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Abstract: As sedentary lifestyles and childhood obesity are becoming more prevalent, research in
the field of physical activity (PA) has gained much momentum. Monitoring the PA of children
and adolescents is crucial for ascertaining and understanding the phenomena that facilitate and
hinder PA in order to develop effective interventions for promoting physically active habits. Popular
individual-level measures are sensitive to social desirability bias and subject reactivity. Intrusiveness
of these methods, especially when studying children, also limits the possible duration of monitoring
and assumes strict submission to human research ethics requirements and vigilance in personal data
protection. Meanwhile, growth in computational capacity has enabled computer vision researchers to
successfully use deep learning algorithms for real-time behaviour analysis such as action recognition.
This work analyzes the weaknesses of existing methods used in PA research; gives an overview
of relevant advances in video-based action recognition methods; and proposes the outline of a
novel action intensity classifier utilizing sensor-supervised learning for estimating ambient PA.
The proposed method, if applied as a distributed privacy-preserving sensor system, is argued to
be useful for monitoring the spatio-temporal distribution of PA in schools over long periods and
assessing the efficiency of school-based PA interventions.

Keywords: physical activity measurement; computer vision; multimodal learning

1. Introduction

In the recent four decades, a 10-fold increase in the number of obese children and adolescents has
been observed and it is estimated that almost one in every five children globally are overweight [1].
Meanwhile, physical inactivity (PI), which has been associated with various health risks [2], and which
is also one of the main contributors to overweight, has been described as a global pandemic [3].
Concurrently, smartphones have become more accessible even to lower-income families and this is
enabling screen time to increasingly compete with healthier activities in the temporal budgets of the
youth even outside of their homes. Children and adolescents spend a large part of their time in school
where their health behaviour can be researched and possibly influenced. So far, school-based physical
activity (PA) interventions have mostly shown modest [4–7] and only temporary [8] effects on PA, if at
all [9]. There are still many ambiguities in this field [10–12] due to limited evidence. To maximize
impact on public health, evidence-based best practices of PA interventions should be determined
before making large investments into scaling up the intervention programs [13,14].

2. Methods of Assessing Physical Activity of Children

Physical activity is defined as bodily movement via skeletal muscles that results in energy
expenditure (EE) [15]. Measurement of PA in the context of the PI epidemic is mostly concerned with
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assessing habitual PA and determining whether some populations of youth are meeting the established
guidelines [16] of 60 min or more daily moderate to vigorous PA (MVPA) with moderate PA defined
by the World Health Organization as 3–6 Metabolic Equivalent of Task units (METs) and vigorous PA
above 6 [17]. MET is the PA intensity unit defined by the ratio of a person’s working metabolic rate
relative to their resting metabolic rate with individual metabolic differences normalized based on body
weight [18]. The PA (proxy-) measures described below are often converted to this metric.

This work is concerned with brief expressions of PA (bodily movement lasting no more than a few
seconds—PA microexpressions) that might be wholly observable in an indoor video camera’s field of
view (FoV). Therefore, the descriptions of methods do not go deeply into concerns of population-level
PA inference, but rather the relation of the measurement techniques to age- and context-specific PA
patterns observable in school.

Methods with varying levels of objectivity have been used in research on children’s PA ranging
from indirect approaches like survey questionnaires, interviews, and activity diaries to direct methods
such as observation, and physical measurements like accelerometry, heart-rate monitoring, and doubly
labelled water (for an overview see [19]). Assessing children’s PA with indirect measures has shown to
be unreliable, often overestimating PA [20–22]. Self-report or parent-assisted measures, while relatively
cheap, suffer from reliability and validity issues concerning inaccuracy of assessment, recall, and social
desirability bias [19,23].

Direct systematic observation can provide rich insight into the PA dynamics of a group of children
in a specific context—one can observe the subjects’ interactions with each other and their immediate
environment while taking notes on the intensity and duration of PA these interactions entail. Results
based on such observation, however, are not strictly reliable as the observer’s senses are limited and
interpretations subjective. Thorough training and “recalibration” of observers can somewhat mitigate
these problems and increase comparability, but it also increases the cost of applying the method [24].

Direct physical measures are often used for estimating EE in epidemiological and kinesiological
research. To this end, doubly labelled water (DLW) provides accurate measures of overall EE [25],
but the method only allows EE assessment averaged over long periods of time (sampling rates counted
in days), it is very intrusive, expensive, and does not directly measure the construct of PA. DLW’s
accuracy, however, has made it a useful tool for validation of the methods described here.

Heart rate monitoring can provide high sampling rates and is well correlated with EE, but the
relation varies widely between and within individuals [26]. Consequently, thorough calibration
for factors like age, sex, body weight, and physical fitness is required to assess EE via heart rate
monitoring [27]. Further inference of PA from heart rate monitors benefits from the additional modality
of movement measured with an accelerometer [28]. Combined heart rate and acceleration sensors have
been deemed valid for assessing PA of children [29]. Before an overview of accelerometry, pedometers
should be mentioned as a relatively cheap and reasonably valid option for assessing the PA levels of
children [30–32]. However, pedometers are essentially single-axis inertial sensors that are individually
calibrated for each subject to detect their stepping patterns, so these devices are not designed to register
horizontal motion and cannot quantify the intensity of PA at a given moment.

Triaxial accelerometers can provide more information by quantifying the inertial forces on
each of its three axes at high sampling rates (up to 100 Hz in practice). This allows modelling of
acceleration vector magnitude (AVM) in 3D space which can be corrected for gravitation (Euclidean
Norm Minus One g or ENMO) to obtain a measure of the force applied to the sensor by the subject.
However, due to the restricted functionalities of popular wearable accelerometers, “activity counts”
(arbitrary quantities reflecting PA intensity over fixed epochs that are calculated on board during
measurement) are often used in practice [19]. Accelerometers have seen wide and methodologically
varied application in PA research [33–37]. Although accelerometers provide rather good indication
of PA intensity and sedentary behavior, especially when combined with additional sensors such as
inclinometers and gyroscopes, decisions related to sensor data management and analysis remain
somewhat subjective [37–40]. Specifically, devices of different manufacturers calculate activity counts



Information 2019, 10, 269 3 of 17

using different formulae (which are not always published), and there is no consensus on parameters
of recording and methods of aggregating acceleration data to reflect comparably [41] the concepts
of moderate and vigorous PA. This has led Migueles et al. to conclude “that it is not possible (and
probably will never be) to know the prevalence of meeting the PA guidelines based on accelerometer
data“ [42].

Since researchers mostly cannot know whether the forces reflected in acceleration signals are truly
applied by the subject or whether the device is worn as instructed (sensor jitter, vehicular transport,
and non-compliant uses), machine learning approaches have gained popularity for classifying the
type [43] and the intensity [44] of PA from wearable accelerometers. Fergus et al. [45] explored
thoroughly several machine learning approaches and feature combinations to classify children’s PA
type and intensity based on wearable accelerometers achieving best performance on test data with a
multilayer perceptron artificial neural network. Deep neural networks have achieved state of the art
performance for the prediction of PAEE in pre-school children [46]. Machine learning becomes even
more relevant when considering reduced study control of wrist-worn accelerometers compared to
hip-wear [47] and especially for PA monitoring via smartphone sensors, where the researcher has even
less control over the positioning of the sensors in relation to the body.

Smartphones contain various sensors that can provide relevant information about the intensity and
type of PA while the subject is carrying the device. Accelerometer, magnetometer, gyroscope, and GPS
have a clear association with PA, but additionally light, proximity and WiFi sensors, barometers,
microphones, and cameras can provide extra modalities for PA analysis (for overview see [48]).
The interactive nature of the smartphone also allows for attempts at influencing the users’ PA [49],
which itself is an important field of inquiry for promoting PA behavior change among the youth [50].
The growing popularity of smartphone and wearable fitness apps is leading to huge amounts of data
potentially useful for large-scale PA analysis. However, the differences between devices and software,
privacy concerns, and data ownership issues lead to a situation where unification and comparison of
data collected by different companies is very difficult [51].

An overview of the advantages and disadvantages of PA assessment methods is presented
in Table 1.

Table 1. Methods used to assess physical activity in children and adolescents.

Method Positive Features Negative Features Participant
Burden * Cost **

Indirect measures

PA diary, log Inexpensive
Sensitive to cognitive development;
inaccuracy; social desirability bias;

recall bias.

++ –
Interviews,

questionnaires + –

Direct measures

Observation
Potential to capture a wide

variety of PA expressions and
related contextual factors

Subjective (limits of perception and
individual interpretation); potentially

reactive
– -/+ depending on

scale

Doubly labelled water Accurate measure of EE Does not directly reflect PA or activity
types; very low sampling rate ++ +++

Heart-rate monitor Reflects well aerobic activity
Only captures PA from aerobic

activity; requires thorough calibration
for each subject

+

Pedometer Relatively inexpensive for a
wearable sensor

Cannot accurately detect intensity of
PA or capture PA microexpressions. - -

Wearable
accelerometer

Widely field-tested and
validated, machine learning
enables PA type and specific

activity recognition

Differences between devices; no
consensus on acceleration signal
processing and aggregation to

standard PA indicators

+

Smartphone sensors
Rich sensor data; possibility to
ask questions after detecting

bouts of PA

Limited battery life; often not attached
to body; differences between devices

-/+ depending
on use

Proposed computer
vision approach

Unobtrusive; context specific;
long measurement period

High initial investment; not
yet validated — ++ increasing

returns

* “+“ indicates relatively high participant burden and/or intrusiveness.** “+“ indicates relatively high monetary
and/or labor cost. Compiled by author based on [19,20,23,24,42,48].
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Compared to adults, children’s PA is intermittent in nature [52,53], so methods analyzing their
PA patterns should consider higher sampling rates and shorter PA intensity estimation epochs
than is required for measuring adults. It is also important to consider that it is more difficult to
achieve high accelerometer wear protocol compliance in children, and especially early teens [54–56].
Individual-level measurement methods described above often assume recording and processing of
personal information by researchers and are generally intrusive, requiring human research ethics
reviews, the subjects’ and their parents’ informed consent, and the general bothering of subjects.
Intrusiveness also potentially compromises the results by observer effects. Below, ways of overcoming
these limitations in school-based PA research are explored.

3. Spatio-Temporal Distribution of Physical Activity in School

Schools are very specific semi-closed environments where children are required by law to spend
lots of time. In OECD countries children spend on average 14% of their waking hours in compulsory
classes during primary education (calculated assuming 8 h of sleep based on [57]). If one only considers
the school year (September to May) and counts in recess between the classes, then it adds up to a large
proportion of time spent in this specific environment. Parts of these spaces with differing attributes can
facilitate more or less PA. Playground size has been shown to correlate with PA [58], but the evidence
on the relation of other aspects of school architecture to PA is insufficient [59]. There is some evidence
indicating playground redesigns’, markings’, and physical structures’ positive effects on PA [60],
but others have reached conflicting results [61]. Specifically, there is a lack evidence on which kind of
playground equipment and their specific features have the strongest and longest-lasting effects on
PA [58]. While one should strive to design the perfect playground for increasing all students’ PA, one
size might not fit all. Boys and girls of different ages have significantly different play preferences [62]
and might require different stimuli for increasing PA [63]. Ethnographic evidence also suggests specific
approaches to playground and classroom designs might be necessary for motivating the high-risk
group of least physically active students [64]. In addition, Nicaise et al. [65] reported that the effects
of playground redesign on PA might not reflect in wearable sensor data, while observations imply a
positive effect.

Exergaming, as a branch of the emerging health behavior intervention paradigm of
gamification [66–68], has received much attention [69–72] concerning the PI epidemic. The idea
of taking advantage of the neurochemical reward mechanisms utilized in the gaming industry to
achieve positive health outcomes is becoming increasingly relevant in the context of pervasive
computing. Prevalence of smartphones and wearables in combination with increasing feasibility of
integrating gaming hardware into the school environment provide a valuable opportunity for the
gamification of PA. Baranowski et al. [73] defined the identification of optimal game designs for
attaining PA change as an important research priority while emphasizing specific game context (e.g.,
recess on playground, in hallway or classroom before or after lunch) and context-specific game design
elements (cooperation or competition with self or others while using various reward systems).

All of this infers a need for informed and efficient zoning of schools to facilitate increased PA for
all students throughout the school year—ideally a custom design for each school, season, and day of
week within a season. Location-based PA information can be useful for determining the areas that
facilitate or hinder PA and for assessing the utilization rate of a playground, its sections or specific
stationary PA equipment.

So far, the spatial distribution of physical activity in school has been studied in schoolyards using
GPS combined with heart rate monitoring [74] and accelerometry [75,76]. However, GPS signals are
sensitive to environmental factors such as tall buildings [77] and cannot reveal the altitude of the
sensor, making it inapplicable in multi-level buildings.
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4. Method Proposition

To better understand the spatial aspects of PA in school while also minimizing participant burden
in the research process, a hypothetical method for assessing the spatio-temporal distribution of PA
in school is proposed: ambient sensors capable of detecting the number of children at a location
and classifying the intensity of their PA in real-time without recording any personal information.
A computer vision application for accurate estimation of ambient PA based solely on video frames
temporarily stored in random-access memory (RAM) could be a viable solution. Adopting a smart
sensor with such capacity would allow researchers to delegate the processing of personal information to
artificial intelligence thus obtaining PA estimations at a location without violating the subjects’ privacy
or bothering them at all. The proposed method can be considered as automated direct observation,
except while the type and severity of human error during observation can be variable, algorithmic
errors should be consistent and therefore easier to account for. Just one or a few of such sensors could
suffice for assessing the effectiveness of stationary PA equipment and stimuli aimed at increasing PA
at a specific location. Covering a school building with a distributed sensor system could provide a
flow of location-based PA data at high temporal resolutions over any length of time that the system
is maintained. Internet Protocol (IP) cameras with relatively wide FoV could be placed at strategic
locations throughout the building, or alternatively with a uniform distribution to capture the PA in
the building. As a semi-closed environment with students arriving and leaving based on a known
time schedule, even a rather sparse distribution of the sensors could potentially reveal hallway-, floor-,
and school-level PA patterns. Ability to detect long-term building-level changes in PA patterns enabled
by continuous monitoring of ambient PA could open a new field of intervention research designs.
Proposed sensors could also be useful for other settings where one is interested in assessing PA at a
location in a privacy-preserving manner.

The output of a single sensor, or the basic measurement unit of the method, is currently envisioned
as PA intensity of detected child during the length of the prediction epoch. One sample from a single
sensor would be the PA intensity levels for each detection during a prediction period/frame range
(varying number of values, depending on the number of children visible). In other words, the sensors
would measure the intensities of brief displays of PA in FoV (ambient PA) as opposed to measuring PA
of individuals. For example, one student can step out of the perceptive field of the sensor during a
second and another in during the next second. Then, if both students were moving at the same PA
intensity during the corresponding successive predictions, the measure of ambient PA would remain
the same during the 2 s, even though originating from separate individuals.

The raw output of the proposed distributed sensor system could be aggregated and visualized
on a 2D graph of a single floor plan or a 3D model of the whole school building where the size
of a circle/sphere could represent the average number of students detected by a particular sensor
during some period and a color scale could be used to represent the average intensity of the PA of the
detections during the period. One can imagine a graph of a school floor plan where at the locations
of the sensors a small blue dot would signify a single student standing still; a large purple circle
indicating lots of detected students in the scene, but a medium average PA; a large red circle could
indicate lots of students performing a group activity entailing vigorous PA. Similar visualizations
could be done for various aggregations, computing the average number of detected children and the
average PA intensity of the detections during a longer period at the sensor locations. These could
then be further aggregated to reveal seasonality (average first recess PA distribution, average Monday
within a semester PA distribution, etc.) or for pre-post intervention testing (average PA during the
weeks before, during, and after an intervention).

For observing changes in whole school PA levels, additional measures can be taken to increase
reliability. In schools that record the number of students in the building at the beginning of each lesson,
the sensor system data could potentially be normalized by considering the number of students present
and measures such as accessible floor area of the building and the floor area monitored by the sensors.
Such “student-density” measures should increase over-time and between-school comparability of the
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estimated ambient PA levels, especially during winter in colder climates when students remain indoors
during recess.

Combining ambient PA measures with direct observations, interviews, and/or questionnaires
would enable thorough analysis of PA in school. The value of such data could be further increased by
simultaneously collecting rich contextual data such as lunch menu and its estimated sugar content,
weather conditions, concurrent events, group vaccination, student sick leave rates, etc. Even though
such a method would not have the capacity to reveal whether the students achieve their recommended
hour of daily MVPA, it could be a valuable tool for assessing the capacity of an intervention to activate
children on location and whether the PA reactions to intervention remain similar over time.

5. The Promise of Computer Vision

Motion detection and object (such as a human) tracking tasks have received much attention in
the computer vision field [78–83]. When using stationary cameras in a school building where the
background should be mostly static at a given length of time, background-subtraction methods [84,85]
could potentially be used for obtaining a proxy for PA intensity as the ratio of black and white pixels in
the subtracted image. However, such a simple approach would likely be sensitive to variance of scale,
changes in illumination, and would not differentiate between the PA of children and any other motion.
A more advanced approach to ambient PA estimation stems from human action recognition (HAR) (for
an overview see [86]). HAR algorithms are usually developed and tested on datasets containing up to
101 actions such as brushing teeth, bowling, frisbee catch, playing guitar, baby crawling, band marching,
etc. [87]. Since actions are defined through time, HAR research emphasizes temporal features (difference
between consecutive video frames), while object recognition algorithms are mostly concerned with just
the spatial information (the image). Thanks to advances in hardware and machine learning methods,
HAR has seen rapid development in recent years [88]. Simultaneously applying two convolutional
neural networks (CNNs), one for the spatial, and other for the temporal domains, has shown to be an
effective approach for learning features of many abstract actions from video [89]. These two-stream
methods have been shown to benefit from fusing together the spatial and temporal features learned by
the separate networks to increase recognition accuracy. This fusion can be applied in the convolutional
layers (early fusion) [90] or the fully connected layers (late fusion) [91,92], either approach can provide
task-specific feature learning benefits.

Significant advances have recently been made in processing efficiency in action recognition.
Several approaches have managed to reduce the computational cost of the task to enable real-time
action recognition on established benchmarking datasets [93–95]. Singh et al. [93] translated the Single
Shot Detector [96] network architecture, designed for rapid detection of multiple objects in images,
to the action recognition task in the temporal domain resulting in capacity for online independent
construction of multiple “action tubes” containing the humans whose actions are to be classified.
By applying a novel greedy classification algorithm to the tubes, they achieved performance superior
to state-of-the-art algorithms that are not capable of online action localization and did it all at real-time
speeds. Such online capacity is especially important for the proposed method whereby PA intensity
predictions are to be made at a constant frequency based on live video input.

Zhang et al. [94] combined several methods of knowledge transfer, enabling a CNN operating
on low resolution motion vector images to utilize the knowledge of another CNN learned from
high-resolution optical flow allowing reasonable action recognition performance at more than real
time-speeds. Another approach [95] applied the efficient object detection architecture of YOLOv2 [97]
to the output of FlowNet2 [98] (an optical flow estimation CNN) as the temporal stream and the
same architecture to the spatial stream. Task-specific fine tuning and integration of FlowNet2 into the
two-stream architecture in combination with early fusion of the spatial and temporal features enables
end-to-end trainability and real-time speeds [95].

Another recent HAR innovation proposed by Li et al. [99] introduced convolutions exploiting the
spatial correlations in images for efficient motion-based action localization by using a Long Short-Term
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Memory cell (LSTM—a neural network mechanism that enables “remembering” previous states [100])
between convolutional instead of fully connected layers. Spatial correlations between the previous
hidden state provided by the VideoLSTM and the current input reveal the likely location of an action
based on motion, thereby making the whole process more efficient. Such motion-based attention can
be especially useful for the intended setting utilizing stationary cameras. Building on this technique of
motion-based attention, Zhao and Snoek developed an algorithm for detecting the spatiotemporal
extent of actions by embedding the RGB spatial and optical flow temporal streams into a single
two-in-one stream network [101]. Aside from simplifying the computation of action recognition,
their approach also assigns motion direction to the actor as an extra feature distinctive to many actions
(e.g., the difference between sitting down and standing up, or PA-entailing motion towards a direction
relevant to the research questions studied with proposed smart sensors).

The processing speed and energy efficiency of proposed smart sensors could potentially also
benefit from Deep Compression [102]. This technique, developed by Han et al., minimizes redundancies
in deep neural networks by pruning ineffective connections, quantizing the weights and Huffman
coding the resulting weights’ distribution. Such compression, when applied to convolutional neural
networks, was accompanied by a 3–4-fold increase in processing speeds and 3–7-fold increase in energy
efficiency without significant loss of classification performance. The size reduction accompanied by
Deep Compression allows to fit large neural networks in on-chip SRAM, thus removing the need
for accessing DRAM during processing, which consumes the most power during neural network
operation. Han et al. [103] propose a specific hardware design that would take full advantage of Deep
Compression and power efficiency of SRAM-based computation (120-fold energy saving compared to
DRAM-based implementations). Furthermore, novel hardware architectures utilizing the emerging
Resistive RAM technology are being developed precisely with the goal of efficient neural network
computation on very small chips [104,105]. While currently the proposed distributed sensor system
is planned as a centralized computing implementation, the developments in specialized low-power
artificial intelligence chips infer the possibility of a potential distributed computing implementation in
the future.

Considering the machine learning task described below and potentially a low number of classes
to be distinguished, using single-channel greyscale input might also be a viable option for further
reducing network size and computational cost. Similarly, lower resolutions of input might be considered
as the indoor environment forces relatively small distances between the subjects and the camera.
Whether such approaches would be accompanied by severe loss of performance is to be determined
with experimentation.

6. Action Intensity Classification by Acceleration Vector Magnitude Estimation

Supervised learning in video analysis is usually implemented by assigning semantically subjective
labels to frames of video and learning the “typical” features from instances of visual data with such
labels. One approach to action intensity classification would be to create a training dataset where the
frames of moving children are annotated by visually assessing the intensity of PA displayed in a given
range of video frames. Instead, this work proposes to annotate the data based on real accelerations
measured from subjects in the training video. Such an approach could essentially fuse the sensors
and the research fields of accelerometer-based PA monitoring and video-based HAR. Synchronizing
accelerometers recording at 30 Hz with a video camera recording at 30 fps can create raw training data
where each frame corresponds to three acceleration scores on the accelerometer’s axes for each visible
subject. AVM can be then calculated for each subject in each frame, which can then be preprocessed
and aggregated (e.g., cumulative sum or average) according to the acceleration prediction frequency,
forming the ground truth.

To explore the potential of such a dataset, a sample of proposed training data was collected
using a Logitec C922 webcam (Logitech International S.A., Newark, CA, USA) and four Actigraph
wGT3x-BT accelerometers (ActiGraph LLC, Pensacola, FL, USA) worn on the hips of three children
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and one adult as actors. The camera’s FoV covered a ~5 × ~4 m floor area with a fixed camera at ~2 m
height. Table 2 presents the analysis of a 10.4-min synchronized clip where all four subjects or at least
their torsos are mostly visible. For the most part, the clip contains structured play where the adult is
acting as the game leader/instructor. It is important to note that due to the nature of the games played,
the clip contains significant amounts of synchronized motion (game leader says “Go!” and children
react by jumping/moving) which can increase the correlation coefficients. The bottom row of Table 2
corresponding to the section with least synchronized motion should represent better a real-world
situation in a school hallway. Inversely, the webcam’s auto-focus created some noise in the motion
features which can somewhat reduce the correlations compared to using stable focus. Columns of the
table present different proposed acceleration prediction frequencies as cumulative aggregates of both
total motion information in the video (represented as total H.264-encoded motion vector magnitude
per frame) and acceleration domains (represented as sum of all four subject’s ENMO).

Table 2. Correlations between total visible physical activity* and motion information in video**
cumulatively summed over various frequencies in a 10.4-min sample of proposed training data.

Raw (30 Hz) 15 Hz 10 Hz 6 Hz 5 Hz 3 Hz 2 Hz 1 Hz

First 2 min 0.331 0.449 0.469 0.559 0.564 0.656 0.673 0.669
min 3–4 0.138 0.210 0.234 0.309 0.343 0.476 0.541 0.574
min 5–6 0.248 0.374 0.400 0.464 0.492 0.575 0.610 0.641
min 7–8 0.338 0.450 0.481 0.529 0.552 0.607 0.641 0.630
min 9–10 0.316 0.422 0.453 0.529 0.556 0.657 0.696 0.695

Whole clip (10.4 min) 0.279 0.387 0.416 0.486 0.511 0.602 0.640 0.646
Independent play

(min 1.9–4.7) 0.140 0.217 0.240 0.312 0.350 0.477 0.532 0.574

All correlations statistically significant at p < 0.001. * Total visible PA represented by the sum of four subjects’ ENMO
measured with hip-worn Actigraph wGTX3-BT accelerometers. ** Motion information in video represented by total
H.264-encoded motion vector magnitude per frame (sum of macroblock displacement distances for I (0), P, and B
frames at 1920 × 1080 resolution extracted with modified version of MV-Tractus [106]) recorded with a Logitech
C922 webcam.

Analysis of the sample of raw training data shows moderate correlations between the temporal
features in video and the accelerations of subjects in the scene. If one considers the task of the algorithm
as regression of video to AVM of objects in FoV, then a 0.5 correlation with target in the temporal
stream infers that even a relatively simple spatial stream architecture might provide the additional
features for accurate estimation of AVM intervals. In a simple form, the temporal stream could quantify
the total visible motion and the spatial stream could count the number of children to get average
PA intensity per subject per prediction epoch. A more accurate model would separate the motion
of children from other motion, noise, and changes in illumination while the RGB stream would not
only count the children but based on features such as body position, and its variance along the action
tube, also gain information about how much of the motion is associated with which subject. This can
provide additional information on the nature of ambient PA displayed in a specific scene with several
subjects. Deep learning models could become even more precise to reflect PA EE if training data labels
were calculated accounting for the weight and/or the body mass index (BMI) of the actors. The formula
for calculating the PA EE proxy labels for the whole dataset could likely be derived from thorough
analysis of only a few clips where actors of various body types perform activities entailing the full
range of PA intensities. Sliding window averaging of the accelerations prior to label aggregation can
potentially enhance feature learning and the method’s construct validity by reducing the effects of
device jitter and sensor noise.

As the analysis presented in Table 2 concerns a clip where subjects do not step into or out
of the cameras FoV, it does not reflect the eventual PA measurement setting very well. Since the
proposed measurement units are defined by the prediction frequency (30 frames or 1 s for in Figure 1),
some criteria should be developed for what should constitute a valid detection. For example, when a
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child or their head/torso appears in the corner of the scene creating an action tube of length only
15 frames within a 30-frame epoch, then it likely should not be classified. Action tubes of length
25 within the epoch, on the other hand could already carry enough features to accurately assess
the level of PA performed by the detected child during that second (perhaps they just stepped into
the scene five frames after the beginning of the current prediction epoch or stepped out before the
end of the prediction epoch). Such detection-validity thresholds should be determined by thorough
experimentation and expert assessment of the algorithm’s performance on the test set.

Figure 1. Classifying the intensity of ambient physical activity at a constant frequency (30 frames/~1
Hz).

The optimal period of aggregating acceleration scores to ground truth labels depends on the
temporal resolution requirements of real-time implementation on one hand and the need for a good
representation of age- (intermittency) and environment-specific (bouts wholly observable within the
FoV of the camera in a school hallway) PA patterns on the other. In the early stages of such research a
5 Hz “data unification frequency” could be convenient so that data filmed with cameras using NTSC
(29.97 or 59.94 fps) and PAL (25 or 50 fps) standards could be easily united in the dataset. However,
this would restrict the selection of the final prediction epoch to lengths divisible by 200 ms and would
not allow cumulative aggregation of accelerations if both types of cameras would be combined with a
30 Hz accelerometer sampling rate. On the other hand, using different acceleration sampling rates
could compromise construct validity by distorting the ground truth. Additionally, to maintain some
comparability with other accelerometer-based PA research, using NTSC cameras and 30 Hz acceleration
sampling might be preferable, as it is the most common frequency used in PA accelerometry [40].

Aside from sampling frequency, the optimal FoV should also be determined for the cameras to
be used in the collection of training data. Very large FoV or even 360◦ cameras could provide the
best floor-area coverage per sensor when applied in school, but the distortions (“fisheye” effect) in
such video could make the machine learning task much more difficult and therefore compromise
measurement accuracy of the proposed sensors. Hence, there is likely a trade-off between the sensor’s
precision and the size of its perceptive field.

A great benefit of such continuous training data is that by selecting different starting moments
(t + 15|10|6|5 frames and accelerations) as data augmentation prior to label aggregation, the size of the
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dataset could be multiplied with little effort and this can be helpful for learning more general features
of PA intensity displays.

This kind of action intensity classification can benefit from the advances in deep learning methods
applied in HAR, but the task of the algorithm is fundamentally different. HAR is mostly concerned
with recognizing actions with a specific relevant function (e.g., detecting getting up from bed in a
smart home to start the coffeemaker), but the proposed method would attempt to classify the intensity
of any human action and inaction regardless of the goal of the behavior. In other words, very different
sequences of human body positions can fall under the same action intensity category, even though
they may not represent the same actions. For example, the estimated AVM can be the same for two
students moving at the same intensity, but one of whom is jumping while the other sprinting. Therefore,
the variance in the appearance of features in each PA intensity cluster would be much higher than for
classes representing specific actions. Nevertheless, the ground truth is based on directly measured
accelerations, and as initial tests show (Table 2), acceleration as a feature of PA expression reflects well
in video. As such, the proposed deep learning approach does not really belong to the domain of action
recognition but is better described as a form of multimodal or sensor-supervised learning where the
neural network learns the features in two-dimensional spatial data representing movement and based
on this knowledge makes predictions in the form of AVM intervals. This action intensity classification
task is essentially an ordinal regression problem—more variance in body positions per detected child
(action tube entropy) and/or bigger displacement distance in the sequence of frames (action tube shape)
should indicate a bigger AVM and a higher-order PA intensity class. Due to the somewhat linear nature
of the task, the CNN architecture should benefit from class correlations for class distinction—features
of vigorous PA can be somewhat similar to features of moderate PA, but should differ more from the
features of light PA. Class correlations have been shown to improve performance [107] even when
classifying abstract actions.

In general, as a classifier, the algorithm would be working with large overlapping feature spaces
of ordinal classes. The optimal neural network architecture for this type of computer vision system is
yet to be determined and partly depends on the quality and amount of training data available and
necessary to learn PA intensity features well enough for application as a measurement technique.

7. Discussion

This work poses the following two hypotheses: (i) room-level measurement of PA is useful for
determining best practices of school-based physical activity interventions; and (ii) modern computer
vision technology is capable of privacy-preserving room-level physical activity estimation. A course
of action is also proposed to test these hypotheses: (ii) deep learning on a dataset of synchronized
video and accelerometry; and (i) location-specific or whole-school pre-post intervention analysis of
data provided by proposed smart sensors.

Construct validity of the proposed sensor to measure ambient PA is currently difficult to estimate
as, to the knowledge of the author, ambient PA has not been researched in this manner. However,
deep neural networks continue to perform tasks previously thought to be impossible for machines,
and due to the nature of the training data, construct validity for a single sensor can be thoroughly
assessed. Besides visually analyzing the PA displays and corresponding predictions and ground truth
labels in the test set, the sensors could also be validated in the field, potentially using additional
sensors (heart-rate monitor, thermometer and/or thermal camera) in combination with subject-specific
attributes such as body weight, BMI, the weight of their clothes and back-pact, hardness and density
of their shoe-soles (potential effects of footwear on hip-worn accelerometer signals and inferred PA
microexpression intensity). Assessing construct validity of proposed distributed sensor system to
measure school-level PA would be much more difficult. The sensors could either be strategically
placed (ends of hallways and larger open areas) or alternatively by maintaining uniform distances
between sensors and establishing a standard sensor-FoV-to-floor-area ratio. The former, cheaper
approach could be viable to compare school-level PA over time, but comparison between schools of
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different architecture would be rather limited. The latter case would allow increased between-school
comparability, but the distributed sensor systems would be more complex and expensive. Ideally,
such sensors could also be deployed with total coverage by maintaining some FoV overlap between
the sensors. This would enable stitching together a whole-school perceptive field that would allow
seamless tracking of individuals and their PA levels. Currently, such an approach seems excessive and
a more sparse deployment of wide-FoV sensors should suffice to capture PA distribution patterns well
enough to test hypotheses.

Occlusion in crowded scenes and the presence of adults in the building threaten the reliability
of such a method. These issues should be addressed early on while creating the machine learning
dataset. For the purposes of reducing occlusion, the sensors should be placed relatively high, so the
spatial stream could more reliably count the subjects. For this, the training data should be collected
with cameras fixed at heights varying from 2 to 3 m at viewing angles that maximize the perceptive
field at specific heights—this should also ensure applicability of the sensors in various architectural
settings. The data should also contain crowded scenes of various PA distributions among the crowd.
To avoid false positives due to the school personnel, grownups could be included in the training
dataset, but either not annotating them at all or adding a label “non-detection”. The latter case would
provide researchers with additional information regarding their research questions (e.g., teachers
actively implementing a PA intervention), however, this would also change the regressional nature of
the machine learning task and therefore increase computational complexity. Coming back to the idea of
school as a semi-closed system, assumptions could be made that occlusion and grownup false positives
follow a somewhat constant distribution at least within a semester of a school year. For good measure,
events that bring more adults or larger crowds into the building or out of it, should be recorded as
contextual data. Considering these notions, the inference of student PA distribution from such a sensor
system might yet be valid even at considerable occlusion and adult presence rates. Since the proposed
method would be gathering high-resolution data throughout the school year ideally several years in a
row, the sheer amount of data would likely enable detection of relevant school-level PA patterns.

Aside from technical and statistical issues, human factors could threaten such a method as well.
Even when certifying such a sensor system as truly privacy-preserving with no possibility to retrieve
video frames from RAM, the teachers, parents of students, and the wider public might not trust such
activity. A camera in a school, even when called a “smart sensor”, might cause concerns regarding
potential surveillance and security of the data. Therefore, informing the public with an adequate
science communication strategy could have an important role when attempting to apply such a method.

Since ambient PA has not been studied before, testing specific interventions might not be the
only scientific value of such measurement, there is also a large explorative component to this research.
This new form of data could potentially—lead to discovery and new hypotheses and not necessarily
only concerning students’ health behavior. New insights into crowd and pedestrian behavior dynamics
and communal building architecture could be gained in addition to currently unforeseeable phenomena.
For this, it would be important to collect dense contextual data alongside the ambient PA distribution
and supporting indirect measures.

8. Conclusions and Future Work

Proliferation of physical inactivity is increasing the demand for PA research and for effective
large-scale manipulation of health behavior, best practices of school-based PA interventions need
to be developed. Verification of the effectiveness of interventions could benefit from unobtrusive
privacy-preserving monitoring of ambient PA in schools. To this end, recent advances that have
enabled real-time recognition of many rather complex actions seem promising. This work proposes
a novel method for unobtrusive ambient PA monitoring whereby the processing of personal data is
delegated to deep learning neural networks while maintaining enough validity and reliability to draw
meaningful inferences on the PA at the location.
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Future work priorities should entail development of the synchronized dataset of video and
accelerometry, preferably in a way such that it could be shared between researchers and used for
benchmarking—if deemed ethical, this could be achieved by contracting child actors. Developing a
segmentation-based annotation tool can likely simplify data annotation by indicating the start and
termination of labelling when subjects step into and out of the frame. Once raw accelerations are
annotated to the video frames, different options for constructing labels should be explored—different
weights on the accelerometers’ vertical and horizontal axes, cutting acceleration peaks to potentially
ease learning and normalization of accelerations by actor BMI and other individual attributes to better
reflect the measurement construct. This should eventually be followed by testing different machine
learning frameworks to come to a real-time capable model for a privacy-preserving sensor.
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