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Abstract: Feature selection is a way of reducing the features of data such that, when the classification
algorithm runs, it produces better accuracy. In general, conventional feature selection is quite
unstable when faced with changing data characteristics. It would be inefficient to implement
individual feature selection in some cases. Ensemble feature selection exists to overcome this
problem. However, with the advantages of ensemble feature selection, some issues like stability,
threshold, and feature aggregation still need to be overcome. We propose a new framework to deal
with stability and feature aggregation. We also used an automatic threshold to see whether it was
efficient or not; the results showed that the proposed method always produces the best performance
in both accuracy and feature reduction. The accuracy comparison between the proposed method and
other methods was 0.5–14% and reduced more features than other methods by 50%. The stability
of the proposed method was also excellent, with an average of 0.9. However, when we applied
the automatic threshold, there was no beneficial improvement compared to without an automatic
threshold. Overall, the proposed method presented excellent performance compared to previous
work and standard ReliefF.
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1. Introduction

Feature selection is a way of reducing the dimensions/features of data such that, when the
classification algorithm runs, it produces better accuracy. The common thing to do is to recognize
the domain of the data and to form a set of more relevant features. However, as the amount of data
increases, it becomes exhausting to sort relevant features manually. There are several benefits of feature
selection, i.e., facilitating data visualization and data understanding, reducing computing time and
data storage, and reducing overfitting due to the phenomenon of the curse of dimensionality and
improving the performance [1].

There are many ways of building feature selection algorithms, but most feature selection algorithms
are categorized into three types. Filter types use feature rank to determine the relevance of each
feature [2–8]. Feature rank is obtained by calculating the correlation between each feature and its
predictor class. Consequently, this type has a minimum of computational time. The second type is
the wrapper. In this type, a classification algorithm used to determine the most relevant features,
which are obtained by looking at the results of the classification algorithm [9–12]. In line with the
wrapper type, the embedded type also uses a classification algorithm to determine the relevant features.
The difference is that the feature selection algorithm is embedded in the classification algorithm,
such as decision tree, random forest, and neural network [13–15].

There were many researches on feature selection in recent years. The research focused on how to
optimize the feature selection algorithm. Some used the addition of optimization algorithm [16–20],
i.e., genetic algorithm or particle swarm optimization, while some used the fuzzy approach [21–25]
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and, most recently, the ensemble approach [17,21,26–33]. In general, a conventional feature selection
is quite unstable when faced with changing data characteristics. Well, mostly, each algorithm is
applied to different cases. Therefore, it would be inefficient to implement a conventional feature
selection in some cases, especially when it concerns big data. Ensemble feature selection exists to
overcome this problem. With a reasonably simple approach like an ensemble classification, according
to Pardo et al. [27], there are two categories, namely, homogeneous and heterogeneous.

Ensemble feature selection can reduce computing time and improve accuracy. The concept
of ensemble feature selection is to divide the feature search space of the data into several subsets
so as to reduce the complexity of the algorithm. At the end, each subset is combined to get the
full results. However, with these advantages, some problems need to be overcome. Bolón–Canedo
and Alonso–Betanzos [28] mentioned that some of the problems with ensemble feature selection are
as follows:

1. Optimal number of ensembles: because the basis of an ensemble is a partition, it is necessary to
know the optimal number of partitions. Our research [32] on ensemble feature selection showed
that five partitions are better than three and seven.

2. Stability of feature selection: this relates to how well the ensemble feature selection produces the
same selected features each time.

3. Scalability: a conventional feature selection is less efficient in handling big data problems.
Logically, ensemble feature selection can handle this problem because of the partition.

4. Threshold for rankers: the problem of each feature selection algorithm that uses a filter
approach is determining the threshold for the ranker. This threshold determines the number of
reduced features.

5. Feature aggregation: this problem is related to how to combine features from each subset in the
ensemble to produce the most relevant features.

6. Explainability: the main problem faced by each algorithm beyond feature selection is clarity of
the results obtained. Researchers usually use two approaches, i.e., mathematical proofing or
empirical proofing.

Our previous research [32], which focused on how to improve accuracy and computational time,
still had a few limitations. The first involved how to calculate the stability of the ensemble feature.
The second involved the determination of the threshold for the ranker. The third involved how to
aggregate the subsets of features to produce the best result. The focus of this research is creating a new
framework that can overcome the problems of stability, threshold, and aggregation of features.

The organization of this paper is as follows: Section 2 describes the dataset,
evaluation measurement, and the proposed technique. Section 3 displays the results obtained from
several experiments and contains a discussion of the results obtained. Finally, Section 4 concludes
the paper.

2. Materials and Methods

2.1. Resources

In this research, an experiment was carried out using a Hewlett-Packard Laptop with an Intel (R)
Core (TM) Processor i5-7200U central processing unit (CPU) @ 2.50 GHz, 2712 MHz, with two cores
and four logical processors with 8 GB of random-access memory (RAM). This research used MATLAB
with several libraries included.

2.2. Dataset

The dataset used in this research was taken from three sources: UCI Machine Learning Repository,
Arizona State University feature selection dataset, NIPS 2003 challenge dataset, and Vanderbilt
University’s gene expression dataset. There were 14 different datasets with multivariate characteristics
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and no missing data. These datasets were chosen based on differences in the number of samples,
features, and classes, as well as because the datasets had different fields of knowledge. There are three
categories or fields of knowledge, for example, artificial data, image data, and medical record data.
The aim was to see whether the proposed method could overcome variations of these characteristics.
Table 1 shows the characteristics of the datasets and their sources.

Table 1. Datasets.

No Datasets Categories # of
Samples

# of
Features

# of
Classes Source

1 MADELON Artificial data 2600 500 2 [34]

2 COIL20

Image data

1440 1024 20 [35]
3 GISETTE 7000 5000 2 [34]
4 USPS 9298 256 10 [35]
5 YALE 165 1024 15 [35]
6 ORL 400 1024 40 [35]

7 CTG

Medical record
data

2126 23 3 [36]
8 11-TUMORS 174 12,533 11 [37]
9 LUNG CANCER 203 12,600 5 [37]

10 TOX_171 171 5748 4 [35]
11 PROSTATE_GE 102 5966 2 [35]
12 GLI_85 85 22,283 2 [35]
13 LYMPHOMA 96 4026 9 [35]
14 SMK_CAN_187 187 19,993 2 [35]

2.2.1. Artificial Data

MADELON is an artificial dataset consisting of 32 clusters. MADELON has five hypercube
dimensions (an analog n-dimensional square and cube) and is labeled +1 and −1 at random.
Five dimensions represent the five informative features. Then, out of the five features, 15 additional
combinations are made to produce a total of 20 informative and redundant sets of features. The sequence
of features and patterns in this dataset is randomized. MADELON is also one of five datasets in
NIPS 2003.

2.2.2. Image Data

In this research, the proposed method was tested on five image datasets with different criteria,
one of which was the number of classes. The first dataset was the Columbia University Image Library
(COIL20). COIL 20 is a face image dataset consisting of 20 objects. Each object has 72 images that were
taken five degrees apart when the object rotated on a turntable. The size of each image is 32 × 32 pixels,
represented by a 1024-dimensional vector.

The second data was GISETTE. GISETTE is a handwritten number recognition dataset.
The problem involves differentiating between numbers four and nine. The data are processed
in such a way (normalized and centered) leading to a fixed size of 28 × 28. The sequence of features
and patterns in this dataset is randomized, where information from the features is not provided to
avoid bias in the feature selection process. GISETTE is one of five datasets in NIPS 2003.

The third dataset was USPS. USPS is also a digit handwritten dataset. It is similar to GISETTE,
but the digits used in USPS are all digits from 0–9. The digits are converted to a 16 × 16 image. Figure 1
shows sample images from the USPS dataset.
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The fourth dataset was YALE. YALE is a face image dataset from 15 individuals. Each individual
has 11 image variations, which are center-light, with glasses, happy, left-light, without glasses,
normal, right-light, sad, sleepy, surprised, and winking. The total dataset includes 165 grayscale
images in GIF format. Figure 2 shows sample images from the YALE dataset.
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Similar to YALE, ORL is also a face image dataset. ORL contains 10 different images each of
40 distinct subjects. The images were taken several times, varying the illumination, facial looks
(open/closed eyes), facial emotions (smiling/not smiling), and facial appearances (glasses/no glasses).
The images were taken against a dark background with the subjects facing the camera (with tolerance
for some side movement). Figure 3 shows sample images from the ORL dataset.
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2.2.3. Medical Record Data

The proposed method was also tested using medical record datasets. There were six datasets
tested, five of which were gene expression datasets. The first one was a cardiotocography (CTG)
dataset. CTG includes medical record data for fetal heart rate and uterus contraction. CTG measures
the fetal heart rate and, at the same time, monitors contractions in the uterus (uterus). CTG is different
from an electrocardiogram (ECG). An ECG detects the heart rate by measuring the electrical activity
produced by the heart during contractions. CTG uses ultrasound waves called Doppler waves to
measure fetal movements. The way it works is by sending ultrasound waves into the mother’s body;
then, when it hits the fetus, the ultrasound waves bounce back with varying strength. The bouncing
waves are measured as the fetal heart rate. Contractions can be measured using the tocodynamometer
found on CTG. The tocodynamometer measures the tension in the mother’s abdominal wall.

The 11-TUMORS dataset was from the Gene Expression Model Selector. The 11-TUMORS consists
of 11 types of tumors in humans placed in a microarray. The 11 classes in this dataset included prostate,
bladder/ureter, breast, colorectal, gastroesophageal, kidney, liver, ovary, and pancreatic cancer, as well
as lung adenocarcinoma and lung squamous cell carcinoma.

LUNG CANCER was a dataset from the Gene Expression Model Selector. This dataset consisted
of four types of lung cancer and normal samples. The total data is 203 specimens with 186 lung tumors
and 17 healthy lung specimens. Of these, 125 adenocarcinoma samples were associated with clinical
data and with histological slides from adjacent parts.

The other gene expression datasets were TOX_171, PROSTATE_GE, GLI_85, LYMPHOMA, and
SMK_CAN_187. TOX_171 dataset is a kind of influenza disease effect on plasmacytoid dendritic cells.
PROSTATE_GE is a prostate cancer dataset. GLI_85 stands for glioma, which is a malignant tumor of
the glial tissue of the nervous system. LYMPHOMA is a cancer of the lymph nodes. SMK_CAN_187 is
cancer caused by smoking.

http://www.cad.zju.edu.cn/home/dengcai/Data/Yale/images.html
http://www.cad.zju.edu.cn/home/dengcai/Data/Yale/images.html
http://www.cad.zju.edu.cn/home/dengcai/Data/ORL/images.html
http://www.cad.zju.edu.cn/home/dengcai/Data/ORL/images.html
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2.3. Methods

Firstly, the training data were partitioned into several subsets. Then, feature selection was
performed on each subset of the data. The results of feature selection and feature ranking were then
aggregated to get several new subsets of selected features. Subsets of selected features were then
combined to get the most optimal feature subset. Guyon and Elisseeff [1] showed that selecting a subset
of features is more useful for excluding redundant features than selecting the most relevant feature.
Figure 4 shows a detailed illustration of the proposed framework.
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Figure 4. 2-dimensional distribution ensemble feature selection framework. Figure 4. 2-dimensional distribution ensemble feature selection framework.
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2.3.1. Data Partitioning

Data normalization was carried out before partitioning the data. The purpose of data normalization
is to uniform the distribution of values of the data. Equation (1) shows the simplest way of achieving
data normalization.

norm_data =
data−min(data)

max(data) −min(data)
. (1)

the normalized data were then divided into training data and testing data with a ratio of 7:3. The training
data with the Nsamples × Mfeatures dimension were then divided into several subsets. Equation (2)
shows how the data partition was achieved.

tr.datapartition =
1
p
(N) ×

1
q
(M), (2)

where p | N and q | M; both p and q are non-zero positive integers = {1, 2, . . . , N/M}; if p = q, then the
equation becomes

tr.datapartition =
1
p
(N ×M) =

1
q
(N ×M). (3)

2.3.2. Feature Ranker

ReliefF [5] is a Relief [3] filter method. The ReliefF feature selection method is an improvement of
Relief that can deal with noisy, multiclass datasets with low bias. This algorithm works by estimating
the features according to how well they distinguish neighbor samples. ReliefF is a ranker method; thus,
a threshold is needed to obtain the subset of features. The following equation shows how to calculate
the weight on Relief:

Wi = Wi − di f f (x, nearHit) + di f f (x, nearMiss), (4)

where W is the weight, x is the feature vector, nearHit is the feature vector closest to x with the same
class, and nearMiss is the feature vector closest to x with a different class. Weight W decreases if the
difference between feature vectors in the same class is higher than feature vectors in different classes,
and vice versa.

The calculation of diff(x, nearHit) and diff(x, nearMiss) using ReliefF is different from that using
standard Relief. Whereas standard Relief uses Euclidean distance, ReliefF uses Manhattan distance.
Equation (5) shows the calculation formulation using Manhattan distance using ReliefF.

di f f (x, nearHit|nearMiss) =
n∑

i=1

|xi − nearHiti|+ |xi − nearMissi|. (5)

After the weight W obtained, the next step is to sort W by the most significant value to get feature
ranking using the following equation:

Relie f Franking(p, q) =
p∑

i=1

q∑
j=1

sort (wi, j, “ascending”). (6)

2.3.3. Ranked Feature Aggregator

After ranking features in all subsets, the next step is to aggregate each of these features according
to the index. Let us assume that the number of partitions in a row and column is the same (p = q). If the
number of partitions is four, then there are 16 subsets formed {D11, D12, D13, D14, D21, D22, D23, D24,
. . . , D44}. Aggregation is performed for each subset of the same column {(D11, D21, D31, D41), (D12,
D22, D32, D42), . . . }; this is because the same column has the same feature index and, thus, they can be
compared. Figure 5 shows an illustration of feature aggregation.
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As illustrated in Figure 5, a group of new features “New.Feat.Idxj” was obtained by finding the
mode value of the feature in each subset D in the i row and j column. Equation (7) shows how the
feature aggregation works.

New.Feat.Idx j =

q∑
j=1

p∑
i=1

mode (Di j). (7)

The threshold k was then applied to these groups. This threshold is a percentage value of
how many features reduce. There is a difference between the use of thresholds in ensemble and
non-ensemble feature selection. In non-ensemble feature selection, a threshold is applied in all features.
In ensemble feature selection, a threshold is applied in the subset of features.

2.3.4. Feature Combinator

In our previous research [32], a combination was done by combining all features in each subset.
Apparently, combining all subsets of features does not produce the best performance. Thus, to solve
this problem, we looked for min.loss from all possible combinations of the subsets of features. Figure 6
shows all possible feature combinations if n = 4. Equation (7) shows all possible combination for
subsets of features with n subsets.

All.Comb =
n∑

k=1

n!
k!(n− k)!

, (8)

Best.FeatSubs = min.Loss(All.Comb), (9)

where n has the same value as p and q. If n = 4, the total possible combination is 15.
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2.4. Evaluations

There are several ways to evaluate the performance of ensemble feature selection. The first
involves the overall performance of the algorithm. In this evaluation, we can use calculation metrics
such as accuracy, precision, recall, specificity, and F1-score.

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
, (10)

Precision (PRE) =
TP

TP + FP
, (11)

Recall (REC) =
TP

TP + FN
, (12)

Speci f icity (SPE) =
TN

TN + FP
, (13)

F1− score (F1) = 2(
Precision×Recall
Precision + Recall

), (14)

where TP is true positive, TN is true negative, FN is false negative, and FP is false positive.
The second evaluation approach involves the stability of the ensemble feature selection itself.

There are three categories for stability measurement, which are stability by index/subset, stability by
rank, and stability by weight [38,39]. Stability by rank and weight has a major drawback that does not
allow stability calculations on two subsets of features that have different numbers of features. On the
contrary, stability by index/subset can deal with different sizes of feature vectors. The mechanism
involves the subset of a feature represented as a binary vector, where selected features are represented
as 1 and non-selected features are represented as 0. However, stability by rank and weight is more
representative when measuring the stability of ranking-based feature selection.

We used these three types of stability to see variations in their stability values. Equation (15)
shows a measure of stability by index/subset, i.e., Hamming distance.

Hamming(Si, S j) =
M∑

k=1

|Sik − Sik|, (15)

Normalize_Hamming(Si, S j) = 1−
Hamming(Si, S j)

M
, (16)
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where Si is subset feature i, and S2 is subset feature j. M is the total number of features in the dataset.
The drawback of this stability measure is that it does not depend on feature rank.

Equation (17) shows a measure of stability by rank, i.e., Spearman’s correlation.

Spearman(Ri, R j) = 1−
6
∑

d2

M(M2 − 1)
, (17)

where Ri is ranked feature i, and Rj is ranked feature j. The distance between the same feature in Ri and
Rj is notated by d. The drawback of this stability measure is that it cannot handle subsets of features
from different cardinality, and that two features must at the same size.

Equation (18) shows a measure of stability by weight, i.e., Pearson’s correlation. For Spearman
and Pearson correlations, we use the interpolation method to overcome the problem of differences in
the number of features.

Pearson(Wi, W j) =

∑
(Wit − µwi)(W jt − µw j)√∑
(Wit − µwi)

2∑ (W jt − µw j)
2

, (18)

where Wi is weight feature i, and Wj is ranked feature j. µwi is the mean of Wi between the same feature
in Ri and Rj. The drawback of this stability measure is that two subsets of features must have the same
size.

3. Results and Discussion

In this section, we describe some of the results obtained. We evaluated the proposed method
based on several criteria. First, the overall performance was judged based on the values of
accuracy, recall, specificity, precision, F1-score, and the number of features selected. In this evaluation,
we compared the proposed method with previous two-dimensional (2D) ensemble methods and the
standard ReliefF. The most important thing from feature selection is knowing which features/subsets
of features are relevant. By using a combination method to combine subsets of features and obtain
features that produce the smallest loss, we could deduce which subset of features was the most relevant.
The next evaluation approach involved measuring the stability of the proposed method. The last
evaluation approach involved looking at the effect of the automatic threshold on the proposed method.

3.1. Feature Selection Performance

Table 2 shows the performance evaluation of feature selection. There were four feature
selection methods compared, including ReliefF as a baseline, correlation feature selection (CFS),
minimum-redundancy maximum-relevancy (mRMR), and fast correlation-based filter (FCBF).
We tested them in five datasets representing each field of knowledge. From the comparison
results, it was found that ReliefF had the best performance among other methods in three datasets.
Therefore, ReliefF was used as a baseline in this paper.
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Table 2. Feature selection performance.

Datasets Algorithms ACC REC SPE PRE F1

MADELON

ReliefF 75.26 73.85 76.67 75.99 0.75
CFS 48.21 51.79 44.62 48.33 0.50
mRMR 70.00 73.08 66.92 68.84 0.71
FCBF 69.87 67.95 71.79 70.67 0.69

COIL20

ReliefF 94.44 100.00 94.15 47.83 0.65
CFS 93.98 100.00 93.66 45.83 0.63
mRMR 94.21 100.00 93.90 46.81 0.64
FCBF 92.59 100.00 92.20 40.74 0.58

USPS

ReliefF 88.45 95.48 87.05 59.60 0.73
CFS 89.17 96.13 87.78 61.15 0.75
mRMR 89.60 94.84 88.55 62.38 0.75
FCBF 86.20 93.98 84.64 55.04 0.69

CTG

ReliefF 98.27 99.40 94.33 98.40 0.99
CFS 96.86 98.19 92.20 97.79 0.98
mRMR 86.03 94.15 57.45 88.61 0.91
FCBF 97.65 98.39 95.04 98.59 0.98

11-TUMORS

ReliefF 67.31 50.00 68.00 5.88 0.11
CFS 61.54 0.00 64.00 0.00 NaN
mRMR 76.92 50.00 78.00 8.33 0.14
FCBF 55.77 0.00 58.00 0.00 NaN

3.2. Overall Performance

Table 3 shows the performance evaluation of the proposed method. The proposed method
was compared with the previous 2D ensemble methods and the standard ReliefF. We can see
that the proposed method outperformed the two comparison methods in all datasets except one,
MADELON. When viewed in the MADELON dataset, the proposed method improved the accuracy
results from the previous method by 3%, although it was still inferior to the ReliefF standard
by a difference of 2%. Exploring further, we found that there were some unsatisfactory results,
especially for F1-score. The F1-score for the YALE and ORL datasets was very low, ranging from 0.05
to 0.17. These results were obtained because the recall was too high, but the precision was small.
This problem could be overcome using other classification methods.

Another point of performance evaluation was the number of relevant features selected.
From these results, the proposed method produced the fewest number of features compared to the other
two methods. This result relates to the aggregation and combination method used. As stated earlier,
aggregation was done for each subset of features, not the full features in the data. This mechanism is
akin to doing multiple thresholds in the ensemble partition. For combinations, the mechanism is to
choose a subset of features that have a minimum loss, and those selected have the smallest combination,
automatically having the fewest number of features. Overall, the proposed method outperformed
the two other methods with a difference of 0.5–14% in terms of accuracy and reduced 50% of features
compared other methods.
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Table 3. Performance evaluation.

Datasets Algorithms ACC REC SPE PRE F1
# of

Selected
Features

MADELON
ReliefF 75.59 75.54 75.64 75.67 0.76 125
2D ensemble 69.77 69.74 69.79 69.75 0.70 108.5
Proposed Method 73.15 73.18 73.13 73.15 0.73 58.9

COIL20
ReliefF 93.43 98.61 93.15 43.90 0.61 256
2D ensemble 95.42 100.00 95.17 52.60 0.69 224.1
Proposed Method 96.00 99.09 95.83 55.81 0.71 157.1

GISETTE
ReliefF 93.29 92.74 93.84 93.78 0.93 1250
2D ensemble 93.28 93.05 93.51 93.49 0.93 1091.9
Proposed Method 93.87 93.86 93.88 93.88 0.94 700.7

USPS
ReliefF 88.64 95.88 87.19 60.06 0.74 64
2D ensemble 90.12 95.85 88.97 63.56 0.76 57.6
Proposed Method 90.12 95.85 88.97 63.56 0.76 57.6

YALE
ReliefF 54.69 58.33 54.41 9.25 0.16 256
2D ensemble 56.33 70.00 55.43 9.38 NaN 222.9
Proposed Method 60.00 66.67 59.57 9.88 0.17 143

ORL
ReliefF 60.83 50.00 61.11 3.16 0.07 256
2D ensemble 64.08 43.33 64.62 2.99 0.06 224.4
Proposed Method 66.00 56.67 66.24 4.04 0.08 127.9

CTG
ReliefF 98.43 99.23 95.59 98.76 0.99 6.00
2D ensemble 98.60 99.38 95.88 98.84 0.99 4.5
Proposed Method 98.85 99.52 96.52 99.02 0.99 2.7

11-TUMORS
ReliefF 71.54 80.00 71.20 13.33 0.23 3134
2D ensemble 74.04 55.00 75.04 9.08 0.22 2715.6
Proposed Method 77.12 50.00 78.47 9.13 0.22 1320.5

LUNG
CANCER

ReliefF 89.50 74.00 90.91 47.30 0.56 3150
2D ensemble 90.00 82.00 90.73 44.23 0.57 3151.5
Proposed Method 93.33 94.00 93.27 56.35 0.70 866.8

TOX_171
ReliefF 64.12 68.35 62.60 40.14 0.50 1437
2D ensemble 52.94 60.27 50.29 30.49 0.40 1360.30
Proposed Method 65.88 66.15 65.81 41.29 0.50 678.2

PROSTATE_GE
ReliefF 85.67 85.33 86.00 86.78 0.86 1492
2D ensemble 80.67 80.67 80.67 82.04 0.81 1363.4
Proposed Method 91.33 90.00 92.67 92.61 0.91 470.4

GLI_85
ReliefF 80.40 64.11 87.03 72.27 0.66 5571
2D ensemble 80.40 63.75 87.52 70.72 0.65 5572
Proposed Method 84.80 73.04 89.80 76.07 0.74 1671.6

LYMPHOMA
ReliefF 66.07 83.13 51.24 60.38 0.70 1007
2D ensemble 64.29 72.20 57.24 60.83 0.66 874.9
Proposed Method 76.79 89.73 64.95 70.51 0.79 412.1

SMK_CAN_187
ReliefF 57.68 52.22 62.76 57.03 0.54 4999
2D ensemble 63.21 61.11 65.17 62.44 0.62 5000
Proposed Method 71.07 68.52 73.45 70.95 0.69 2750

3.3. Subset of Relevant Features

The primary purpose of feature selection is to determine the features/subset of features that are
relevant and not relevant in a dataset. Therefore, in this evaluation, we described which subsets of
features were relevant in the tested dataset. Table 4 shows the results of the most relevant subsets of
features (with a minimum loss) for 10 trials of each dataset.
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Table 4. Subset of selected features.

Dataset #1
Run

#2
Run

#3
Run

#4
Run

#5
Run

#6
Run

#7
Run

#8
Run

#9
Run

#10
Run Intersection

MADELON 10 8 11 15 10 8 14 14 10 13 2 and 4
YALE 12 11 9 10 11 13 15 10 5 15 1 and 4
ORL 5 3 6 3 7 12 7 12 3 12 1 and 3
CTG 13 12 9 11 8 9 9 11 9 9 1 and 4

TOX_171 1 13 7 4 5 8 1 15 13 9 1 and 3
PROSTATE_GE 8 8 8 5 2 1 7 8 8 13 1 and 4

GLI_85 1 8 6 1 5 2 1 1 2 1 1 and 2
LYMPHOMA 1 7 8 9 11 6 4 8 7 12 1 and 4
SMK_CAN_187 2 14 9 3 3 7 2 12 15 10 2 and 4

For the MADELON dataset, the #1 run resulted in minimum loss with the 10th combination;
referring to Figure 6, this means that the feature subsets contained in the combination were the second
and fourth feature subsets. Then, for 10 trials, we found that the highest intersection involved the
second and fourth subset features. For the CTG dataset, most intersections were in the subsets of the
first and fourth features. The features listed in the first subset were the first features, and those listed in
the fourth subset were the 20th and 22nd features. If observed further, the first feature in the CTG
dataset was the Fetal Heart Rate (FHR) baseline, the 20th feature was the variance histogram, and the
22nd feature was the FHR pattern. These results indicate that, by using this combination, we could
also determine which subsets of features were most relevant in a dataset.

3.4. Stability Measurement

Each stability measurement has its advantages and disadvantages. This evaluation was carried
out to measure the stability of the proposed method. This also elaborated on the capabilities of the
considered stability measures. By using Hamming distance, we converted the feature ranking into
a binary representative. Table 5 shows the feature generated on the CTG dataset from the proposed
method in 10 iterations.

Table 5. Feature generation of the proposed method on the CTG dataset.

Iteration Selected Feature Feature Representative

1 [1 13 22 20] [1000000000001000000101]
2 [13 22 18] [0000000000001000010001]
3 [1 22 20] [1000000000000000000101]
4 [1 7 22] [1000001000000000000001]
5 [22] [0000000000000000000001]
6 [1 22 20] [1000000000000000000101]
7 [1 22] [1000000000000000000001]
8 [1 7 22 20] [1000001000000000000101]
9 [3 22] [0010000000000000000001]

10 [3 22] [0010000000000000000001]

Table 6 shows the performance comparison of stability measurement on the CTG dataset. From this
result, it can be said that the measurement of stability using Hamming distance had an outstanding
value. This is because the difference was based only on binary values. Spearman stability showed
that, if the features had the same amounts and similarities, the result was 1. Stability using Pearson’s
correlation in this experiment had more variation values. Overall, the proposed method had excellent
stability, ranging from 0.8–1.
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Table 6. Stability measurement comparison on the CTG dataset.

Hamming Spearman Pearson

A [1 13 22 20] [1000000000001000000101]
0.991 0.800 0.908B [13 22 18] [0000000000001000010001]

A1 [1 7 22 20] [1000001000000000000101]
0.991 0.800 0.915B1 [3 22] [0010000000000000000001]

A2 [1 22 20] [1000000000000000000101]
0.991 1.000 0.931B2 [13 22 18] [0000000000001000010001]

A1 [3 22] [0010000000000000000001]
0.995 1.000 1.000B2 [1 22] [1000000000000000000001]

3.5. Applying Automatic Threshold

We also applied an automatic threshold to the proposed method. The automatic threshold used
was the mean of the ranking weight. Figures 7 and 8 show the results of a comparison between the
proposed method without an automatic threshold and that using the automatic threshold. The result
was not significant; in some cases, the results with an automatic threshold surpassed those without an
automatic threshold, and vice versa.Information 2020, 11, x FOR PEER REVIEW 13 of 15 
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4. Conclusions and Future Works

In this paper, we presented an improvement of the homogeneous distribution ensemble feature
selection with a two-dimensional partition method. The improvement was in the feature aggregation
and feature combination. From the results obtained, the proposed method optimally always produced
the best performance in terms of both accuracy and feature reduction. The accuracy comparison
between the proposed method and other methods was 0.5–14%, and it reduced more features than
other methods by 50%. The stability of the proposed method was also excellent, with an average of
0.95. Finally, using the proposed method, we could determine which combination of subsets of features
produced a better result.

Although the proposed method gave excellent performance, there were still some limitations that
need to be addressed. The future work of this research will focus on how to implement an effective
and efficient automatic threshold using this method. we will also study how to improve F1-scores by
implementing other classification methods such as deep learning.
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