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Abstract: In multi-modal emotion aware frameworks, it is essential to estimate the emotional features
then fuse them to different degrees. This basically follows either a feature-level or decision-level
strategy. In all likelihood, while features from several modalities may enhance the classification
performance, they might exhibit high dimensionality and make the learning process complex for the
most used machine learning algorithms. To overcome issues of feature extraction and multi-modal
fusion, hybrid fuzzy-evolutionary computation methodologies are employed to demonstrate
ultra-strong capability of learning features and dimensionality reduction. This paper proposes
a novel multi-modal emotion aware system by fusing speech with EEG modalities. Firstly, a mixing
feature set of speaker-dependent and independent characteristics is estimated from speech signal.
Further, EEG is utilized as inner channel complementing speech for more authoritative recognition,
by extracting multiple features belonging to time, frequency, and time–frequency. For classifying
unimodal data of either speech or EEG, a hybrid fuzzy c-means-genetic algorithm-neural network
model is proposed, where its fitness function finds the optimal fuzzy cluster number reducing the
classification error. To fuse speech with EEG information, a separate classifier is used for each
modality, then output is computed by integrating their posterior probabilities. Results show the
superiority of the proposed model, where the overall performance in terms of accuracy average
rates is 98.06%, and 97.28%, and 98.53% for EEG, speech, and multi-modal recognition, respectively.
The proposed model is also applied to two public databases for speech and EEG, namely: SAVEE and
MAHNOB, which achieve accuracies of 98.21% and 98.26%, respectively.

Keywords: multi-modal emotion aware systems; speech processing; EEG signal processing; hybrid
classification models

1. Introduction

In human–computer interaction (HCI), comprehending and discriminating emotions turned into
a principal issue to construct intelligent systems that could perform purposed actions. Emotions
can be discriminated utilizing distinct forms of sole modalities, like facial expression, short phrases,
speech, video, EEG signals, and long/short texts. These modalities vary over the computer applications,
e.g., the well-known modality in computer games is video.

Recent studies unveil several merits of employing physiological signals for recognizing
emotions [1]. For instance, the electroencephalogram (EEG) signals have been shown to be a robust sole
modality [2,3]. The control of these bio-signals is managed by our central nervous system; thus, it cannot
be affected intentionally, while actors can pretend with emotion on their faces deliberately. Further,
physiological signals are emitted constantly and since sensors are directly attached to subject’s body,
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they are not out of reach. Moreover, physiological information could also be utilized as supplementary
to emotional information gained from facial expressions or speech to optimize the recognition rates.

In this regard, several multi-modal emotion recognition approaches have achieved significant
contributions [4–6]. Though there are distinctive input modalities for recognizing emotions, the most
widely recognized are bimodal inputs that combine both speech and video. The two modalities have
been selected frequently by the researchers because of being captured in a noninvasive way and are
expressive than the other modalities. Nevertheless, face expressions might be falsified by not returning
accurate information regarding the person’s internal state.

From between the modalities that tend to be in the literature, speech is an intuitive measure for
computers to comprehend human emotion, whereas EEG [7] is an internal measurement from the brain
that makes an intriguing alternative for recognizing multi-modal emotion. Up until now, there are
no proposals that have endeavored to consider speech and EEG simultaneously for recognizing
spontaneous emotion. This has motivated us to propose a new multi-modal emotion aware system
that fuses speech and EEG modalities for discriminating emotional state of the subject.

In the multi-modal fusion, input information from many modalities, like audio, EEG, video,
and electrocardiogram (ECG) can be fused together coherently [8]. More than one modality cannot be
combined in a context-free way; a context-dependent model has to be utilized. Information fusion is
classified into three progressive stages: (I) Early fusion, (II) intermediate fusion, and (III) late fusion.
As for early fusion, integration of information is implemented at signal-/feature-level, while in late fusion,
information at a semantic level is to be fused. The foundation in combining multi-modal information is
the modalities number [2,3], information derivation synchronization, and fusion procedure, besides
finding the proper fusion level of information. However, it is not constantly fundamental that diverse
modalities give complimentary information through the fusion stage; therefore, it is essential to
comprehend each modality’s contributions with respect to accomplishment of distinct tasks.

One of the important problems faced in the multi-modal emotion recognition is the fusion of
features belonging to different modalities. By reviewing the literature on the multi-modal emotion
analysis, it has been observed that the majority of works have concentrated on the concatenation of
feature vectors obtained from different modalities. However, this does not take into consideration the
conflicting information that may be carried by the unimodal modalities. On the other hand, little work
has addressed this issue through new feature-fusion methods to enhance the multi-modal fusion
mechanism [9–12].

In [9], the authors proposed a feature fusion strategy that proceeds from the unimodal to bimodal
data vectors and later, the bimodal to trimodal data vectors. In [10], a context-aware audio–video system
is proposed. Accordingly, a contextual audio–video switching approach is presented to switch between
visual-only, audio-only, and audio–visual clues. The proposed approach integrates the convolutional
neural network (CNN) and the long-short-term memory (LSTM) network. Moreover, a multi-modal
hybrid deep neural network architecture is presented in [11] for audio–visual mask estimation. In [12],
an image-text emotion analysis model is proposed. To utilize the internal correlation between the
image and textual features, an intermediate fusion-based multimodal model was proposed. Eventually,
a late fusion scheme was applied to combine the models of sentiment prediction.

One of the drawbacks of feature-level emotion fusion is that it might exhibit high dimensionality
and poor performance because of redundancy and inefficiency. For overcoming the high dimensionality
issue, hybrid intelligent models can introduce several choices for unorthodox handling of complex
problems, which carry uncertainty, vagueness, and high dimensionality of data. They can exploit
a priori knowledge and the raw data to introduce innovative solutions. In this regard, hybridization is
a crucial phase in many domains of human activity [13,14].

This paper suggests a new hybrid emotion recognition model based on the fuzzy clustering,
genetic search-based optimization. The proposed model selects and trains the neural network (NN)
with the optimal fuzzy clusters representing each modality, without any prior knowledge about
the fuzzy clusters number. Unlike the previous works on multimodal emotion fusion, the fusion
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of two modalities is implemented on the decision-level instead of the feature-level fusion that may
carry conflicting information. For comparison purposes, the proposed hybrid model is likewise
compared to another developed hybrid c-means-genetic algorithm-neural network model, namely,
FCM−GA−NN f ixed model that relies on defining a fixed fuzzy clusters number.

2. Related Work

This study suggests a novel multi-modal emotion aware system by fusing together speech and
EEG modalities. Consequently, the literature review section is progressive. So, the emotion recognition
topic of interest is divided into three parts speech emotion recognition, EEG-based emotion recognition,
and multi-modal emotion recognition.

2.1. Literature Review on Speech Emotion Recognition

The related work on speech emotions classification reveals three crucial aspects. Firstly, preparing
the emotional database is critical to validate the system performance. Secondly, selecting features
properly for speech characterization. Eventually, design of accurate classification model. For emotional
speech databases, acoustic analysis has been utilized to recognize emotions using three kinds of
databases: Natural spontaneous emotions, acted emotions, and elicited emotions.

Most emotional speech databases depend on inviting professional actors for expressing
pre-determined sentences related to the purposed emotion. Though, in some databases like the
Danish Emotional Speech (DES) database [15], semi-professional actors are invited for avoiding
exaggeration during expressing emotions. As for spontaneous speech, databases may be collected
from interaction with robots, or call center data.

The performance of the speech emotion recognition system depends on the features extracted from
the speech signal. A challenging issue in recognizing speech emotions is extracting speech features that
efficiently describe the speech emotional content and, simultaneously, do not rely on the speakers or the
lexical contents. The majority of published works on speech emotion classification have concentrated
on analyzing speech spectral information and prosodic features. Some new parameters are utilized for
recognizing speech emotion, like the Fourier parameters [16]. Although numerous acoustic parameters
have been found to carry emotional content, little success was proved to define a feature set that
performs invariably over diverse conditions [17].

Therefore, the majority of works use mixing feature set, which comprises several types of
features involving more emotional information [18]. This is implemented by dividing the signal into
k frames/segments containing n samples per frame/segment, which causes a high dimensionality
problem. As a result, the computational cost and over-fitting likelihood of the speech classifier are
increased. Thus, feature selection approaches are imperative to minimize feature redundancy and
speed up the learning process of speech emotion recognition.

Table 1 [19–22] summarizes some works on speech emotion recognition. By reviewing these works,
it is obvious that the most used classifiers are artificial neural networks, Gaussian mixture model,
and multiple different one-level standard methodologies. Satisfactory outcomes are obtained using
these standard classifiers. Nevertheless, the improvements in their performances are usually restricted.
Thus, the fuzzy genetic search-based optimizations and fusion of speech classifiers could constitute
a new step toward robust emotion classification [23,24]. Therefore, we hypothesize that the proposed
hybrid soft computing model can overcome the existing limitations of speech emotion recognition.
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Table 1. Recent Research on speech emotion recognition.

Reference Publication Year Corpus Speech Analysis Feature Selection Classifier Classification Accuracy

[19] 2019

Berlin EmoDB The local feature learning
blocks (LFLB) and the LSTM
are used to learn the local
and global features from the
raw signals and log-mel
spectrograms.

- 1D & 2D CNN LSTM
networks.

95.33% and 95.89% for
speaker-dependent and
speaker-independent
results, respectively.

IEMOCAP

89.16% and 52.14% for
speaker-dependent and
speaker-independent
results, respectively.

[20] 2018
Chinese speech database
from Chinese academy of
sciences (CASIA)

Speaker-dependent features,
and speaker-independent
features.

A correlation analysis
and Fisher-based
method.

Extreme learning
machine (ELM) 89.6%

[21] 2015

BES
Two prosodic features and
four paralinguistic features of
the pitch and spectral energy
balance.

None
Support vector
machines (SVM)

94.9%

LDC Emotional Prosody
Speech and Transcripts 88.32%

Polish Emotional Speech
Database 90%

[22] 2015

BES
Spectral and prosodic
features.

None Ranking SVMs

82.1%

LDC 52.4%

FAU Aibo 39.4%
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2.2. Literature Review on EEG-Based Emotion Recognition

The initial stage of EEG-based emotion classification is to take accurately labeled EEG signals
induced by picture, video clips, or music. Subsequent to presentation of visual stimuli to a subject,
multi-channel signals of EEG are recorded, and afterwards, the signal labeling is done based on subject
ratings. The previous work on EEG emotional features extraction [25–29] has revealed that there
exist several valuable features of time, frequency, and time–frequency that have been evidenced to
be efficient in differentiating emotions. Furthermore, there is no standard feature set that has been
agreed as the most appropriate for EEG emotion classification. This causes a high dimensionality
issue in EEGs, because not all features would contain significant information concerning emotions.
The redundant and irrelevant features maximize the feature space, making the detection of patterns
more difficult, and maximizing the over-fitting risks.

However, the majority of classifiers that have been proposed in the literature for EEG emotion
classification are based on the conventional classification algorithms such as ANN, SVM, and k-nearest
neighbor. Some of these approaches are demonstrated in Table 2. Few works have presented hybrid
methods of evolutionary computer algorithms and classification methods [25], where the objective of
these works is to deal with the high dimensionality issue of EEG emotion recognition. Therefore, in this
work, we propose a novel fuzzy c-means-genetic algorithm-neural network (FCM-GA-NN) model for
EEG emotion recognition. The meta-heuristic can provide the optimal initial centroids for the FCM
algorithm, which will be trained to the NN as optimized solutions for emotion recognition. In this
regard, the proposed algorithm has been experimented on our collected database and another publicly
available database, namely MAHNOB. The comparative results are demonstrated in the experimental
results section.
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Table 2. Recent research on electroencephalogram (EEG)-based emotion recognition.

Reference Corpus Publication Year Feature Extraction Feature Selection Classifier Emotion Classes Classification
Accuracy

[26] DEAP database 2018 Multivariate
synchrosqueezing transform.

Non-negative matrix
factorization and
independent
component analysis.

Artificial Neural
Network (ANN)

Arousal/valence states
(high arousal-high
valence, high arousal-low
valence, low arousal-low
valence, low arousal -high
valence).

82.03% and 82.11%
for valence and
arousal state
recognition.

[27] DEAP database 2018 Liquid State Machines (LSM) - Decision Trees Valence, arousal as well as
liking classes.

84.63%, 88.54%, and
87.03% for valence,
arousal, and liking
classes, respectively.

[28] DEAP database 2016
Empirical mode
decomposition and sample
entropy.

None SVM

Arousal/valence states
(high arousal-high
valence, high arousal-low
valence, low arousal-low
valence, low arousal-high
valence).

94.98% for
binary-class tasks,
and 93.20% for the
multi-class task.

[29] Collected database 2016

Features of time (i.e., Latency
to Amplitude Ration, Peak to
Peak Signal Value, etc.),
frequency (i.e., Power
Spectral Density, and Band
Power), and wavelet domain.

None

Three different
classifiers (ANN,
k-nearest neighbor,
and SVM)

Happiness, sadness, love,
and, anger

78.11% for ANN
classifier.
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2.3. Literature Review on Multi-Modal Emotion Recognition

Recently, a little work has investigated multiple modalities to recognize emotions [9–12].
Many studies have fused facial expression together with physiological signals [30]. Table 3 [30–33]
presents some of the surveyed studies on the multi-modal emotion fusion, including the corpus,
modalities of fusion, feature extractors, fusion approach, classifier, and classification accuracy.
As indicated in the literature and to the best of our knowledge, there are no works reported on
fusing speech with EEG for recognizing emotions. Furthermore, the resulting accuracies are still
below expectations.

It is also observed that the large number of multi-modal emotion fusion works is based on the
feature-level fusion that concatenates the features obtained from the signals of multiple modalities
before feeding them to the classifier. This may exceed the risks of conflicting information that may
be carried by the sole modalities. On the other hand, a little work has been implemented on the
decision-level fusion, which attempts to manipulate each sole modality separately, and integrates later
the results from their classifiers for making the final recognition.

In the two cases of multi-modal emotion fusion, the high dimensionality or the redundant
features resulting from the processing of each modality may make the learning process complex for
the most used machine learning algorithms like the NN classifier, which will be optimized in this
work. The training step of NN classifier is a crucial procedure. A high computational time is needed if
NN is trained by high-dimensional data. It presupposes network architecture of a huge input layer,
which significantly maximizes the weights number, usually causing an infeasible training.

This issue could be solved by minimizing the input space dimensionality to a manageable size,
then a network is trained on fewer dimensions. Clustering is a strictly necessary solution that has been
exploited to make the dimensionality reduction of an NN training data through organizing group of
objects or patterns into clusters. Accordingly, objects within the cluster itself reveal common attributes
and others within different clusters reveal dissimilarity. k-means [34] and FCM [35] are the most
employed clustering algorithms to train NN. As for FCM, a soft partitioning is executed as a pattern
and is esteemed as a member of all clusters, but distinct membership degrees are set for distinct clusters.
Despite that, the two algorithms are centroid-based, so they previously assume a fixed cluster number,
and are fully sensitive for centroid initialization [36].

On the contrary, several problems do not have knowledge on the clusters number a priori.
Numerous studies suggested solutions for these problems through running the algorithm repeatedly
along with diverse fixed centroid value k and with diverse initializations. Nevertheless, this might not
be doable with the big datasets. Moreover, running the algorithm through using a limited centroid
number might be inefficient because one solution relies on a limited initialization set. This is referred
to as “clusters number dependency” issue [37].

For solving this issue, evolutionary approaches reveal alternative optimization approaches
utilizing stochastic principles for evolving clustering solutions. They also are based upon probabilistic
rules for returning the near-optimal solution among the global search space. A few evolutionary
methods have been suggested for optimizing clusters number in data partitioning issues [38,39]. In [38],
an algorithm of artificial bee colony was executed to mimic an intelligent foraging conduct of honey
bee swarms. In [40], a k-means was optimized through a GA, which esteems the impact of isolated
points. Several studies also suggested a number of approaches for NN optimization by GA [41–44].

To overcome the high dimensionality issue, this paper suggests a new multi-class NN model,
which is optimized by hybridization of the FCM and GA. For each sole modality, the GA selects the
optimal centroids for the FCM algorithm. Then, the NN is automatically trained with the optimized
solutions from each modality, which reduce the classification error without any prior knowledge about
the fuzzy clusters number. For comparison purposes, we developed another hybrid model of FCM,
GA, and NN, which is trained using a fixed number of fuzzy clusters. The fusion is then implemented
on the decision level.
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Table 3. Research on multi-modal emotion recognition utilizing multiple modalities.

Reference Publication Year Corpus Fused Modalities Feature Extraction Fusion Approach Classifier Classification Accuracy

[30] 2019 RML, Enterface05,
and BAUM-1s

Speech and image
features

2D convolutional neural
network for audio
signals, and 3D
convolutional neural
network for image
features.

Deep belief network SVM

85.69% for Enterface05
dataset in case of
multi-modal
classification based
upon six discrete
emotions.

91.3% and 91.8%,
respectively, for binary
arousal-valence model,
in case of multi-modal
classification using
Enterface05 dataset.

[31] 2019

Private database,
namely, Big Data and
a publicly available
database of Enterface05.

Speech and video

For speech feature
extraction,
Mel-spectrogram is
obtained.
For video feature
extraction, a number of
representative frames
are selected from
a video segment.

Extreme Learning
Machines (ELM)

The CNN is separately
fed with speech and
video features,
respectively.

An accuracy of 99.9%
and 86.4% for the favor
of ELM fusion using the
Big Data and
Enterface05,
respectively.

[32] 2017 MAHNOB-HCI
database

Facial expressions
and EEG

As for facial expressions,
the appearance features
are estimated from each
frame block then the
expression percentage
feature is computed.
The EEG features are
calculated using the
Welch’s Averaged
Periodogram.

Feature-level fusion by
concatenating all
features within a single
vector, in addition to
decision-level fusion by
processing each
modality in a separate
way, and amalgamating
results from their special
classifiers in the
recognition stage.

For decision-level
fusion, LWF and EWF
are used.
For feature-level fusion,
the paper used several
statistical fusion
methods like Canonical
Correlation Analysis
(CCA) and Multiple
Feature Concatenation
(MFC).

For decision-level
fusion, LWF achieved
recognition rates of
66.28% and 63.22%,
for valence and arousal
classes, respectively.
For feature-level fusion,
MFC achieved
recognition rates of
57.47% and 58.62%,
for valence and arousal
classes, respectively.
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Table 3. Cont.

Reference Publication Year Corpus Fused Modalities Feature Extraction Fusion Approach Classifier Classification Accuracy

[33] 2015
Private database, which
were collected from
university students.

EEG images along
with speech
signals

For EEG images,
the features were
extracted using the
threshold, the Sobel
edge detection,
and some statistical
measures (e.g., mean,
variance, standard
deviation, etc.).
While the intensity,
the RMS Energy, and the
pitch were used for
speech signal feature
extraction.

None (the study
investigated correlation
of EEG images as well
as Speech signals)

None

The significance
accuracy of correlation
coefficient was about
95% for the favor of said
emotional status.
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3. Proposed Methodology

The proposed system architecture is as depicted in Figure 1, which comprised five steps:
(i) Multi-modal data acquisition, (ii) pre-processing, (iii) feature extraction, (iv) classification using
the proposed hybrid fuzzy c-means-genetic algorithm-neural network model (CM-GA-NN) model,
and (v) fusion on the decision-level. Speech and EEG signals are acquired from subjects simultaneously.
Recorded signals are then pre-processed to eliminate noise of external interferences. Next to
pre-processing, some speaker-dependent and -independent features are estimated from speech signals.
For EEG signals, features are estimated from three domains: Time, frequency, and time–frequency.
For classifying unimodal data (speech and EEG), the proposed hybrid FCM-GA-NN model is used.
To fuse speech and EEG information, two algorithms are experimented, where a separate FCM-GA-NN
classifier is used for each modality, then the output is computed by integrating posterior probabilities
of sole modalities.
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3.1. Multimodal Data Acquisition

There are a number of multi-modal emotional databases that comprise either speech or facial
expressions with different types of physiological signals. However, to the best of our knowledge,
there are no available databases that integrate both speech and EEG information. The details about
multi-modal data collection could be found in [45]. In the literature, there are different types of stimuli
that have been utilized by the researchers to induce emotions. In [7], different genres of music were
chosen as stimuli for inducing EEG-based emotions. In [46], a hypermedia system, namely MetaTutor,
was utilized as stimuli for students learning about a complicated science topic.

To collect the multi-modal data in the current study, the subjects were 36 girls from the College of
Computer and Information Sciences, Princess Nourah Bint Abdulrahman University (PNU) for girls,
KSA, who voluntarily participated. Their ages range was between 18 and 20 years. The subjects are
all Arabic native speakers. The study with its methodology was implemented under institutional
ethical review of the University. The steps of the research ethics approach that we adopted are applied
as follows:
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• Before the experiment, students were informed of the experiment purpose, and each completed
a consent form subsequent to an introduction about the steps of simulation.

• Identities of subjects were kept anonymous and confidential, where the personal information will
not be ever associated or disclosed with any answer.

• Information acquired from subjects was employed only for the aim of the current research.
• The accuracy and suitability of health and medical information used in current research were

confirmed by experts.

The materials involved 35 music tracks, which were employed as external stimuli for inducing
emotions. The English music utilized in this research involved 5 genres: Namely, electronic, metal, rock,
rap, and hip-hop. These genres are considered to cover a range that produces discernable emotions.
Each participant listened to 7 songs from each genre used (one by one); each of which was followed by
15 s of silence in order to allow for emotion labeling. In this context, the total number of tracks that
every participant listened to was 35 (5 genres × 7 songs, each of which represents a type of emotion
classes), as demonstrated in Table 4.

Only 60 s of every song was employed to avoid inducing anxiety and boredom in a participant's
brain, as depicted in Figure 2. The subjects annotated their emotional status by the end of each music
track picking one of the seven available emotional keywords: Fear, surprise, happy, disgust, neutral,
anxiety, and sadness [7,45]. To avoid the participant’s subjectivity and exaggeration while expressing
emotions, the experiment was also noticed by an expert of psychology who judged through listening
to the participant’s emotional speech and did the final labeling of emotions to exclude the spoofed
labeled emotion. According to the keyword used by the subject and the evaluation of the expert,
the approved speech/EEG recording was mapped to its representative class. Otherwise, the unapproved
one was excluded.
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track, and in between 15 s for performing emotion labelling.

While the participants were listening to the music tracks through headphones, the speech
and EEG signals were acquired simultaneously. The speech signals were acquired spontaneously
using a microphone, namely: “SHURE dynamic cardioid microphone C660N”. The distance from
microphone to speaker was kept at 3 m. The speech signals were sampled at 16 KHz. For Arabic
speech signal acquisition, each subject had to describe the feeling induced while listening to the audio

i.e., “
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@/I am feeling deep depression”.

Likewise, the EEG recordings were taken using the Emotiv-EPOC System. The device involves
14 electrodes together with 2 reference channels, which present accurate spatial resolution. The inner
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sampling rate of the device was 2048 Hz prior to filtering, and its output sampling equaled
128-samples/second. The electrode placement was chosen as 10/20. This placement is commonly used
in studies for EEG-based emotions recognition using visual and audio stimuli. This system relies on
relationships of diverse electrode positions existing on the scalp as well as the main cerebral cortex
side [38]. Figure 3 depicts the 16 electrodes, “AF3, F7, F3, FC5, T7, CMS, P7, O1, O2, P8, DRL, T8, FC6,
F4, F8, and AF4”, which were embedded to the record of the EEG signals. In the locations of P3/P4,
the channels of average reference (CMS/DRL) were situated. The MATLAB and Puzzle box synapse
were utilized for recording signals of Emotiv EPOC headset.
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The data collection was implemented during the analysis [7], by using only the parts of speech
and EEG data that the subjects were listening to music through, leaving out the parts of annotation.
In this regard, 1260 speech samples, as well as 1260 EEG signals, were acquired from students. Thus,
the total number of samples within our multi-modal emotional database was 2520. The duration of each
speech/EEG signal was 60 s. Characteristics of the corpus and its statistics are demonstrated in Table 4,
where emotions are sorted by arousal and valence dimensions [46], along with the representation of
their classes in the corpus.
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Table 4. Corpus statistics, where emotions are sorted by arousal and valence, along with the representation of their classes in the corpus.

Emotion
Dimension

Valence Others

Positive
valence

Num. of music
tracks inducing

emotion

Samples number
in database

Negative
valence

Num. of music
tracks inducing

emotion

Samples number
in database Class

Num. of music
tracks inducing

emotion

Samples number
in database

Arousal
High arousal

Happy 5
5 music tracks ×
36 participants
= 180 samples

Fear 5
5 music tracks ×
36 participants
= 180 samples

Neutral 5
5 music tracks ×
36 participants
= 180 samples

Anxiety 5 180 Surprise 5 180

Disgust 5 180

Low arousal Sadness 5 180

Total
180 samples representing positive valence-high
arousal emotion classes of each single modality
× 2 modalities (speech and EEG) = 360

540 samples representing negative valence-high
arousal emotion classes of each single modality

× 2 modalities = 1080
180 samples representing negative valence-low

arousal emotions of each single modality
× 2 modalities = 360

360 samples for each single modality
× 2 modalities = 720
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3.2. Speech Signal Pre-Processing

To identify diverse speech multi-styles and emotion states, silent features had to be isolated.
As the recorded signals are of distinct sampling frequency rates, we down-sampled all signals to
8 KHz. Then, signals were sub-divided into non-overlapping segments (frames) of 32 ms (256 samples).
This frame length gave the best performance in this paper. According to [47], the unvoiced parts are
eliminated from signals based upon existing energy within the frames and the frames with lower
energy are eliminated before the feature extraction takes place. The speech segment (of 256 samples)
was classified as voiced, unvoiced, or silence by computing its discrete wavelet transform (DWT) at
scales m = 21 through m = 25 and computing the signal energy over each scale. Then, a decision
scheme based on scale-energy was employed for detecting voiced speech segments.

As the unvoiced speech is of a high frequency nature, its DWT energy was high at scale m = 21.
Thus, this method determines the scale at which the DWT of signal reaches the highest energy.
The segment is considered unvoiced if its DWT reaches its highest energy at scale m = 21. Otherwise,
it may be a silence or voiced segment relying on its energy over the higher scales. Accordingly, the DWT
energy over the scale m = 23 of each segment, which was not classified as unvoiced, is compared
to a predefined threshold. Thus, the segments that exceed this threshold are classified as voiced.
Otherwise, they are classified as silence.

According to [24], the median of segment energies over the scale m = 23 gives a good criterion for
discriminating the silence speech signals from the voiced ones. Thus, the threshold used in this regard
was the median of segment energy distribution at the silence and voiced speech segments computed
over scale m = 23. The other voiced frames were then concatenated and the glottal waveforms were
obtained using inverse filtering as well as linear predictive analysis approach. The resulting speech and
glottal waveforms were filtered utilizing a 1st-order pre-emphasis filter [24] expressed by Equation (1).
The parameters of such filter were set as in [48].

H(S) = 1− a ∗ S−10.9 ≤ a ≤ 1.0 (1)

where S→ the speech signal and a→ takes a value of 0.9375.

3.3. EEG Signal Pre-Processing

EEG signals comprise multiple extrinsic and intrinsic artifacts that obscure the waves of brain.
Extrinsic artifacts (i.e., wiring noise of the EEG sensor) have different frequencies that may interfere
with the brain waves. Eliminating these artifacts requires filtering frequencies that are out of EEG
signals scope. Accordingly, we employed a band-pass filter with 64 Hz and 0.5 Hz of the maximum
cutoff frequency and the minimum cutoff, respectively [49]. Likewise, the notch filter that filters out
the signal narrow frequencies band [50], was utilized for noise isolation from the ambient electrodes'
wire resulting from the signal of power line interference (i.e., 60 Hz).

To isolate intrinsic artifacts, the independent component analysis algorithm is employed to
determine artifactual elements (i.e., blinking, eye movement) found in EEG recordings. This algorithm
eliminates intrinsic artifacts from signal without loss through determination of the artifactual EEG
elements and subtraction of the elements, which are associated with intrinsic artifacts for obtaining
a cleaner EEG signal. It has also been frequently utilized in EEG clinical studies for detecting and
eliminating intrinsic artifacts [51].

3.4. Speech Feature Extraction

Recently, most of the speech emotion recognition systems shown in the literature are trained
only using a specific emotional database of particular persons. This may cause drawbacks like the
lake of generality. As a result, the emotion recognition accuracy of any person who does not belong
to this database will be low. Thus, eliminating the speech individual difference is the primary step
to enhance the speech emotion recognition accuracies and the system universality. In this stage,
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feature extraction is implemented after dividing the speech signals into a sequence of non-overlapped
sub-frames/segments, each of which has a length of 256 samples. Then, the speaker-dependent and
speaker-independent features [20,21,52] are computed from each frame as follows. The selected features
have been shown in the literature to carry an important emotional content [20,21,52].

(a) Speaker-dependent features: Usually involve valuable personal emotional information [52],
as demonstrated in Table 5. They comprise fundamental frequency, fundamental frequency
four-bit value [20], Mel-frequency cepstral coefficients (MFCC), etc.

(b) Speaker-independent features: These features are used to suppress the speaker’s personal
characteristics. In [20], the speaker-independent features from emotional speech involve the
fundamental frequency average change ratio, etc.

3.5. EEG Feature Extraction

In this paper, we use a mixing set of EEG features that have been proven in the literature to be highly
effective in emotion recognition [26,29]. These features belong to time, frequency, and time–frequency.
The EEG signal is blocked into windows/frames. From the literature, the efficient window size ranges
from 3 to 12 s, when classifying the individuals’ mental state utilizing EEG signals [53]. Two methods
of windowing i.e., fixed windowing and sliding windowing, were tested to choose the superior method
in reference to classification accuracy. In this paper, we estimate 23 measures of time, frequency,
and time–frequency presented in Table 6, from 14 EEG channels.
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Table 5. The estimated speaker-dependent and speaker-independent features.

Speech Features Characteristics

Prosodic Features Speech Quality Features Spectrum Features

Fundamental
frequency-related Energy-related Time length

correlation-related

Speaker-dependent

Fundamental frequency Short-time maximum
amplitude

Short-time average
crossing zero ratio Breath sound 12-order MFCC

Fundamental frequency
maximum Short-time average energy Speech speed Throat sound SEDC for 12 frequency

bands (equally-spaced)

Fundamental frequency
four-bit value

Short-time average
amplitude

Maximum and average values of first,
two as well as three formant frequencies

Linear Predictor
Coefficients (LPC)

Speaker-independent

Fundamental frequency
average change rate

The Short-Time-Energy
average rate

Partial time ratio

Average variation of 1st, 2nd, and 3rd
formant frequency rate 1st-order difference MFCC

Standard deviation of
fundamental frequency

The amplitude of
short-time energy

Standard deviation of 1st, 2nd, and 3rd
formant frequency rate

2nd-order difference
MFCC

Change rate of four-bit
point frequency

Every sub-point value of 1st, 2nd,
and 3rd formant frequencies change ratio
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Table 6. Time, frequency, and time–frequency domains features, extracted from EEG signals in this work.

Domain of Analysis EEG Feature Explanation Equation

Time domain

Cumulative maximum Highest amplitude of channel M until sample R MaxRM = max(EEG1:R,M)

Cumulative minimum Lowest amplitude of channel M until sample R MinRM = min(EEG1:R,M)

Mean Amplitude average absolute value over the
various EEG channels MeanM =

∑K
R=1 EEGRM

K

Median Signal median over the various channels MedianM = sort(EEG)
K + 1

2
, M

Standard deviation EEG signals deviations over the various channels
in every window SDM =

√
1

K − 1

K∑
R=1

EEGRM2

Variance EEG signal amplitude variance over the
various channels VM =

1
K − 1

K∑
R=1

EEGRM
2

Kurtosis Reveals the EEG signal peak sharpness KurM =

1
K

∑
R (EEGRM −MeanM)4

( 1
K

∑
R (EEGRM −MeanM)2

)2

Smallest window components Lowest amplitude over the various channels SM = min
R

EEGRM

Moving median using a window size of n Signal median with channel M and a widow of
n -samples size MovR,M = Median

(
EEGR:R+n−1,M

)
Maximum-to-minimum difference Difference among highest and lowest EEG signal

amplitude over the various channels
Max−MinM = max

R
EEGRM −min

R
EEGRM

Peak Highest amplitude of EEG signal over the various
channels in time domain PM = maxEEGRM
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Table 6. Cont.

Domain of Analysis EEG Feature Explanation Equation

Frequency domain

Peak to Peak Time among EEG signal’s peaks over the
various windows

PTPM = PLM − arg max
R,M,LPMRM

Peak location Location of highest EEG amplitude over channels PLM = arg max
RRM

Root-mean-square level EEG signal’s Norm 2 divided by the square root of
samples number over the various EEG channels QM =

√∑K
R=1 EEGRM

2

K

Root-sum-of-squares level EEG signal’s Norm over the distinct channels in
every window RLM =

√
K∑

R=1
|EEGRM|

2

Peak-magnitude-to-root-mean-square ratio Highest amplitude of EEG signal divided by
the QM

PMM =

∣∣∣∣∣∣EEG:,M
∣∣∣∣∣∣∞√∑K

R=1|EEGRM|
2

K

Total zero crossing number Points number where the EEG amplitude
sign changes ZCM = |{R|EEGRM = 0}|

Alpha mean power EEG signal power Pow in channel M in an interval
of [[8H, 15H]]

αM = Pow(EEG:,M, F ∈ [8Hz, 15Hz])

Beta mean power EEG signal power in Beta interval βM = Pow(EEG:,M, F ∈ [16Hz, 31Hz])

Delta mean power EEG signal power in Delta interval δM = Pow(EEG:,M, F ∈ [0Hz, 4Hz])

Theta mean power EEG signal power in Theta interval θM = Pow(EEG:,M, F ∈ [4Hz, 7Hz])

Median frequency Signal power half of channel M which is
distributed over the frequencies lower than MFM.

Pow(EEG:,M, F ∈ [0Hz, MFM]) =
Pow(EEG:,M, F ∈ [MFM, 64Hz])

Time-frequency
domain Spectrogram

The spectrogram (short-time Fourier transform),
is computed through multiplying the time signal
by a sliding time-window, referred as (M) .
The time-dimension is added by window location
and one outputs time-varying frequency analysis.
o refers to time location and K is the discrete
frequencies number.

SPR =
∑M−1

R=0 EEG(M)W(M− o)exp
(
−

j2πMR
K

)
,

where0 ≤M ≤ (K − 1)
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3.6. The Classifier

3.6.1. The Basic Classifier

NN is a parallel processor distributed massively [41]. It involves single input layer, besides
one output layer, as well as one hidden layer. Such a hidden layer is like a connection in between
input/output layers through multiple weights, nodes, biases, in addition to activation functions.
The operational procedure of NN is denoted by the subsequent equations:

W j =
k∑

t=1

ω jtXt (2)

Y j = φ
(
W j + A j

)
(3)

where j indicates a neuron in the network, k is input parameters number, Xt(t = 1, 2, . . . , k) represents
the t-th input parameter, in addition to ω jt(t = 1, 2, . . . , k) , denotes respective synaptic weight. Initially,
every synaptic weight ω jt multiplies the input sample Xt, which conforms to it. Values of weight are
put in a summator

∑
, getting an output, indicated as W j. Afterwards, W j is applied to the activation

function φ for producing an output signal Y j, and A j denotes the bias.
This study deals with a multi-class classification problem where N classes of emotions are to be

recognized. According to the literature [54], the multi-class neural network (NN) classification can be
implemented using: (1) Either a single neural network model with K outputs or (2) a multi-NN model
with hierarchical structure. In this regard, there are two methods that can be employed to model the
pattern classes, one-against-all (OAA) approach, and one-against-one (OAO) approach [54–56].

In this paper, we present a multi-class back propagation neural network for emotion classification.
We adopt the OAA approach scheme, which operates on a system of M = N binary neural networks,
NN j, j = 1, . . . , N , where each single network, NN j, holds one output node P j that has an output
function F j being modulated to output F j(x) = 1or0 to determine whether or not the input sample x
belongs to class j . Accordingly, each neural network NN j is trained using the same dataset but with
different class labels.

For training the jth neural network NN j, the training set ΩT is subdivided into two sets,

ΩT = Ω j
T ∪Ω

j
T, where Ω j

T includes all the class j samples, which obtain the label 1, and Ω
j
T includes

all the samples belonging to all of the rest classes, which obtain the label 0. The decision function
considers the activation function output at every neural network NN j, and outputs the label of the
class that confronts to neural network NN j, which obtains the highest output value by the activation
function of the Pj output node:

F(x, y1, . . . , yM) = arg max
j=1,...,M

(
y j

)
. (4)

In this study, we constructed an OAA system of 7 binary NNs with 20 hidden nodes for each of
which. Selecting the appropriate parameters for the multi-class back-propagation neural network was
based upon minimizing the root-mean-square-error (RMSE) between target and the predicted output.
The parameters giving the best accuracy are demonstrated in Section 4.

3.6.2. Proposed Classifier Design

The proposed hybrid FCM-GA-NN model is depicted in Figure 4. The chromosome fitness (feature
selection outcome) is evaluated based on the optimal fuzzy clusters that reduce the NN classification
error with no prior knowledge about the number of fuzzy clusters. Thereafter, chromosomes are
encoded utilizing the resulting fuzzy memberships. Since the cluster number u is not determined,
the population may have chromosomes with uniform or different lengths. Therefore, a modified
single-point crossover algorithm is developed. Accordingly, the mutation algorithm changes every
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dimension of a solution by a probability PT. Then, the fuzzy memberships are computed, and the
clustering indices of the object are taken based on the maximum fuzzy membership values respecting
different fuzzy clusters. In this regard, some empty classes may be found when crossing two parents of
different lengths, or if a class number is of big size. In case of an empty j-th class, the center u j will be
eliminated from

{
u1, u2, . . . . . . , uJ

}
. Update of the new memberships and centroids with the remaining

centroids is accordingly implemented. In the last generation, the algorithm generates a non-dominated
set of solutions whose number changes in reference to population size. Such solutions are regarded
as equal in relation to the fitness values obtained by fitness function. The final clustering outcome is
determined based upon a clustering ensemble method. Algorithm A1 reveals the pseudo-code of the
whole proposed model Appendix A.
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The steps of the proposed algorithm are as follow:
(a) Fuzzy-clustering of each modality’s emotional dataset
The purpose of a clustering algorithm goes to separation of resembling objects, i.e., feature vectors

into shared cluster and unalike objects into distinct clusters; thus, the within-cluster objects similarity
measure is large and is contrarily small for the between-cluster objects. In this paper, each modality’s
feature set is separated into training and testing sets. Consequently, the FCM algorithm is executed to
cluster the relevant emotion vectors in each modality’s training set individually into several categories,
i.e., emotional speech classes as well as emotional EEG classes. The developed clustering procedure is
demonstrated in Equations (5)–(9) of Algorithm A2,∑u

i=1
µm

i,k = 1, k = 1, 2, . . . , K (5)

0 <
∑K

k=1
µm

i,k < K, i = 1, 2, . . . , u (6)
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Rm
i =

∑K
k=1 (µ

m
i,k)

a
· xk∑K

k=1 (µ
m
i,k)

a , i = 1, . . . , u, 1 < a (7)

µm+1
i,k =

[∑u

h=1

(
||xk −Rm

i ||
2/||xk −Rm

h ||
2
) 1

a−1

]−1

(8)

Km+1
a =

∑K

k=1

∑u

i=1

[
(µm+1

i,k )
a
· ||xk −Ri||

2
]

(9)

where:

K→ the number of emotional classes in each modality’s dataset,
xk → the emotion feature vector of the sample k ,

µm
ik → the emotion feature vector’s membership grade belonging to cluster i at time m, 0 <

∑K
k=1 µ

m
ik < K,

ε→ decides time complexity and precision for clustering. (in this paper, it was set as 10−10).

(b) Chromosome representation
After applying fuzzy clustering, a c × b matrix, representing fuzzy cluster centers, can be

considered as a chromosome in GAs terminology. Every chromosome’s gene is indicated by an element
of U of Equation (10). To express the decision variables, a matrix U is transformed into a vector
= [B11, . . . , BK1, .., B1n, . . . , BKn] , which is encoded as a single chromosome whose length is changing
according to n (see Figure 5).

U =


B11 B12 B13 . . . B1n
B21 B22 B23 . . . B2n

: : : . . . :
BK1 BK2 BK3 . . . BKn

 (10)
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(c) Fitness evaluation
Applying the FCM algorithm attempts to determine optimal number of clusters, that is, for cluster

validity. The WB index [57] is utilized to find cluster number u that diminishes the intra-cluster
variance acv(µ, R) and increases the inter-cluster variance. On this basis, the feature selection result
(the fitness) of the chromosome is assessed by finding the optimal fuzzy clusters that minimizes the
classification error without prior knowledge on the clusters number.

To handle that multi-criteria decision-making issue, we used a standalone weighted fitness function
combining two single processes into one objective. According to Equation (11), two predefined weights
Wu and Wc are associated with optimal number of clusters up and classification error , respectively.

FitFCM−GA−NN = Wu
[
up

]
+ Wc[ce] (11)

The optimal cluster number up is obtained by:

up = arg max
u

WB =
ecv(µ, R)
acv(µ, R)

(12)

where:

acv(µ, R) =
u∑

i=1

K∑
k=1

(Ui)
−1
||xk −Ri||

2 (13)
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ecv(µ, R) =
1

Uu
2

u−1∑
λ=1

u∑
a=λ+1

(Ui)
−1
∗

 ∑
k∈vλ∪va

(µλk · µak)

|vλ|+ |va|


−1

||Rλ −Ra||
2 (14)

Ui =
K∑

k=1

µ2
ik/|vi|, i = 1, 2, . . . , u (15)

vi = {k|Iik = 1}, Iik =

 1, f µik = maxµhk
1≤ h≤u

0, otherwise
(16)

and Uu
2 indicates a combination computation.

The classification error is computed using:

ce =
NE
NT

(17)

where NE← the number of incorrectly classified samples. NT← the total number of training instances.
(d) Binary tournament selection
Binary tournament selection technique [58] is utilized in this work to choose parents for creating

new generation. Accordingly, two individuals are picked haphazardly for playing a tournament.
During that, the winner is picked by ≺n , referred to as a crowded comparison operator. Such operator
relies on two attributes denoted as non-domination rank (Arank) and crowding distance (Adist). If A
and B are assumed to be two individuals, ≺n can be defined as follows. In applying this approach,
chromosomes of 40% top-ranking are picked for producing the child chromosomes through crossover
and mutation procedures.

A ≺n Bi f (Arank < Brank)or(Arank = Brank)and(Adis < Bgist) (18)

(e) Crossover procedure
In this framework, the length of every chromosome within the population is denoted by K × n .

The two parent chromosomes might be with equal or unequal lengths relying on the K values; therefore,
each cluster centroid may be indivisible while crossing two parents. Thus, a modified single-point
crossover algorithm is developed in this paper.

Assuming that R = {r1, r2, r3, r4} and M = {m1, m2, m3, m4} are two parent solutions having four
cluster centers, where each ri and mi represents a feature vector, D1 and D2 are two children created.
To perform uniform crossover, each two centers from parents are crossed with a probability of 0.5.
As depicted in Figure 6, the crossover is not implemented to gene 3, and values of r3 and m3 are copied
to gene 3 of children D1 and D2, respectively. Values of genes 1, 2, and 4 have been updated to y1, y2,
y4 and z1, z2, z4 on D1 and D2, respectively. If the two parents are with different lengths (see Figure 6),
the centroids considered for crossover in the longer parent are randomly picked. Thus, r1, r2, r3, r5

are chosen and crossed with m1, m2, m3, m4, respectively. Then, the omitted centers values (r4,r6) are
copied to an offspring. Algorithm A3 demonstrates the crossover procedure between parents. The new
centers’ values for two offspring are calculated using Equations (19)–(20) of Algorithm A3.

D1
j =

[(1 + beta) ∗Q1 + (1− beta) ∗Q2]

2
(19)

D2
j =

[(1− beta) ∗Q1 + (1 + beta) ∗Q2]

2
(20)

(f) Mutation procedure
In this procedure, a small probability of mutating PT is assigned to each gene, determined by

randomly generating a number (the gene is mutated if the generated number is less than PT, otherwise
not). According to this framework, a change of a gene within a chromosome will trigger a sequence of
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gene changes. Thus, the fuzzy memberships of a chromosome point will be chosen to mutate together
using a probability PT. The mutation procedure is demonstrated in Algorithm A4.
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(g) Obtaining final solution
The cluster validity indices are utilized by taking their ranking numbers, so we can choose

some solutions to integrate. The ranking of every cluster validity index is illustrated as follows.
Assuming the cluster validity indices number is V , a corresponding ranking vector of every solution is
R(s) = (r1(s), r2(s), . . . , rV(s)) , r j(s) ∈ {1, 2, . . . , n}, 1 ≤ j ≤ V . Besides that, the sum of cluster validity
indices for every solution s is computed. Accordingly, the sum ranking number for every solution is
computed as rsum(s) ∈ {1, 2, . . . , n}, which is integrated to R(s) for generating a new vector referred as
R′(s) = (r1(s), r2(s), . . . , rV+1(s)) .

Therefore, a total ranking number of s is Rt(s) =
∑V+1

j=1 r j(s). The smallest value of Rt may be V + 1
if all cluster validity indices for a single solution are the best. Algorithm A5 shows the steps to get final
clustering solution. The whole process is illustrated in Figure 7. Many clustering ensemble algorithms
have been compared in the literature [59]. As the meta-clustering algorithm showed the highest
performance in terms of accuracy average rates (AVR), it has been applied in Step 13 of Algorithm A5.

Information 2019, 10, x FOR PEER REVIEW 23 of 39 

 

Therefore, a total ranking number of 𝒔 is 𝑹𝒕(𝒔) = ∑ 𝒓𝒋(𝒔)𝑽ା𝟏𝒋ୀ𝟏 . The smallest value of 𝑹𝒕 may be 𝑽 + 𝟏 if all cluster validity indices for a single solution are the best. Algorithm 5 shows the steps to 
get final clustering solution. The whole process is illustrated in Figure 7. Many clustering ensemble 
algorithms have been compared in the literature [59]. As the meta-clustering algorithm showed the 
highest performance in terms of accuracy average rates (AVR), it has been applied in Step 13 of 
Algorithm 5. 

 
Figure 7. Clustering ensemble based final solution. 

(h) Decision-level fusion 
A decision-level fusion first processes every modality separately, and then integrates the 

outcomes from their classifiers to reach the final decision. Motivated by [60], for every trial, assume 
that 𝑴𝑺𝒑𝒆𝒆𝒄𝒉𝒙 , 𝑴𝑬𝑬𝑮𝒙  and 𝑴𝟎𝒙 ∈ [𝟎, 𝟏]  denoting the probability of classifier for class 𝒙 ∈ [𝟏, 𝟐, 𝟑]  for 
speech, EEG, and fusion, each in order. Subsequently, the class probabilities are obtained using 𝑴𝟎𝒙 = 𝜷𝑴𝑺𝒑𝒆𝒆𝒄𝒉𝒙 + (𝟏 − 𝜷)𝑴𝑬𝑬𝑮𝒙  (21) 

where 𝜷 is a modality weight. Subsequently, we tested two approaches to calculate 𝜷 . 

Equal weights fusion method (EWF) that makes fusion on a decision-level, where each class 
final probabilities are estimated using the class probability taken from every sole modality. That is, 𝑴𝟎𝒙 = 𝑴𝑺𝒑𝒆𝒆𝒄𝒉𝒙 + 𝑴𝑬𝑬𝑮𝒙 . (22) 

Learned weights fusion method (LWF) is a different method for the decision-level fusion, 
where an optimal decision weight from each modality is numerically approximated. This is 
implemented by changing from 0 to 1 and selecting the value that outputs the superior accuracy for 
the training set. Then, an estimated weight is implemented to the sample, by Equation (22). 

4. Experimental Results 

This section discusses how the system is evaluated and compared to the state-of-the-art 
systems. For testing the proposed FCM-GA-NN model performance, we not only conduct our 
experiments on the collected multi-modal emotion database, but also on two different public 
unimodal datasets speech and EEG, which are used in the literature for the purposes of 
comparisons. 

4.1. Performance Evaluation Metrics 

In this paper, the performance is assessed through four criteria: AVR, root mean squared error 
(RMSE), percent deviation (PD), and correlation coefficient (𝝆) . Accuracy is referred to as a truly 
classified samples ratio, 𝑻 over the total samples number considered for classification, 𝑵 . The RMSE 
is employed for measuring the difference between both predicted and actual values. The correlation 
coefficient reveals the degree of approximation between estimated and actual values. Calculating 
the aforementioned indicators is as follows: 

Figure 7. Clustering ensemble based final solution.

(h) Decision-level fusion
A decision-level fusion first processes every modality separately, and then integrates the outcomes

from their classifiers to reach the final decision. Motivated by [60], for every trial, assume that Mx
Speech,

Mx
EEG and Mx

0 ∈ [0, 1] denoting the probability of classifier for class x ∈ [1, 2, 3] for speech, EEG,
and fusion, each in order. Subsequently, the class probabilities are obtained using

Mx
0 = βMx

Speech + (1− β)Mx
EEG (21)

where β is a modality weight. Subsequently, we tested two approaches to calculate β .



Information 2019, 10, 239 24 of 39

Equal weights fusion method (EWF) that makes fusion on a decision-level, where each class final
probabilities are estimated using the class probability taken from every sole modality. That is,

Mx
0 = Mx

Speech + Mx
EEG. (22)

Learned weights fusion method (LWF) is a different method for the decision-level fusion,
where an optimal decision weight from each modality is numerically approximated. This is implemented
by changing from 0 to 1 and selecting the value that outputs the superior accuracy for the training set.
Then, an estimated weight is implemented to the sample, by Equation (22).

4. Experimental Results

This section discusses how the system is evaluated and compared to the state-of-the-art systems.
For testing the proposed FCM-GA-NN model performance, we not only conduct our experiments on
the collected multi-modal emotion database, but also on two different public unimodal datasets speech
and EEG, which are used in the literature for the purposes of comparisons.

4.1. Performance Evaluation Metrics

In this paper, the performance is assessed through four criteria: AVR, root mean squared error
(RMSE), percent deviation (PD), and correlation coefficient (ρ). Accuracy is referred to as a truly
classified samples ratio, T over the total samples number considered for classification, N . The RMSE is
employed for measuring the difference between both predicted and actual values. The correlation
coefficient reveals the degree of approximation between estimated and actual values. Calculating the
aforementioned indicators is as follows:

AVR =
T
N

(23)

RMSE =

√
1

Num

∑Num

i=1
(µx − µy)

2 (24)

PD =
1

Num

Num∑
i=1

∣∣∣µx − µy
∣∣∣

µx
× 100 (25)

ρ =

∑Num
i=1

(
µy − µY

)
(µx − µX)√∑Num

i=1 (µy − µY)
2 ∑Num

i=1 (µx − µX)
2

. (26)

Num← the data points number.
µy ← the output predicted by the model.
µx ← the sample actual value.
µY ← the mean of µy .
µX ← the mean of µx .

4.2. Cross Validation (CV)

For each single modality, the accuracy of the hybrid classification algorithm is evaluated using
the nested cross validation [61,62]. In this method, two nested CV loops are used to test the classifier,
as shown in Figure 8. For the outer loop, the 1260 samples of each modality are split into seven
folds. This means that in each fold we will have 210 testing samples and 1050 training samples.
Every 210 samples are used as validation set (outer testing set), and the other 1050 samples are
combined as outer training set. This procedure is repeated for each fold. Then, each outer training set
is split into seven folds. Therefore, each fold will have 175 testing samples and 875 training samples.

A single set of 175 samples is accordingly used for validation (inner testing set), and the 875
samples are used as inner training set. This is implemented repeatedly for each fold. In this manner, the
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inner CV is used for selecting the best parameters that reduces the RMSE of our algorithm. For instance,
the activation functions for the hidden and output layers, the learning rate, the maximum generations,
the mutation ratio, the reproduction ratio, etc. The outer CV is used for final model testing.
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4.3. First Experiment: Comparison of the Proposed FCM-GA-NN Model to the Developed FCM−GA−NN f ixed

To reveal the efficiency of the proposed FCM-GA-NN model, it is crucial to compare it with
another developed model that uses FCM and GA as hybrid to train NN [63]. The second model is
centroid-based and requires previously a fixed cluster number. Contrarily, our model finds optimal
fuzzy clusters with no prior knowledge on their number. Accordingly, the proposed model’s errors are
compared with the second hybrid model. Figure 9 depicts the bar graph illustrations representing the
AVR, RMSE s, PDs, and correlation coefficients ρs among both measured and predicted values from
the two models.
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Taking fear class as an instance, the AVR rates of the proposed FCM-GA-NN model are 98.85%
and 98.08% for EEG and speech modalities, respectively. By comparison, the AVRs using FCM−GA−
NN f ixed model are smaller than those of the proposed model, 95.66%, and 95.11% for EEG and speech
modalities, respectively. The percent deviations (PDs ) are 21.42% and 21.24% for speech and EEG
modalities, respectively, which are also higher than the values from the proposed model. Furthermore,
the proposed model exhibits ρ s of 0.9511 and 0.841, for EEG and speech modalities, respectively,
which are higher than those obtained using the other model. The parameters that give the best accuracy
for the two models are illustrated in Table 7.

Table 7. The parameters that give the best accuracy in this work.

Parameter Value

Number of layers for each NN 3 (input, hidden, output)
Number of hidden nodes in each NN 20
Activation functions for the hidden and output layers tansig-purelin
Learning rule Back-propagation
Learning rate 0. 1
Momentum constant 0. 7
Units of population 150
Maximum generations 50
Mutation rate 0.2
Crossover rate 0.5

4.4. Second Experiment: Speech Emotion Recognition

The second experiment depicted in Figure 10 was intended to investigate how robust the proposed
hybrid fuzzy-evolutionary NN model is for speech emotion recognition. Accordingly, two databases
for speakers of two different languages were used to test the model. The first dataset is collected during
this study. The second dataset is a public one (SAVEE) [24]. For each dataset, the emotional features
are extracted from the speech testing samples. Further, the proposed classifier is carried out.
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The comparative results for the proposed model over the two speech datasets are illustrated
as follows:

(a) From Figure 9c, it can be vividly recognized that using the collected dataset, the proposed model
achieved higher AVRs of 98.08%, 98.03%, 97.44%, 97.24%, 96.87%, 96.76%, and 96.55% for fear,
neutral, anxiety, happy, surprise, disgust, and sadness classes, respectively. Likewise, it can be
observed that during training the proposed model exhibits lower RMSE of 9.6233, 9.9299, 10.8219,
10.9501, 11.5206, 12.0312, and 13.1127, respectively, for the aforementioned classes. The model
also gives lower PDs of 16.99%, 17.15%, 18.19%, 18.35%, 19.13%, 19.32%, and 20.67%, respectively,
for the same classes.

(b) From Figure 11a, the proposed model achieved higher AVRs using the SAVEE dataset, 98.98%,
98.96%, 98.93%, 98.11%, 97.83%, 97.42%, and 97.21% for surprise, anxiety, sadness, happy, fear,
neutral, and disgust classes, respectively. The minimum and maximum PDs occur at surprise
class (15.31%) and disgust class (18.49%), respectively. The highest correlation coefficient ρ equals
0.9801, which is found at surprise class, while the lowest value is 0.733 and noted at disgust class.

By comparison, it is observed that the estimated measures give superior results over the two
datasets. These results reflect the robustness of the mixing speech feature set in combination with the
proposed hybrid model. On the other hand, there are low noticeable differences with respect to AVRs,
RMSE s,PDs , and ρ s, obtained on emotion classes of the two datasets, for the favor of the SAVEE
dataset. These differences may be due to the difference in the stimuli mode used to induce emotions.
Whereas our speech dataset was acquired using music stimuli, the SAVEE dataset was collected using
video stimuli.

Eventually, we compared our results to the other published results obtained using the public
database of SAVEE, as illustrated in Table 8 [24,64,65]. It is obvious that our model yields superior
results which outperform the state-of-the-art on speech emotion recognition, in terms of classification
accuracy, where the total AVR achieved was 98.21%. This result supports the previously published
works that have reported the powerful of the hybrid classification approaches in optimizing the speech
recognition results in general [66,67].
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available databases: (a) SAVEE database for speech emotion recognition, and (b) MAHNOB for EEG
emotion recognition.
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Table 8. Comparison of the proposed model accuracy to the state-of-the-art accuracies obtained using SAVEE database.

Corpus Reference Year of
Publication Feature Extraction Feature Selection Classifier Classification Accuracy

SAVEE

[24] 2017

The study used 50 higher order
features (28 Bispectral feature +
22 Bicoherence), which were
combined with Inter-Speech
2010 features for improving the
recognition rate.

Feature selection included to
phases: Multi-cluster feature
selection, and proposed
hybrid method of
Biogeography-based
Optimization as well as
Particle Swarm Optimization.

SVM and ELM.

The speaker-independent
accuracies were 62.38% and
50.60%, for SVM and ELM,
respectively, whereas the
speaker-dependent
accuracies were 70.83%,
and 69.51%, respectively.

[64] 2018 Feature set of 21 statistics

Principal Component
Analysis (PCA), Linear
Discriminant Analysis (LDA),
PCA + LDA.

Genetic algorithm- Brain
Emotional Learning model.

The speaker independent
accuracy was 44.18%,
when using PCA as
feature selector

[65] 2019
The openSMILE toolbox was
used to extract 1582 features
from each speech sample

Proposed feature selection
method relies on the changes
in emotions according to
acoustic features.

SVM, k-nearest neighbor
(k-NN), and NN.

77.92%, 73.62%, and 57.06%
for SVM, k-NN, and NN,
respectively.

Proposed speech
emotion recognition
model

Mixing feature set of
speaker-dependent and
speaker-independent
characteristics.

Hybrid of FCM and GA. Proposed hybrid
Optimized multi-class NN 98.21%
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4.5. Third Experiment: EEG Emotion Recognition

In terms of performance comparison purposes, we used two different datasets to check the
robustness of the proposed model regarding EEG emotion recognition. The first dataset was collected
during current research, which contains EEG signals of only 14 channels. The second dataset is a public
one (MAHNOB) [45], which comprises EEG signals of 32 channels. MAHNOB dataset comprises user
response recordings to a multimedia content. Video fragments from online sources, which last among
34.9 s and 117 s, using different content, were chosen for inducing nine emotions in the participants.

Next to each video clip, the subjects were asked to express their emotional status by a keyword like
neutral, amusement, surprise, happiness, anger, disgust, sadness, fear, and anxiety. For each dataset,
we estimated a set of extracted features from three domains, frequency, time, and time–frequency.
Thereafter, the proposed model is applied to classify each dataset into seven-class emotions of EEG
signals as depicted in Figure 12. The overall comparative results for the proposed model over the two
datasets are overviewed as:

Using the collected dataset, the proposed model achieved higher AVRs of 98.85%, 98.69%,
and 98.57%, respectively, for fear, anxiety, and disgust classes. It also gives lower RMSE s of 8.7233,
8.9111, and 8.9555, respectively for these classes, as shown in Figure 9d. The lowest and highest PDs
found at fear class (16.33%) and sadness class (19.72%), respectively. The greatest ρ is 0.9511, also found
at fear class.
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With respect to the MAHNOB dataset, the proposed model gives higher AVRs of 98.96%, 98.91%,
and 98.55%, respectively, for surprise, neutral, and sadness classes. On contrast, it gives lower RMSE s
of 8.0112, 8.5402, and 8.9555, respectively, for the aforesaid classes, as shown in Figure 11b.

In terms of performance comparisons over the two datasets, the overall AVR of the proposed
classifier is 98.26%, which shows low noticeable differences on the emotion classes for the favor of
MAHNOB database. This can be interpreted by the differences in stimuli mode employed to induce
emotions, where MAHNOB database uses visual stimuli. From these results, we deduce that the
selected EEG feature set in combination to the proposed FCM-GA-NN model is robust for classifying
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emotions from EEG signals. We also conducted a comparison of the impact of fixed/sliding windowing
methods on AVRs over the two datasets. As demonstrated in Table 9, the comparison reveals that
fixed windowing returns better AVRs over the two compared datasets. The window size of 6 S was
found to give the best AVR. We also compared our results to the other state-of-the-art results obtained
using MAHNOB database, as shown in Table 10 [68–70]. The results indicate that the proposed model
outperforms the state-of-the-art concerning EEG emotion recognition.

Table 9. Comparison of using fixed windowing and sliding windowing on AVRs over the two
compared databases.

Dataset AVR (%)

Fixed window Sliding window

Collected database 98.06 96.93
MAHNOB 98.26 97.41

Table 10. Comparison of the proposed model accuracy to the state-of-the-art accuracies obtained using
MAHNOB database.

Corpus Reference Year of
Publication Feature Extraction Feature Selection Classifier Classification

Accuracy

MAHNOB

[68] 2017
Features of time,
frequency, and
time–frequency.

Genetic Algorithm,
Ant Colony
Optimization, Particle
Swarm Optimization,
and Differential
Evolution.

Probabilistic
Neural Network 96.97 ± 1.893%

[69] 2018

Empirical Mode
Decomposition
(EMD) and the
Wavelet Transform.

Heuristic Black Hole
Algorithm Multi-class SVM 92.56%

[70] 2018 EMD and the Bat
algorithm

Autonomous Bat
Algorithm Multi-class SVM 95%

Proposed
model

Hybrid of FCM and
GA.

Optimized
multi-class NN 98.06%

4.6. Fourth Experiment: Multi-Modal Emotion Recognition

The experiment is depicted in Figure 13. Figure 14 depicts comparisons of the multi-modal emotion
recognition results obtained using the two decision level algorithms i.e., EWF and LWF, when changing
the value of the NN weight. From the figure, LWF outperforms the EWF over all cases of changing
the learned NN weight. This recommends that predicting or approximating a weighting among the
modalities performs better than classifying the samples employing individual modality outputs just
as features.Information 2019, 10, x FOR PEER REVIEW 31 of 39 

 

 
Figure 13. Flowchart of multi-modal emotion recognition using speech and EEG 
information. 

 
(a) 

 
(b) 

Figure 14. Multi-modal emotion recognition results using (a) EWF and (b) LWF versus the 
learned weights. 

Although the results taken by speech modality are only lower than those obtained with EEG 
only, this recommends that it is imperative to fuse speech and EEG signals, because there are 
emotional states that are recognized in a superior way from EEG than from speech. Eventually, the 
overall performance of multi-modal emotion aware system is 98.53%, which is higher in 
comparison to performance taken by our superior unimodal system, which is based upon EEG. 
Thus, the decision-level fusion is superior than the sole measurement. 

In conclusion, consideration of multiple modalities is useful during the time that some 
modality features are lost or unreliable. This might happen, for instance, when the process of 
feature detection is critical due to noisy environmental factors, when corrupting the signals through 

Figure 13. Flowchart of multi-modal emotion recognition using speech and EEG information.



Information 2019, 10, 239 31 of 39

Information 2019, 10, x FOR PEER REVIEW 31 of 39 

 

 
Figure 13. Flowchart of multi-modal emotion recognition using speech and EEG 
information. 

 
(a) 

 
(b) 

Figure 14. Multi-modal emotion recognition results using (a) EWF and (b) LWF versus the 
learned weights. 

Although the results taken by speech modality are only lower than those obtained with EEG 
only, this recommends that it is imperative to fuse speech and EEG signals, because there are 
emotional states that are recognized in a superior way from EEG than from speech. Eventually, the 
overall performance of multi-modal emotion aware system is 98.53%, which is higher in 
comparison to performance taken by our superior unimodal system, which is based upon EEG. 
Thus, the decision-level fusion is superior than the sole measurement. 

In conclusion, consideration of multiple modalities is useful during the time that some 
modality features are lost or unreliable. This might happen, for instance, when the process of 
feature detection is critical due to noisy environmental factors, when corrupting the signals through 

Figure 14. Multi-modal emotion recognition results using (a) EWF and (b) LWF versus the learned weights.

Although the results taken by speech modality are only lower than those obtained with EEG only,
this recommends that it is imperative to fuse speech and EEG signals, because there are emotional states
that are recognized in a superior way from EEG than from speech. Eventually, the overall performance
of multi-modal emotion aware system is 98.53%, which is higher in comparison to performance taken
by our superior unimodal system, which is based upon EEG. Thus, the decision-level fusion is superior
than the sole measurement.

In conclusion, consideration of multiple modalities is useful during the time that some modality
features are lost or unreliable. This might happen, for instance, when the process of feature detection is
critical due to noisy environmental factors, when corrupting the signals through transmission, or, if the
system is incapable of recording one of the modalities. Therefore, the emotion recognition system must
be robust enough to manage these real-life naturalistic scenarios.

4.7. Computational Time Comparisons

The total run time (in seconds) is computed over our corpus for the three modalities, by testing
the two algorithms, i.e., proposed FCM-GA-NN and FCM−GA−NN f ixed. In terms of computational
run time, Figure 15 depicts the comparative performance analysis of the two classifiers, during the CV.
In comparison to the proposed FCM-GA-NN model, we can find that multi-modal emotion recognition
using FCM−GA−NN f ixed model reaches the highest total computational time of 3150 s. On contrary,
the total computational time achieved by the proposed FCM-GA-NN model is reduced by about 1512 s.
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5. Conclusions and Future Work

This paper introduces a novel multi-modal emotion recognition framework by fusing speech
and EEG information. The EEG signals were utilized as internal channel complementing of speech
for more reliable emotions recognition. For classification of unimodal data (speech and EEG) and
multi-modal data, a proposed hybrid FCM-GA-NN soft computing model was introduced. The fitness
function of the algorithm checks the optimal number of fuzzy clusters that reduces the classification
error. The proposed model was compared to another developed FCM-GA-NN model that relies on
determination of a fixed number for fuzzy clusters, and the fitness function of the algorithm checks the
optimal chromosome that reduces the classification error. Accordingly, the proposed model’s errors
were compared with the second model. The overall evaluation results of the two model, on emotion
classes show the superiority of the proposed model. The algorithm was also implemented on two
public databases for speech and EEG signals, namely SAVEE and MAHNOB, respectively. The overall
performance of the proposed model reached 98.26%, 98.21%, and (98.06% and 97.28%) respectively for
MAHNOB, SAVEE, and our dataset of its two modalities (EEG and speech, respectively). These results
outperform the state-of-the-art results obtained using SAVEE and MAHNOB databases. Although the
results taken by speech modality only (97.28%) are lower than those obtained with EEG only (98.06%),
when applied to our dataset, this recommends fusing speech and EEG signals, because there are
emotional states that are better recognized by the EEG than by speech. Therefore, after executing
the automatic classification of every modality, the two modalities were fused on the decision-level.
The comparative results of the fusion methods demonstrate that LWF performs better than EWF.
By fusing speech and EEG modalities, the total computational time achieved by the proposed model
also was reduced by about 1512 seconds than the FCM −GA −NN f ixed model (with fixed number
of centroids), when applied on our collected database. For the future work, we intend to recognize
emotions through using a deep learning approach, which is optimized by the bio-inspired algorithms.
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Appendix A Algorithms

The pseudo-code of algorithms used in this paper is shown in Appendix A.
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Algorithm A1: The proposed FCM-GA-NN model for emotion classification.

Inputs: (A) Parent population of each single modality Mp (speech and EEG), indicated as P
(
Mp

)
, (p = 1, 2).

Output: Offspring population Pt+1
(
Mp

)
where each offspring contains an optimal fuzzy cluster set that

minimizes the classification error.

1. For each sin gle modality Mp(p = 1, 2) do
2. Generate fuzzy memberships of each training sample from Mp by one-step FCM clustering of

Algorithm A2.
3. Construct coded chromosome contain clusters centroids.
4. Evaluate the fitness by Equations (11)–(17).

5. Implement binary tournament selection on modality’s population P
(
Mp

)
to get the mating pool P′

(
Mp

)
.

6. For each p→ 1 to psize

7. Decode two chromosomes from P′
(
Mp

)
as matrices Cp and Cp+1 using Equation (10).

8. Compute fuzzy centroid sets Fp and Fp+1 for Cp and Cp+1, respectively.
9. For k = 1 to K // k indicates the index of kth centroid of the chromosome
10. Apply crossover on Fp(k) and Fp+1(k) according to Algorithm A3 to get F′p(k) and F′p+1(k) .

11. Apply mutation on offsprings F′p(k) and F′p+1(k) according to Algorithm A4 to get F′′p (k) and F′′p+1(k)
that represent updated centroid sets Np and Np+1.

12. End For
13. End For
14. // Assigning object to a cluster
15. For j = 1 to Z
16. Compute distances among objects and every cluster centroid in N j, then update fuzzy memberships of

U j by Equation (8) of Algorithm A2.
17. Calculate the clustering indices by the maximum fuzzy memberships with regard to different clusters.

IF empty cluster is found THEN
18. Remove this empty cluster and then Go To Step 16.
19. ELSE
20. Assign fitness by Equations (11)–(17).
21. END
22. Get the resulting i-th offspring chromosome with its updated U j and objectives.
23. End For

24. Apply Algorithm A5 to the resulting population Pt+1
(
Mp

)
to compute the final solutions by

clustering ensemble.
25. Train the NN with solutions having the optimal cluster set that minimizes the classification error.
26. End For
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Algorithm A2: The clustering algorithm.

1. Determine the cluster number u .
2. Set the initial value of µm

i,k at time m = 0 satisfying:

3.
∑u

i=1 µ
m
i,k = 1, k = 1, 2, . . . , K, (5)

4. 0 <
∑K

k=1 µ
m
i,k < K, i = 1, 2, . . . , u , where: (6) I f
∑K

k=1 µ
m
i,k = 0, empty cluster

I f
∑K

k=1 µ
m
i,k = K, f eaturevector belongs to i

5. Assume that Km
a indicates the cluster index at time m and its initial value at m = 0 as 0.

6. Set the centroid of a cluster i at time m as Rm
i then compute the u cluster centroids for the partition as:

Rm
i =

∑K
k=1 (µ

m
i,k)

a
· xk∑K

k=1 (µ
m
i,k)

a , i = 1, . . . , u, 1 < a. (7)

7. Update membership degree for each emotion vector xk:

µm+1
i,k =

[∑u
h=1

(
||xk −Rm

i ||
2/||xk −Rm

h ||
2
) 1

a−1

]−1

(8)

8. Calculate the clustering index

9. Km+1
a =

∑K
k=1

∑u
i=1

[
(µm+1

i,k )
a
· ||xk −Ri||

2
]
, (9)

10. IF
∣∣∣Km+1

a −Km
a

∣∣∣ ≥ ε THEN
11. m = m + 1
12. Go to Step 7
13. END
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Algorithm A3: Crossover algorithm.

Inputs: Parents Fp and Fp+1 assigned as R , and M , respectively, where R = {r1, r2, r3, r4}, and
M = {m1, m2, m3, m4}

Output: Children D1, and D2

1. For i = 1 to y
2. IF Random(0, 1) <= 0.5 THEN
3. Ci = ri&Oi = mi

4. CROSS(Ci, Oi)

5. Else
6. Ci = ri&Oi = mi

7. End IF
8. End For
9. CROSS(C, O)

10. // random number between falls between 0 and 1
11. g = Random(0, 1)
12. IF g <= 0.5 THEN

13. beta = (2g)1/(etak+1)

14. Else

15. beta = (1/(2 ∗ (1− g)))1/(etak+1)

16. End IF
17. For j = 1 to x // x is the maximum dimension
18. IF C j < O j THEN
19. Q1 = C j&Q2 = O j

20. Else
21. Q1 = O j&Q2 = C j

22. End IF

23. D1
j =

[(1 + beta) ∗Q1 + (1− beta) ∗Q2]

2
(19)

24. D2
j =

[(1− beta) ∗Q1 + (1 + beta) ∗Q2]

2
(20)

25. End For
26. IF Random(0, 1) <= 0.5 THEN
27. C = D1&O = D2

28. Else
29. C = D2&O = D1

30. End IF
31. Return D1, and D2
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Algorithm A4: Mutation algorithm.

Inputs: Set of crossover-subjected chromosomes CR , CR = {cr1, cr2, cr3, . . . , crK}

Output: mutated chromosomes

1. // k is the index of kth centroid of the chromosome
2. For k = 1to K
3. For j = 1 to J // j is the index of chromosome point
4. Generate a random number from 0 to : B = random(0, 1)
5. IF B ≤ PT

6. Generate z j random number f1, f2,. . ., f j,z

from [0, 1] for the jth point of the centroid Ek
k, j

7. Replace Ek
k, j by fk/

∑zj
k=1 fk

8. End IF
9. End For
10. End For

Algorithm A5: Final solution computation by clustering ensemble.

Inputs: Solutions set T = {s1, s2, . . . , sn} indicating fuzzy memberships.
Output: Final cluster label S∗.

1. For j = 1 to V // for each solution>

2. Calculate the ranking vectors R′
(
s j
)

.

3. Calculate the aggregated ranks based upon the sum of each solution to get a vector:

R̃t =
[
R(1)

j , .R(2)
j , .., R(n)

j

]
.

End For
4. Sort T by the aggregated ranks (values of R ) in ascending order and obtain a new solutions set:

T′ =
{
s′1, s′2, . . . , s′n

}
.

5. Assume an ensemble of Z size.

6. Select the first Z solutions to get a subset of non-dominated solutions: Tnew =
{
s′1, s′2, . . . , s′Z

}
7. For j = 1 to Z // for each non-dominated solution s′j in Tnew

8. Decode s′j by Equation (10).

9. Assign every object k of s′j to a cluster i by the maximum of µm
i,k, where 1 ≤ k ≤ K .

10. Get a vector x j containing n cluster labels.
11. Considering the size of Tnew is Z , add the resulting vector x j to a matrix E of size Z× n .
12. End
13. Apply the clustering ensemble algorithm to the resulting matrix E, where each row represents one

clustering solution.
14. Return a vector S∗ comprising n cluster labels as the final output.
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