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Abstract: Assembly is a very important manufacturing process in the age of Industry 4.0. Aimed
at the problems of part identification and assembly inspection in industrial production, this paper
proposes a method of assembly inspection based on machine vision and a deep neural network.
First, the image acquisition platform is built to collect the part and assembly images. We use the
Mask R-CNN model to identify and segment the shape from each part image, and to obtain the
part category and position coordinates in the image. Then, according to the image segmentation
results, the area, perimeter, circularity, and Hu invariant moment of the contour are extracted to
form the feature vector. Finally, the SVM classification model is constructed to identify the assembly
defects, with a classification accuracy rate of over 86.5%. The accuracy of the method is verified by
constructing an experimental platform. The results show that the method effectively completes the
identification of missing and misaligned parts in the assembly, and has good robustness.

Keywords: machine vision; Mask R-CNN; assembly detection; classification

1. Introduction

Assembly is a very important process in manufacturing [1]. A large number of mechanical
components can be involved in the process. It is hard to prevent machines from having faults related
to missing parts and misalignments. These faults in the assembly machines can cause high production
downtime and increase running costs [2,3]. Due to rising labor and facility costs, automation and
accuracy in assembly have become the clear solution [4]. The use of computer vision systems for
assembly inspection has seen a dramatic increase in recent years. Automated assembly machines
operate continuously to achieve high production rates [5]. Computer vision technology has been used
to provide product inspection, which helps decision making in production systems [6].

Computer vision-based inspection has become one of the most important application areas [7].
Many researchers, from different fields, have studied and developed various inspection methods with
different applications. Andres et al. presented the development of a machine vision inspection system
(MVIS) purposely for car seat frames, as an alternative to human inspection [8].

They optimized the techniques for visual inspection through qualitative analysis and the simulation
of human tolerance for inspecting car seat frames. Jiang et al. [9] designed a machine vision inspection
system connected with an MCU to perform the surface detection of shaft parts. Their experiment
showed that no defect was omitted, and the false alarm error rate was less than 5% and met the demand
for shaft part on-line real-time detection. Wu et al. [10] proposed a novel, accurate subpixel edge
detection algorithm for a thin sheet part, based on machine vision. The experimental results indicated
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that the inspection accuracy of this algorithm was high, with the subpixel edge location accuracy
reaching the micrometer level. The traditional machine vision detection method is to extract image
features and construct a classifier to complete target detection. The most effective features for image
classification include shape, intensity, geometry, gradient, and texture. Common classifiers include
the Support Vector Machine, Adaboost, Random Forest, etc. [11–13]. For example, Bohlool et al. [14]
presented a cost-efficient automated visual inspection (AVI) system utilized as a quality control system.
The scale invariant feature transform (SIFT) was used to acquire good accuracy and make it applicable
in different situations, with different sample sizes, positions, and illuminations. Sachin et al. [15]
proposed an algorithm to accomplish object recognition by using two different methods in which the
classification of the extracted features of the object image is based on artificial neural networks (ANN)
and SIFT-based features, using Euclidean distance measurements and a measurement algorithm to
match the extracted features of the object image to complete image recognition. Chuahan et al. [4]
proposed three MVIS methods based on computer vision techniques. The first method was based
on Gaussian mixture models (GMMs), the second method used an optical flow approach, and the
third method was based on running average and morphological image processing operations. They
developed a machine vision performance index (MVPI) for the following measures of performance:
accuracy, processing time, speed of response, and robustness against noise. Jiang et al. [9] proposed a
method to detect the shaft part surface. They used the dark-field and forward illumination technology
to acquire images with a high contrast: First, the images were segmented into bi-value images; then,
the main contours were extracted; next, the coordinates of the center of gravity of the defect areas were
calculated, that is, the point coordinates were located; finally, the locations of the defect areas were
marked by the coding pen in communication with the MCU.

In recent years, deep learning has won numerous contests in pattern recognition. Convolutional
neural networks (CNNs) show excellent performance for image processing [16,17]. In 2012, a CNN
approach achieved the best results for ImageNet classification [18]. On the basis of CNN, Girshick
proposed the R-CNN algorithm based on the candidate region [19]. R-CNN uses the selection search
(selective search) algorithm to obtain possible targets in the candidate region, and has achieved good
effects [20]. In order to improve the detection accuracy and speed of R-CNN, some excellent algorithms
have been proposed in recent years, such as Faster R-CNN, YOLO, and Mask R-CNN [21–23]. So far,
deep learning has been widely used in industrial production and has achieved good results.

This paper presents a method based on Mask R-CNN and Support Vector Machine (SVM) that uses
the Mask R-CNN segment assembly image to extract feature vectors for classification. This method
meets the requirements of industrial production. The results show that our method can efficiently
identify the missing part and misalignment assembly problems in production.

2. Research Method

2.1. Instance Segmentation Based on Mask R-CNN

Traditional visual detection methods rely on manual selection for image segmentation.
The selection of the artificial method determines the quality of the segmentation effect; for example,
OTUS is a traditional image segmentation method. In this paper, the deep learning method was
selected for image segmentation. Thus, the errors caused by the manual selection of features and
methods were avoided. We used the Mask R-CNN model to recognize and segment the part image
and obtain the outline of the assembly. Then, the feature vectors of the contour images were extracted
and sent to Support Vector Machines for training to identify the defects of various assembly types.
The algorithm flow is shown in Figure 1.
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Figure 1. Algorithm flow chart. SVM: Support Vector Machine. 

Mask R-CNN is an instance segmentation algorithm that was first proposed by Kaiming He. It 
is a deep neural network model developed on the basis of Faster R-CNN. Its main functions are target 
detection, target classification, and target segmentation. The Mask R-CNN model adds a mask 
segmentation part based on Faster R-CNN, and changes ROIPooling to ROIAlign for better detection. 
Mask R-CNN is composed of four parts: the feature extraction network, the region proposal network 
(RPN), ROIAlign, and the target recognition segmentation network. The structure of Mask R-CNN is 
shown in Figure 2. 
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The feature extraction network is the backbone network of Mask R-CNN, which can use VGG16, 
GoogleNet, ResNet101, and other networks [24,25]. The backbone network in this article uses the 
ResNet101 network. The basic structure of the ResNet network is the residual module, which can 
solve the problem of gradient dispersion with the increase in network model depth to a certain extent. 
It improves the network performance, and has better performance in multi-category recognition. The 
FPN network used in this paper combines feature maps of different depths, with the generated 
feature map containing better semantic information [26]. Using ResNet101 as an example, starting 
with five different depth feature maps, which are respectively recorded as C1, C2, C3, C 4, and C5, the 
FPN network recombines the five different depth feature maps to generate new feature maps: P2, P3, 
P4, P5, and P6. For i = 1, 2, 3, 4, 5, and 6; correspondence is shown in Equation (1). 
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upsampling operation, and the downsample () is the downsampling operation. 

The RPN is a full convolutional network (FCN) that can quickly generate high-quality candidate 
boxes with different ratios. The center of each box is called an anchor, which divides the image into 
multiple regions of interest. The RPN performs a convolution operation on the feature map through 
a sliding window, and maps the sliding window to a low-dimensional vector. The RPN structure is 
shown in Figure 3.  

Figure 1. Algorithm flow chart. SVM: Support Vector Machine.

Mask R-CNN is an instance segmentation algorithm that was first proposed by Kaiming He.
It is a deep neural network model developed on the basis of Faster R-CNN. Its main functions are
target detection, target classification, and target segmentation. The Mask R-CNN model adds a mask
segmentation part based on Faster R-CNN, and changes ROIPooling to ROIAlign for better detection.
Mask R-CNN is composed of four parts: the feature extraction network, the region proposal network
(RPN), ROIAlign, and the target recognition segmentation network. The structure of Mask R-CNN is
shown in Figure 2.
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The feature extraction network is the backbone network of Mask R-CNN, which can use VGG16,
GoogleNet, ResNet101, and other networks [24,25]. The backbone network in this article uses the
ResNet101 network. The basic structure of the ResNet network is the residual module, which can solve
the problem of gradient dispersion with the increase in network model depth to a certain extent. It
improves the network performance, and has better performance in multi-category recognition. The
FPN network used in this paper combines feature maps of different depths, with the generated feature
map containing better semantic information [26]. Using ResNet101 as an example, starting with five
different depth feature maps, which are respectively recorded as C1, C2, C3, C 4, and C5, the FPN
network recombines the five different depth feature maps to generate new feature maps: P2, P3, P4, P5,
and P6. For i = 1, 2, 3, 4, 5, and 6; correspondence is shown in Equation (1).

Pi = conv(sum(upsample(Pi+1), conv(Ci)))

P5 = conv(conv(C5))

P6 = downsample(P5)

(1)

where conv () is the convolution operation, sum () is the summation operation, upsample () is the
upsampling operation, and the downsample () is the downsampling operation.

The RPN is a full convolutional network (FCN) that can quickly generate high-quality candidate
boxes with different ratios. The center of each box is called an anchor, which divides the image into
multiple regions of interest. The RPN performs a convolution operation on the feature map through
a sliding window, and maps the sliding window to a low-dimensional vector. The RPN structure is
shown in Figure 3.
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After generating the anchor, according to the value of RPN network regression, the anchor is
modified to better adapt to the object. The correction value of the anchor box includes ∆x, ∆y, ∆h, and
∆w. The correction calculation is as shown in Equation (2).

x = (1 + ∆x)·x
y = (1 + ∆y)·y
w = exp(∆w)·w
h = exp(∆h)·h

(2)

where ∆x, ∆y, ∆h, and ∆w are the correction values of the anchor; x, y represent the central coordinates
of the anchor; and w, h represent the width and height of the anchor.

In this paper, the region proposal network uses a 3 × 3 convolution kernel to slide on the feature
map, and generate a 256-dimensional vector with each sliding operation. The vector is input into two
full-connection layers to classify the regression. Each sliding window center generates an anchor of
five lengths and three widths.

In the sample selection strategy, non-maximum suppression (NMS) is used to select samples.
Interview over Union (IoU) is the ratio of the intersection area of the detection result and the area of
the ground truth. It is shown in Figure 4.
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Figure 4. The Conception of the Interview over Union (IoU).

The calculation is shown in Equation (3). IoU is used on a discriminating basis to distinguish
whether the target is included in the anchor. Samples were selected for training according to a 1:1 ratio
of positive and negative samples.
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IoU =
Detection Result∩Ground Truth
Detection Result∪Ground Truth

(3)

In the next stage, the size of the anchor needs to be adjusted to a fixed size. To address the
misalignment, Mask R-CNN applies a simple, quantization-free layer named RoIAlign, which is able
to faithfully preserve the precise positions. The feature aggregation method of ROI Pooling is used in
Faster R-CNN, and there are two quantization operations in this process. First, from the original image
through the convolution network to the feature map, the position of the region proposals frame is
obtained, which may have floating-point numbers; the rounded operation causes this first quantization.
Secondly, when ROI Pooling finds the position of each small grid; this may involve cases where the
floating-point number is rounded. The results of these two quantifications cause the position of the
region proposals frame to deviate. This paper’s algorithm uses the RoI Align method to convert the
feature map into a fixed-size feature map. The RoI Align method uses bilinear interpolation to obtain
pixel values at coordinates of floating-point pixels. The back-propagation calculation of RoI Align is as
shown in Equation (4):

∂L
∂xi

=
∑

r

∑
j

[d(i, i∗(i, j)) < 1](1− ∆h)(1− ∆w)
∂L
∂yrj

, (4)

where xi is the pixel point on the feature map before pooling, yij represents the j-th point of the i-th
candidate area after pooling, i*(i, j) represents the source of the pixel yij, d(,) represents the distance
between two points, and ∆h and ∆w represent the difference between the xi and x i*(i,j) horizontal and
vertical coordinates.

The fixed-size feature map is sent to the functional network known as the head for calculation.
The Mask R-CNN is the optimization of Faster R-CNN. There are three branches that contain the
information to predict: reg-layer, cls-layer, and object mask. The first two branches are used for
bounding-box classification and regression. They use the fully connected layer and the SoftMax layer
and complete the classification and position box regression. In order to get more accurate shape
information, the third branch is used to the output object mask. Mask R-CNN adds a branch for
the forecast mask based on the Faster R-CNN, which uses an FCN structure. FCN is an end-to-end
upsampling algorithm; there is no fully connected layer at the end that needs a fixed size of activations.
The structure of FCN is shown in Figure 5.
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According to the feature of the part, there are four convolution operations on the 14 × 14 feature
map generated by RoI Align. The convolution kernel size is 3 × 3, and the feature image size is 14 × 14.
Then, the size is upsampled to 28 × 28 by a 2 × 2 deconvolution layer with a convolution kernel. Finally,
a 1 × 1 convolution layer and a sigmoid activation layer are used to obtain a 28 × 28 binary feature
image. The object is segmented from the background to get the exact shape. As a result of the mask
layer being added, the loss function is defined as in Equation (5):

Loss = Losscls + Lossreg + Lossmask (5)
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where Losscls is classification loss function, Lossreg is regression loss function, and Lossmask is mask
regression function.

2.2. Component Assembly Inspection Based on SVM

The support vector machine is based on the theory of statistical learning. It has the advantages
of global optimization and generalization ability, and performs well and has unique advantages in
solving small sample, nonlinear, and high-dimensional pattern recognition problems. The principle of
the Support Vector Machine is shown in Figure 6.
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The first consideration of SVM is the problem of two classifications. For a given sample set D, as
shown in Equation (6),

D =
{
(x1, y1), (x2, y2), · · · (xm, ym)

}
, y ∈ {−1,+1}, (6)

we can find a hyperplane, which is expressed as:

ωx + b = 0, (7)

where ω is the weight vector, and b is biased. ω and b determine this hyperplane. The hyperplane
can correctly classify the sample into two categories, and any of the sample spaces (xi, yi) ∈ D. We get
Equation (8):

ωxi + b ≥ 0, yi = 1
ωxi + b ≥ 0, yi = −1
s.t. yi(ωxi + b) ≥ 1

. (8)

ω, b in Equation (9) determine this optimal hyperplane, and y represents the category label. In
order to maximize the interval, it is necessary to solve the optimal hyperplane:

minΦ(ω) = ‖ω‖2/2
s.t. yi(ωxi + b) ≥ 1, i = 1, 2, 3

. (9)

From the above, we get the Hard-Margin Support Vector Machine model. In order to solve the
minimum value of the above function, the Lagrangian multiplier method is introduced to obtain its
dual problem, and Equation (10) is linearly transformed into:
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minW(α) =
l∑

i=1
αi −

1
2

l∑
i=1

l∑
j=1

αiα jyiy j < xi·x j >

s.t.
m∑

i=1
αiyi = 0

αi ≥ 0, i = 1, 2, 3, · · · , m.

(10)

where αi represents the Lagrange multiplier. The Lagrange multiplier method was used to transform
the problem into a quadratic programming problem and obtain a classification model; the function is
as follows:

f (x) = sgn(
∑

αiyi(x · xi) + b). (11)

For the linearly inseparable problem, the data can be mapped to a higher feature space by a kernel
function, which is transformed into a linearly separable problem. Here, K(x, xj) is a kernel function,
and common kernel functions are linear kernel functions, Gaussian kernel functions, etc. We build a
Support Vector Machine by choosing the appropriate kernel function and penalty coefficient.

In order to ensure the accuracy of detection, the one-against-one multi-classification algorithm is
selected to improve the detection accuracy. The commonly used kernel functions are shown in Table 1.

Table 1. Commonly used kernel functions.

Kernel Function Name Mathematical Expression

Linear Kernel K(x, y) = xy
Polynomial Kernel K(x, y) = (xy + 1)q

Gaussian Kernel K(x, y) = exp{− |x−y|
2

σ2 }

Sigmoid Kernel K(x, y) = tanh(v(xy) + c)

3. Data Preparation and Training

3.1. Data Preparation

We collected the images by building a part image acquisition platform, as shown in Figure 7.
The part image acquisition system consists of a conveyor, an industrial CCD camera, a lens, an image
acquisition card, a light-emitting diode (LED) curved light source, and a computer. Before the collection,
the lens focal length and the position of the light source needed to be adjusted to ensure the image
acquisition quality. These images include four categories: the flywheel, the bearing, the sleeve, and the
shaft. We collected a total of 600 images. Images being too large causes exponential growth in the
number of deep neural network parameters. The image size we collected was 256 × 256.Information 2019, 10, x FOR PEER REVIEW 8 of 15 
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As a result of the small number of samples in the collection, it was easy to cause overfitting
during model training. In order to reduce the risk of overfitting, the data enhancement method was
used to extend the collected dataset. Common methods for the data enhancement of image samples
are random trimming, translational transformation, scale transformation, image rotation translation,
contrast transformation, noise disturbance, color jitter, etc. The methods of data enhancement in this
paper are to randomly crop the image, change the image contrast, and add noise; some examples are
shown in Figure 8. We selected some training set images for data enhancement. After enhancement,
the number of images in each class was 250, and the image size was 256 × 256. The ratio of the training
set, validation set, and test set was 8:1:1. Detailed information about the datasets is given in Table 2.
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Figure 8. Some examples of data enhancement. (a) Origin image; (b) randomly crop; (c) change the
image contrast; and (d) add noise.

Table 2. Classification and object detection datasets.

Dataset Name Image Size Number of Classes Total Number Format

A 256 × 256 4 1000 .jpg

The LabelMe software was used to mark the training samples for the enhanced data. The marked
files automatically added the background and assigned the background to a class. This generates the
corresponding folder containing the image information. The model automatically reads the relevant
information in the folder for training. An example of annotated training images are shown in Figure 9.

In order to get a more stable and robust model, the labeled training samples were divided into
K-fold cross-validation (here, K = 5). The initial sample set is divided into five sub-samples and
numbered separately. One of the sub-samples was used as the data for the verification model, and the
other samples were used for training. Cross-validation was performed five times, and each sub-sample
was verified once.
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3.2. Training Methods and Details

The deep network model requires a large amount of tag training data to prevent the network
from overfitting. The labeling steps of the dataset are very complicated. Therefore, in this study,
we trained the training set by means of transfer learning. It uses the trained model to initialize the
network, and shares the same features in the model. We used new data samples to train the special
classification network parameters. The trained model was able to achieve the desired effect. Using
transfer learning can speed up network convergence, reduce computational strength, and solve the
problem of underfitting caused by the lack of sufficient tag training data. In this study, according to the
characteristics of the part image, the trained model was fine-tuned using a large amount of our own
dataset. The hyper-parameters were set to achieve better training results. The parameter fine-tuning
process used in the training is shown in Figure 10.Information 2019, 10, x FOR PEER REVIEW 10 of 15 
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The iteration and epoch were set during the training process, and the loss function value was
recorded after each iteration of one epoch. The entire model training process is shown in Figure 11.

Mask R-CNN was implemented on Python 3, TensorFlow, and Keras. We used the ResNet101
backbone to obtain higher accuracy. As the network depth and the size of datasets increase, the use
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of GPU to train deep neural networks takes less time. We used the GPU to train the Mask R-CNN.
The maximum number of iterations for the model parameters was 150 epochs with a momentum
of 0.9. The learning rate was set to 0.001, which is more suitable for a small batch size with a faster
convergence, and the weight decay was set to 0.0001. An RoI was defined as positive when it had an
IoU with a ground-truth box more than 0.5; otherwise, it was deemed as negative. The ratio of positive
to negative was 1:1. The RPN anchor spanned five scales: 8, 32, 64, 128, and 256; and three ratios: 0.5,
1, 2. We set the mini-batch as two images on one GPU.

Information 2019, 10, x FOR PEER REVIEW 10 of 15 

 

Pre-trained 
model

Training 
data set

Model fine-
tuning Trained 

model

Test data 
set

Result 
output

 
Figure 10. Parameter fine-tuning process. 

The iteration and epoch were set during the training process, and the loss function value was 
recorded after each iteration of one epoch. The entire model training process is shown in Figure 11. 

Mask R-CNN was implemented on Python 3, TensorFlow, and Keras. We used the ResNet101 
backbone to obtain higher accuracy. As the network depth and the size of datasets increase, the use 
of GPU to train deep neural networks takes less time. We used the GPU to train the Mask R-CNN. 
The maximum number of iterations for the model parameters was 150 epochs with a momentum of 
0.9. The learning rate was set to 0.001, which is more suitable for a small batch size with a faster 
convergence, and the weight decay was set to 0.0001. An RoI was defined as positive when it had an 
IoU with a ground-truth box more than 0.5; otherwise, it was deemed as negative. The ratio of 
positive to negative was 1:1. The RPN anchor spanned five scales: 8, 32, 64, 128, and 256; and three 
ratios: 0.5, 1, 2. We set the mini-batch as two images on one GPU. 

Start

Weight 
initialization

Model training

Is the number of 
iterations？

End

Stop training, 
save weights

Read training 
data set

Yes

No

 
Figure 11. The entire model training process. 

In the SVM training, we adopted the one-against-one method, and reduced its computation to a 
great degree. We trained the Support Vector Machine model with the training dataset. In the training 
process, we used different kernel functions to achieve better results. The training process is shown in 
Figure 12. 

Figure 11. The entire model training process.

In the SVM training, we adopted the one-against-one method, and reduced its computation to a
great degree. We trained the Support Vector Machine model with the training dataset. In the training
process, we used different kernel functions to achieve better results. The training process is shown in
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4. Experimental Results and Analysis

The loss function value of the model gradually decreases with the increase in the number of
iterations, and tends to be stable. The value of the loss function is shown in Figure 13.

After the model was trained, we selected the test set for testing. We selected a single part to
test; the test results are shown in Figure 14. The red part of the figure is the result of the example
segmentation of the part, which can accurately segment the shape of the target in the image, generate
the corresponding segmentation mask, and display the outline of the part. The text indicates the name
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of the category, the number indicates how well the part matches the category, and the box indicates the
position of the part in the image. As a result of the powerful generalization ability of the model, the
model shows better robustness to images with different brightness and different directions.

Information 2019, 10, x FOR PEER REVIEW 11 of 15 

 

Training data
 set Segmentation

Feature vectorKernel
 function

Test data
 set

Classification 
result

Trained SVM model  
Figure 12. The entire model training process. 

4. Experimental Results and Analysis 

The loss function value of the model gradually decreases with the increase in the number of 
iterations, and tends to be stable. The value of the loss function is shown in Figure 13. 

  
(a) (b) 

  
(c) (d) 

Figure 13. The entire model training process. (a) The value of the regression loss function; (b) the 
value of the classification loss function; (c) the value of the regression mask loss function; (d) the value 
of the total loss function. 

After the model was trained, we selected the test set for testing. We selected a single part to test; 
the test results are shown in Figure 14. The red part of the figure is the result of the example 
segmentation of the part, which can accurately segment the shape of the target in the image, generate 
the corresponding segmentation mask, and display the outline of the part. The text indicates the name 
of the category, the number indicates how well the part matches the category, and the box indicates 
the position of the part in the image. As a result of the powerful generalization ability of the model, 
the model shows better robustness to images with different brightness and different directions. 

Figure 13. The entire model training process. (a) The value of the regression loss function; (b) the value
of the classification loss function; (c) the value of the regression mask loss function; (d) the value of the
total loss function.Information 2019, 10, x FOR PEER REVIEW 12 of 15 

 

  
(a) (b) 

  
(c) (d) 

Figure 14. Multi-category test result. 

The model detects the assemblies containing multiple parts. The test results are shown in Figure 
15. When all the part detection results are correct, the model classifies the parts and divides the 
different parts to obtain the contour of the assembly. When the parts in the assembly are missing, the 
model cannot detect the corresponding category information. At this time, it can be determined that 
the parts in the assembly are missing, and the detection result is unqualified. In order to verify the 
validity of the model, we selected images with different angles and different brightness conditions. 
The model still had better recognition ability and exhibits a higher robustness than other traditional 
machine vision algorithms.  

  
(a) (b) 

Figure 15. Segmentation results of assembly. (a) Example of origin test image; (b) example of detection 
and segmentation results. 

Image features distinguish one image from other types of images and reflect their own attributes. 
This feature is the symbol of the image, which can represent the image to a certain extent. The contour 
of the combined image was extracted based on the segmentation result of the combined image 
instance. We extracted the area of the contour, the perimeter, the roundness, and the Hu invariant 
moment to construct the feature vector. We used the Support Vector Machine to mark the qualified 
category label as 0, the missing label as category 1, and the misaligned label as 2. We set the iteration 

Figure 14. Multi-category test result.



Information 2019, 10, 282 12 of 15

The model detects the assemblies containing multiple parts. The test results are shown in Figure 15.
When all the part detection results are correct, the model classifies the parts and divides the different
parts to obtain the contour of the assembly. When the parts in the assembly are missing, the model
cannot detect the corresponding category information. At this time, it can be determined that the parts
in the assembly are missing, and the detection result is unqualified. In order to verify the validity of
the model, we selected images with different angles and different brightness conditions. The model
still had better recognition ability and exhibits a higher robustness than other traditional machine
vision algorithms.
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Figure 15. Segmentation results of assembly. (a) Example of origin test image; (b) example of detection
and segmentation results.

Image features distinguish one image from other types of images and reflect their own attributes.
This feature is the symbol of the image, which can represent the image to a certain extent. The contour
of the combined image was extracted based on the segmentation result of the combined image instance.
We extracted the area of the contour, the perimeter, the roundness, and the Hu invariant moment
to construct the feature vector. We used the Support Vector Machine to mark the qualified category
label as 0, the missing label as category 1, and the misaligned label as 2. We set the iteration times
of the support vector machine to 10,000. We chose the Gauss kernel function to train the Support
Vector Machine.

In order to verify the validity of the algorithm, the assembly type in this paper was tested. The total
number of the test samples was 30, and the experimental results are shown in Table 3.

Table 3. Detection results in sample size experiment.

Sample Size Qualified Missing Misaligned

Number of samples 15 15 15
Correct test result 12 13 13

Accuracy 80% 86.6% 86.6%

Three evaluation indicators—accuracy, specificity and sensitivity—were used to evaluate the
classification effect of SVM. The calculation as shown in Equation (12):

ACC = (TP + TN)/(TP + FP + TN + FN)

SP = TN/(FP + TN)

SN = TP/(TP + SN)

, (12)

where TP is a positive sample of the correct classification, TN is a negative sample of the correct
classification, FP is a positive sample of the wrong classification, and FN is a negative sample of the
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incorrect classification. To evaluate the effect of the Support Vector Machine, we randomly selected 80
samples for testing, and the classification accuracy rate is as shown in Table 4.

Table 4. Classification accuracy with different kernel functions.

Category Linear Kernel Polynomial Kernel Gaussian Kernel Sigmoid Kernel

SN 75% 76.25% 86.25% 71.25%
SP 74.1% 72.5% 88.75% 68.5%

ACC 76.7 74.4% 87.5% 70%

It can be seen from the table that when the Gaussian kernel function is selected, the classification
model based on the Support Vector Machine has the highest classification accuracy rate for the qualified
assembly parts and the unqualified assembly parts. The accuracy rate reaches 87.5%, which is sufficient
for the correct assembly identification of the parts. Traditional visual detection results are greatly
affected by the external environment. In order to verify the validity of the method used in this paper,
we selected part images with different illuminations and different angles for testing. The experimental
results show that the method completed the detection well, and has a high accuracy, reflecting a good
level of robustness.

5. Conclusions

In this paper, a novel approach based on the Mask R-CNN and SVM model was carried out
to identify the accuracy of assembly parts with high precision and high efficiency. Firstly, the part
assembly image was segmented by Mask R-CNN to extract the contours. Then, the area, perimeter,
and Hu invariant moment eigenvalues were extracted to form the feature vector. Finally, the SVM
model was used to detect the correctness of the assembled parts. In the experiment, the recognition
accuracy of SVM with a Gaussian function as a kernel function reaches 87.5%, which indicates that the
algorithm has good experimental precision and running speed. The results show that the proposed
method in this paper is more accurate in complex environments, and it shows better robustness than
other traditional machine vision algorithms. This study provides an effective method for the correct
detection of assembly parts based on deep learning and machine vision. In the future, studies related
to the correct detection of assembly parts under complicated conditions will be explored more deeply.
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