‖xi‖0 ≤ s0

xi, j ≥ 0, 1 ≤ i ≤M, 1 ≤ j ≤ J
d j,n ≥ 0, 1 ≤ j ≤ J, 1 ≤ n ≤ N

(1)
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where the basic vector d j =
[
d j,1, d j,2, · · · , d j,N

]T
denotes the jth equipment behavior patterns, which

has N dimensions same as the original signal. xi =
[
xi,1, xi,2, · · · , xi,J

]T
is the coefficients vector of d j

which only a few elements are nonzero to realize the dimensionality reduction of the original load
signal [28]. The first constraints on s0 is to ensure the compression efficiency of load profile and the
second and third non-negative constraints on the coefficient vectors should be guaranteed because the
UBPs are non-negative in practice.

The non-negative K-SVD algorithm is effective and flexible for solving the optimization problem
in (1) or training the dictionary. The initial dictionary matrix should be predetermined, and the
following steps should be repeated until the required number of iterations is reached or the constraints
are satisfied.

(1) Sparse coding: The orthogonal matching pursuit (OMP) algorithms are introduced to obtain the
approximate solution of the sparse coefficient vector xi that corresponds to each load profile yi.

x̂ = arg min‖y−Dx̂‖2 (2)

(2) Dictionary updating: The dictionary vector is updated with fixed coefficient vectors.

Figure 1 shows a visualization of sparse coding, where the original signal is finally represented by
a linear combination of six UBPs. Notably, the number of columns in the feature dictionary, J, should be
greater than the number of rows in the original signal N, which is determined by the redundancy of the
dictionary. The sparsity of sparse coding is primarily reflected by the condition that most coefficient
vectors are zero.
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Figure 1. Schematic diagram of sparse coding. 

2.2. Deep K-SVD Algorithm 

The basic K-SVD algorithm has a shallow architecture and only learns one dictionary level. In 
this section, the authors proposed to extend shallow dictionary learning into multiple layers, thereby 
leading to deep sparse coding. Deep dictionary learning is performed by using a greedy approach to 
continuously find the sparse representation of the coefficient matrix until the last layer is reached. 
This deep non-negative K-SVD algorithm can extract deeper and more valid DUBPs and is more 
conducive to analyzing and estimating costumer behavior. The schematic of deep DUBPs extraction 
is shown in Figure 2. 

Figure 1. Schematic diagram of sparse coding.

2.2. Deep K-SVD Algorithm

The basic K-SVD algorithm has a shallow architecture and only learns one dictionary level. In this
section, the authors proposed to extend shallow dictionary learning into multiple layers, thereby
leading to deep sparse coding. Deep dictionary learning is performed by using a greedy approach
to continuously find the sparse representation of the coefficient matrix until the last layer is reached.
This deep non-negative K-SVD algorithm can extract deeper and more valid DUBPs and is more
conducive to analyzing and estimating costumer behavior. The schematic of deep DUBPs extraction is
shown in Figure 2.
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In the greedy solution, the coefficient matrix learned in the ith layer Xi can be substituted as
Xi = Di−1Xi−1 until i = L− 1 (for L layers), whereas the sparse representation problem in the (i + 1)th
layer can be expressed as:

min
Di−1,Xi−1

{
‖Xi −Di−1Xi−1‖

2
F

}
(3)

Hence, the multi-level dictionary learning problem with non-linear activation can be formulated as:

minD,X
{
‖Y −D1D2 · · ·DLXL‖

2
F

}
subject to

∀i, ‖xi‖0 ≤ s0

xi, j ≥ 0, 1 ≤ i ≤M, 1 ≤ j ≤ J
d j,n ≥ 0, 1 ≤ j ≤ J, 1 ≤ n ≤ N

(4)

where D = D1D2 · · ·DL is the DUBPs extracted by deep K-SVD algorithm [29].
In summary, the deep sparse coding algorithm provides two major improvements in calculating

electricity consumption. First, it can obtain a multi-layer overcomplete dictionary, called DUBPs
library in this study. DUBPs can be maximally consistent with users’ actual electricity consumption
behavior through continuous training. Second, the coefficient vector can be optimized L times to reduce
reconstruction error while obtaining an over-complete sparse dictionary. Therefore, the corresponding
DUBPs are also more consistent with the actual consumption of users.

3. Proposed Methodology

3.1. Stage 1: Deep K-SVD Algorithm with Household Appliance Data

In the first stage, the deep non-negative K-SVD algorithm was implemented for load profile
compression and DUBPs extraction. DUBPs were fed into the second stage as input to enhance the
efficiency and stability of load forecasting.

The construction of a suitable initialization dictionary Ds is a kernel point in the sparse coding
problem. Current studies have generally used a part of the original signal or classical bases (e.g., Fourier
and Gaussian bases) as the initial dictionary matrix. The signature of electrical devices was first
introduced to load forecasting in [23], and the experiment showed that a combination of historical load
and household appliance data can considerably enhance the forecasting of individual consumer loads.
The sparse coding process with appliance load is illustrated in Figure 3. This study selected the load
profiles of several representative appliances related to the lifestyle of residents as the initial dictionary
matrix to satisfy the diversity of actual loads.
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Houses equipped with sub-meters can obtain noiseless household appliance consumption profiles.
Load disaggregation or non-intrusive load monitoring (NILM) technology is applied to recognize the
consumption of each appliance when only the overall current or load reading is available [30]. Unlike
the submetering, appliance consumption gathered by NILM is noisy. This study hypothesized that
when the load of appliances has been gathered, the initialization dictionary matrix can be defined as:

Ds =


a11 · · · a1n

...
. . .

...
am1 · · · amn

b11 · · · b1n
...

. . .
...

bm1 · · · bmn

c11 · · · c1n
...

. . .
...

cm1 · · · cmn

d11 · · · d1n
...

. . .
...

dm1 · · · dmn

 (5)

where a11 · · · amn, b11 · · · bmn, c11 · · · cmn, and d11 · · · dmn denote the load of four electrical appliances.
The values of m and n are determined by the dimension of the original signal and the size of the
dictionary matrix, respectively.

The load of the electrical devices is added to the deep non-negative K-SVD sparse coding to obtain
an over-completed dictionary, where DUBPs must be consistent with actual customer behavior as
much as possible, and the coefficients must be optimized to simultaneously ensure sparsity and reduce
the reconstruction error.

3.2. Edge Sparse Coding Architecture

Edge computing is a concept of near computing, that is, the operation is completed in the local
network which is closer to the data source [31]. However, not all data operations can be placed on the
local side, and some data still require further analysis or long-term access to transfer back to the cloud
computing center for processing or storage. The cloud computing center can be similar to a central
coordinator or a data training center in the future.

Evidently, the pressure exerted by communication, calculation, and storage gradually increases
along the data link from local meters to the cloud computing center. Smart meters and gateways exhibit
certain analysis and calculation abilities and can perform the data compression task. In such cases, the
transmission pressure on the data link and cloud computing center can be substantially alleviated.



Information 2019, 10, 224 7 of 16

Therefore, a sparse coding architecture based on edge computing was introduced, as shown in Figure 4,
where the deep K-SVD algorithm was completed in the edge nodes. Deep sparse coding requires
higher computing and storage capacities than single-layer sparse coding. The edge sparse coding
architecture can be three-tier or four-tier, depending on the capacity of the smart meters. The edge
nodes of the three-tier sparse coding structure are smart meters only, whereas smart meters and a
gateway play the role in the four-tier computing architecture to improve the data-handling ability of
edge nodes. The extracted DUBPs and coefficient matrix are uploaded to the cloud computing center
for load forecasting and storage.

The advantage of the proposed edge sparse coding architecture is manifested in the following
aspects: (1) The amount of data is considerably reduced after edge sparse coding, which will
substantially contribute to alleviating communication and storage burden; (2) the major modifications
occur at the grid side and exert minimal impact on customers; (3) this scheme can be implemented by
directly installing a sparse coding module on existing smart meters or adding an intelligent gateway
with data computing capability. It does not substantially change the existing electricity distribution
network and considerably reduces procurement and construction costs.
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3.3. Stage 2: DUBPs-Based Electricity Demand Estimation Using LSTM

This stage of the proposed method consisted of training and testing DUBP-based load forecasting.
In the training part, the reconstructed household data for the past 30 min and two DUBPs extracted
from the load profile using the edge deep sparse coding algorithm were used to train the LSTM
network. In the testing part, the well-trained LSTM network was implemented to forecast household
electricity demand in the subsequent 30 min. Household-level load demand estimation is critical
for precise DR. However, accurate forecasting is difficult due to the variability and randomness of
resident behavior. LSTM was selected because it can be flexible for the strong temporal correlation of
household-level load data.

An LSTM network refers to a specific architecture of recurrent neural network (RNN). It not only
exhibits the recursive attribute of RNN, but also includes a unique memory cell with an additional forget
gate, which solves the gradient vanishing or exploding problem in traditional RNN. LSTM networks
have achieved considerable success and are currently popular in many sequential forecasting tasks.

Both LSTM network and traditional RNN are composed of an input layer, an output layer, and
a hidden layer. However, the hidden layer of an LSTM network is no longer a common neural unit,
but a recurrent memory unit. Figure 5 presents a typical LSTM cell.
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Let x = {x1, x2, · · · xT } denote a typical input sequence for an LSTM network, where xt ∈ Rk

represents a k-dimensional vector for actual values at each time step t. To establish temporal connections,
LSTM defines and maintains an internal memory cell unit at each time step t as a collection of vectors
in Rk : an input gate it, a forget gate ft, an output gate ot, a memory cell ct, and a hidden state ht.

The memory cell state cint interacts with the intermediate output ht−1, and the subsequent input xt

in the input gate, forget gate, and output gate is divided to determine which elements of the internal
state vector should be updated, maintained, or erased. The signal of the input gate controls which
elements to preserve in the internal state, whereas the forget gate controls which elements to forget from
the previous state ct−1. The output gate determines the LSTM output ht with the updated internal state.

The LSTM transition equations are given as:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (6)

ft = σ
(
Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(7)

ct = ftct−1 + lttanh(Wxcxt + Whcht−1 + bc) (8)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (9)

ht = ottanh(ct) (10)

where Wxi, Wx f , Wxc, Wxo are weight matrices for the subsequent input xt; Whi, Wh f , Whc, Who are
weight matrices for the hidden state ht; Wci, Wc f , Wco are weight diagonal matrices from the input
gate, forget gate and output gate to the previous state memory cell ct−1 [32]. The b terms denote bias
vectors and σ is the activation function which will always be the sigmoid or tanh function.

The proposed two-stage household electricity demand estimation approach based on edge deep
sparse coding with appliance data is illustrated in Figure 6.
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4. Results

4.1. Description of The Dataset

The data used to verify the validity of the proposed method were obtained from AMPds dataset
and REFIT dataset. AMPds dataset comprehensively records the minutely current readings of a
Canadian household and its 19 appliances for 730 days. The data was collected from a house in the
Greater Vancouver metropolitan area in British Columbia (Canada) and has been cleaned to provide
for consistent and comparable accuracy results amongst different researchers and machine learning
algorithms. The house has one level above grade and a basement making up a total of 199 m2. The main
floor ceiling height is 2.44 m and the basement ceiling height is 2.13 m. The house has a family of
three persons: A male and a female adult in their late 30 s and a daughter between the age of 5 and 6.
The male adult is a full-time student at a local university, the female adult is self-employed, and the
child attends full-time elementary school [33]. The minutely electricity consumption in the original
dataset has been converted to consumption for every 30 min to match the common measurement
frequency of existing smart meters and to obtain realistic results. Therefore, the original load matrix is
48 × 730.

This study selected the load profiles of three representative household appliances (heat pump,
cloth washer and television) obtained from submetering for four random weeks to create the initial
dictionary, which was a 48 × 84 matrix. The test experiment was implemented on Matlab and
Python platforms.

4.2. Test Cases and Results

To assess the performance of the proposed method in short-term household load demand
estimation, four widely used criteria were employed [20], including compress ratio (CR), mean absolute
percent error (MAPE), mean absolute error (MAE) and root mean squared error (RMSE).

CR =
s0

N
(11)
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RMSE =

√√√√√
1

NM

M∑
i=1

yi −

J∑
j=1

x jd j


2

(12)

MAE =
1

NM

M∑
i=1

∣∣∣∣∣∣∣∣yi −

J∑
j=1

x jd j

∣∣∣∣∣∣∣∣ (13)

MAPE =
1
N

N∑
i=1

∣∣∣∣∣ ŷi − yi

ŷi

∣∣∣∣∣ ∗ 100% (14)

where ŷi denotes the actual consumption data and yi denotes the estimation values at time index i.
This assessment consisted of three parts: (1) The effect of adding appliance status to the initial

dictionary was determined by comparing between the proposed K-SVD algorithm with appliance
status and the normal K-SVD algorithm; (2) the effect of increasing learning depth was demonstrated
to show the potential of deep learning for short-term load demand estimation and the challenge of
overfitting; (3) the performance of the proposed method was compared with ARIMA, MLP, LSTM,
LSTM with normal and deep K-SVD and algorithm proposed in [23] to validate the efficacy.

4.2.1. Effect of Adding Appliance Status into the Initial Dictionary

Figure 7 shows the electricity consumption of a family on a random week (24–30 June 2013).
The load began to increase at 06:00, achieved a small peak at approximately 08:00, and typically reached
the peak for one day at 18:00–20:00. The load profiles were consistent with the daily living habits of
residents. For example, the washing and breakfast time of citizens was at 08:00 after getting up at 06:00.
Upon returning home at 18:00, residents may take a bath, cook dinner, or engage in some form of
entertainment. These activities considerably impacted the load profile and exhibited certain regularity.

Using the appliance load as the initial dictionary of the K-SVD algorithm tended to make the
extracted DUBPs consistent with customer behavior and ensured sparsity. To achieve a fair assessment,
sparse coding with and without appliance load scenarios were performed 100 times with the number
of iterations K = 60.
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Table 1 compares the performance of the proposed edge deep K-SVD algorithm with appliance load
data with the traditional deep K-SVD algorithm. Notably, MAPE of the 3-layer K-SVD algorithm was
already small, so the improvement was not obvious. However, as illustrated, the proposed algorithm
maintained a significant improvement in RMSE and MAE in all three tested compression ratios.
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Table 1. Reconstruction performance comparison with different sparse coding algorithms.

CR Algorithm RMSE (A) MAE (A) MAPE (%)

0.1250
3-layer K-SVD 57.37 31.77 0.07%

3-layer K-SVD with appliance load 54.74 30.07 0.06%

0.1042
3-layer K-SVD 65.66 35.67 0.10%

3-layer K-SVD with appliance load 62.96 33.22 0.08%

0.0833
3-layer K-SVD 71.74 39.04 0.14%

3-layer K-SVD with appliance load 69.49 37.73 0.13%

4.2.2. Effect from Shallow to Deep

A sensitivity analysis was conducted to systematically evaluate the effect of learning depth on
sparse coding. The edge deep K-SVD algorithms with different depths were: (1) Subjected to the same
input size, output size, and iteration configuration parameters; (2) set to s0 = 5 to limit the non-zero
elements of the coefficient vector to five, and five DUBPs were extracted from the original AMI data;
and (3) the averaged values of 20 tests were obtained. The results are presented in Figure 8.
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As shown in Figure 8, the proposed deep K-SVD algorithm received an obvious improvement
from layer 1 to layer 2. From layer 2 to layer 3, the improvement was nominal and deep K-SVD
witnessed the best performance with 3 layers, with approximately 0.08% in MAPE, 34.22 A in MAE, and
62.96 A in RMSE. Further increases in learning depth did not improve the results and the reconstruction
precision reduced as the learning went deeper because of the overfitting issue.
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4.2.3. Benchmarking of Load Demand Estimation Methods in Households

To validate the effectiveness of the proposed two-stage estimation approach for household
electricity demand, this study selected five other load demand forecasting methods for comparison
under the preceding benchmarks. These methods are ARIMA, MLP, LSTM, LSTM with normal K-SVD,
LSTM with 3-layer K-SVD and the forecasting algorithm proposed in [23].

The performance of the proposed two-stage LSTM with 3-layer appliance load based the K-SVD
method and the five competitive techniques in terms of MAPE, MAE, and RMSE is provided in Table 2.
For the testing sample, LSTM with 3-layer K-SVD outperformed ARIMA, MLP, normal LSTM, and
LSTM with shallow K-SVD in all the metrics used. The novel electricity demand estimation method
can further improve its performance with the introduction of appliance status into K-SVD coding.
In particular, the proposed method resulted in 16.4%, 11.38%, and 18.16% reduction in MAE, MAPE,
and RMSE, respectively, compared with LSTM with shallow K-SVD. Meanwhile, the improvement in
MAE, MAPE, and RMSE using the proposed method reached 15.64%, 21.12%, and 25.37%, respectively,
compared with algorithm proposed in [23].

Table 2. Forecasting performance comparison between proposed method and existing algorithms.

Algorithm MAPE (%) MAE (A) RMSE (A)

ARIMA 31.84% 109.63 192.80

MLP 41.41% 143.49 233.54

LSTM 27.62% 100.51 180.55

Ref. [23] 23.92% 99.42 198.00

LSTM-KSVD (with normal K-SVD) 24.14% 88.50 167.28

LSTM-3Layer (with 3-layer K-SVD) 22.67% 87.71 157.07

LSTM-3LayerAL
(with 3-layer appliance load based K-SVD) 20.18% 78.42 147.76

Improvement from LSTM-KSVD to
LSTM-3LayerAL 16.4% 11.38% 18.16%

Improvement from ARIMA to
LSTM-3LayerAL 36.62% 28.47% 23.36%

Improvement from MLP to
LSTM-3LayerAL 51.26% 53.95% 36.73%

Figure 9 presents the actual and forecasted load profiles using different methods on a random day.
It was noted that currents estimated by the proposed method or other available forecasting methods
were not completely consistent with the real currents, especially for higher values. It was mainly
caused by the high randomness, volatility and uncertainty of load profiles at the household level
and more sensitive to consumer behavior or environmental variables. Although the errors cannot be
eliminated, the proposed algorithm made great progress and followed the trend of the actual load
curve compared with the existing algorithms. The electricity consumption peak at approximately 08:00
and 11:30 was accurately captured, and overprediction of the peak at 09:15 and 13:00 due to inertia
was avoided.
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Figure 9. Forecasting results throughout a day for the leading scenarios using data from AMPds dataset.

This study selected five peak periods during a day (08:00, 10:00, 11:00, 17:30, and 18:00) to calculate
the absolute error between the predicted and actual loads. Figure 10 illustrates that LSTM with shallow
K-SVD inaccurately estimated the highest peak of electricity consumption throughout the day (08:00)
with an error of 508 A, whereas the error of the proposed two-stage LSTM with 3-layer appliance
load based on K-SVD remained below 90 A. Figure 10 shows that our novel estimation approach was
more stable in nearly all peak periods, thereby establishing that the DUBPs acquired using edge deep
K-SVD coding with appliance load improved the estimation accuracy of ultra-short term residential
electricity demand.
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Figure 10. Absolute error at peak hours of the leading algorithms.

In order to verify the universality of the proposed method, this study selected five households with
different load patterns and different consumption magnitude in REFIT to operate the experiment [34].
Sociodemographic information and other relevant information of each house is shown in Table 3.
Experiment results are shown in Figure 11 and Table 3 and illustrated the proposed method can also
achieve significant performance in all five houses.
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Table 3. Forecasting performance in five houses of REFIT using the proposed method.

REFIT Sociodemographic Information RMSE (kW) MAE (kW) MAPE (%)

REFIT House1
2 people

3 bedrooms
27 equipment

21.30 17.27 24.14%

REFIT House2
2 people

4 bedrooms
33 equipment

43.26 28.84 20.58%

REFIT House3
3 people

3 bedrooms
26 equipment

31.75 22.66 22.79%

REFIT House4
1 people

3 bedrooms
19 equipment

11.87 9.74 26.53%

REFIT House5
4 people

4 bedrooms
44 equipment

93.21 57.26 21.76%
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Figure 11. Actual (blue) and forecasted load profiles (red) throughout a day for the leading scenarios
in five households from REFIT dataset.

5. Conclusions

A novel two-stage estimation approach for household electricity demand based on edge deep
sparse coding was proposed to improve the estimation accuracy of ultra-short term residential electricity
demand. The deep non-negative sparse coding algorithm was implemented in the sparse coding stage
to extract usage patterns. The initial matrix contained the usage state of household devices. DUBPs
were used as input to the LSTM network in the forecasting stage.

The results of the test experiments demonstrated that the proposed method can achieve
considerable improvement in household-level consumption demand estimation and can substantially
improve its performance at peaks and troughs. In terms of MAPE, the proposed method outperformed
MLP by 51.26%, ARIMA by 36.62%, and LSTM with shallow K-SVD by 16.4%. In the field of mean
absolute error and root mean squared error, the improvement was 53.95% and 36.73% compared with
MLP, 28.47% and 23.36% compared with ARIMA, 11.38% and 18.16% compared with LSTM with
shallow K-SVD.
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Future work can focus on improving the estimation accuracy in two aspects. One is to continue
exploring the hidden information of the household load or electrical equipment load to extract more
effective behavior patterns. The other is to further utilize the potential of the proposed deep learning
network by solving the overfitting issue of deep learning or adding other external factors, such as
temperature, relative humidity, and their higher-order terms and interactions to establish a deep
learning model that is more suitable for household load prediction.
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