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Abstract: In this paper, an efficient high-order multiple signal classification (MUSIC)-like method is
proposed for mixed-field source localization. Firstly, a non-Hermitian matrix is designed based on a
high-order cumulant. One of the steering matrices, that is related only with the directions of arrival
(DOA), is proved to be orthogonal with the eigenvectors corresponding to the zero eigenvalues.
The other steering matrix that contains the information of both the DOA and range is proved to
span the same column subspace with the eigenvectors corresponding to the non-zero eigenvalues.
By applying the Gram–Schmidt orthogonalization, the range estimation can be achieved one by one
after substituting each estimated DOA. The analysis shows that the computational complexity of
the proposed method is lower than other methods, and the effectiveness of the proposed method is
shown with some simulation results.
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1. Introduction

Source localization has been an important research topic for array signal processing [1–3].
This research topic is widely applied in many fields such as sonar and electronic surveillance [4],
where the signals are often non-stationary [5]. The wavefront of a far-field source signal can be
assumed to be a plane when it impinges on the receiver array. Each source can be localized with its
corresponding direction of arrival (DOA). When the sources are located near the array, the wavefront
of the impinging signal is spherical [6,7]. These near-field sources require both the DOAs and ranges
to specify their location [8].

Plenty of researchers all over the world have been making an effort to contribute to the research
of mixed-field source localization, and there are already many achievements. For far-field source
localization, there is the multiple signal classification (MUSIC) in [9], estimating signal parameters
via rotational invariance techniques (ESPRIT) in [10], and root-MUSIC in [11]. For near-field, many
people directly extend the DOA estimation methods to estimate the DOA and range at the same time.
For example, there are the two-dimension (2D) MUSIC method [12] and the 2D ESPRIT algorithm [13].

But in practice, the situation is very often that far-field and near-field sources exist
simultaneously [14,15]. In recent years, many scholars have been concentrating on the research about
the mixed-field source localization, and proposed many modified methods that can avoid the 2D search
with a high computational complexity. A modified 2D MUSIC method was proposed to construct
several cumulant matrices and the mixed-field sources are localized with several 1D searches [16].
Later, a mixed-order statistics MUSIC (MOS) was proposed in [17] that can reduce the computational
complexity of [16]. However, all these existing methods require constructing two different Hermitian
matrices and applying the eigenvalue decomposition (EVD) twice. In [18], a simplified 2D MUSIC
method was proposed to localize near-field sources with constructing only one matrix. But it can only
be applied for near-field source localization.
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Therefore, we propose in this paper a simplified method to localize mixed-field sources that
requires only one non-Hermitian matrix and one EVD while avoiding the 2D search. Firstly, with the
high degrees of freedom, the high-order cumulant is adopted to design a non-Hermitian matrix,
which can be expressed as the product of two different steering matrices. Then one steering matrix
can be proved to be orthogonal with the eigenvectors corresponding to the zero eigenvalues, and the
DOA of all the sources can be estimated with these eigenvectors like other methods. The other
one can be proved to be related with the eigenvectors corresponding to the non-zero eigenvalues.
At last, the ranges of the near-field sources can be estimated with these eigenvectors by applying the
Gram–Schmidt orthogonalization.

The rest of this paper is organized as follows. The signal model is displayed in Section 2. Section 3
makes a detailed illustration of the proposed method, as well as the complexity analysis, to show the
corresponding improvement. Several simulations are carried out in Section 4. At last, the whole paper
is concluded in Section 5.

In this paper, T means the transpose operation, H is the conjugate transpose, and ∗ the complex
conjugate. A bold capital letter symbolizes a matrix, and a bold letter in lower case stands for a vector,
such as A and a respectively.

2. Signal Model

In this paper, the situation is considered where K mixed-field narrow-band signals impinge on
a uniform linear array (ULA). The ULA consists of 2M + 1 elements as shown in Figure 1, with the
inter-element spacing being d. The sources include K1 far-field ones and K2 near-field ones (K1 + K2 =

K). The output with T snapshots of the mth (m ∈ [−M, M]) sensor can be expressed as

ym(t) =
K

∑
k=1

sk(t)ejϕmk + nm(t), t = 1, 2, . . . , T, (1)

where sk(t) stands for the signal from the kth source, nm(t) represents the additive Gaussian noise
(colored or white) at the mth sensor. Generally, the phase difference between the 0th and mth elements
ϕmk can be expressed as [19]

ϕmk =
2π

λ
(
√

r2
k + (md)2 − 2rkmd sin θk − rk)

≈ ωkm + φkm2, (2)

where

ωk = − 2πd
λ sin θk (3)

φk =
πd2

λrk
cos2 θk (4)

λ is the wavelength of the source signal, satisfying λ ≥ 4d, rk is the range of the kth source, and θk
is the corresponding DOA. In the near-field situation, the sources are located in the Fresnel region
(rk ∈ [0.62(R3/λ)0.5, 2R2/λ], where R = 2Md is the aperture of the ULA). However, for far-field sources,
the ranges are beyond the Fresnel region and can be considered infinite. We have for far-field sources

φk ≈ 0. (5)

Therefore, only the DOA is required for far-field source localization while both the DOA and
range are necessary to localize the near-field source.
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Figure 1. Near-field source localization with a uniform linear array (ULA).

The received signal can also be expressed in the matrix form as follows:

y(t) = A(θ, r)s(t) + n(t) (6)

y(t) is the (2M + 1)× 1 received signal vector:

y(t) = [y−M(t), y−M+1(t), . . . , yM(t)]T , (7)

s(t) is the K× 1 signal vector from the K sources:

s(t) = [s1(t), s2(t), . . . , sK(t)]T . (8)

A(θ, r) is the steering matrix:

A(θ, r) = [a(θ1, r1), a(θ2, r2), . . . , a(θK, rK)]. (9)

a(θk, rk) is the (2M + 1)× 1 steering vector:

a(θk, rk) = [ej[(−M)ωk+(−M)2φk ], . . . ,

ej(Mωk+M2φk)]T . (10)

And n(t) is the (2M + 1)× 1 noise vector:

n(t) = [n−M(t), n−M+1(t), . . . , nM(t)]T . (11)

Without loss of generality, the following assumptions (like in [14–19]) are made to guarantee the
uniqueness of the localization:

(1) The kurtosis of the signal is non-zero.
(2) The DOAs of all sources are different.
(3) The source signals are independent of each other as well as of all the noise.
(4) The number of the sensors is greater than that of the sources.
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3. Proposed Scheme

3.1. DOA Estimation for Mixed-Field Sources

High-order cumulant can resist the Gaussian noise effectively, no matter whether it is white or colored.
When the statistic order is no smaller than 3, the cumulant of this kind of noise should be zero [20]:

cum{nm(t), n∗n(t), np(t), . . .} = 0, (12)

where nm(t), nn(t) and np(t) are the noise received at the mth, nth and pth receiver respectively.
The fourth-order cumulant is adopted in this paper, which is free from the Gaussian noise. Under
Assumption 3 that the source signals are independent of all the noise, we have

cum{ym(t), y∗n(t), yp(t), . . .}

= cum{
K

∑
k=1

sk(t)ejϕmk + nm(t),
K

∑
k=1

sk(t)ejϕnk + nn(t),
K

∑
k=1

sk(t)e
jϕpk + np(t), . . .}

= cum{
K

∑
k=1

sk(t)ejϕmk ,
K

∑
k=1

sk(t)ejϕnk ,
K

∑
k=1

sk(t)e
jϕpk , . . .}+ cum{nm(t), nn(t), np(t), . . .}

= cum{
K

∑
k=1

sk(t)ejϕmk ,
K

∑
k=1

sk(t)ejϕnk ,
K

∑
k=1

sk(t)e
jϕpk , . . .}. (13)

Consequently, in order to simplify the illustration of the proposed method, we ignore the Gaussian
noise in the following equations, and thus we can focus on the source signal.

Firstly let
x(t) = Jy∗(t), (14)

where J is the exchange matrix with the size of (2M + 1)× (2M + 1) [21].

J =


0 0 . . . 0 1
0 0 . . . 1 0
...
0 1 . . . 0 0
1 0 . . . 0 0

 (15)

Under the assumptions that are made in the signal model part, we can calculate the fourth-order
cumulant of the processed signal [8,14,16,17,22]:

cum{xm(t), x∗n(t), xp(t), x∗q (t)}
= E[xm(t)x∗n(t)xp(t)x∗q (t)]

−E[xm(t)x∗n(t)]E[xp(t)x∗q (t)]

−E[xm(t)xp(t)]E[x∗n(t)x∗q (t)]

−E[xm(t)x∗q (t)]E[x
∗
n(t)xp(t)]

=
K

∑
k=1

c4sk ej[(m−n+p−q)ωk+(m2−n2+p2−q2)φk ], (16)

cum{sm(t), s∗n(t), sp(t), s∗q(t)}

=

 c4sk , (m = n = p = q = k)

0, (others)
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where c4sk is the fourth-order cumulant of the source signal sk.
We then can construct a cumulant matrix with the entries defined as follows:

C(n̄, m̄) = cum{xn(t), x∗0(t), x−m(t), x∗m(t)}

=
K

∑
k=1

c4sk e−j2ωkmej(ωkn+φkn2), (17)

where
m̄ = M + m + 1, (18)

n̄ = M + n + 1, (19)

m, n ∈ [−M, M] (20)

The cumulant matrix C can be written in the matrix form as:

C = A1(θ, r)C4sAH
2 (θ). (21)

C4s is a diagonal matrix, and the diagonal elements are c4s1 , c4s2 , . . . , c4sK respectively:

C4s =


c4s1 0 0 . . . 0

0 c4s2 0 . . . 0
...
0 0 0 . . . c4sK

 (22)

a1(θk, rk) (a2(θk)) is the kth column of A1(θ, r) (A2(θ)). They are (2M + 1)× 1 vectors given by

a1(θk, rk) = [ej[(−M)ωk+(−M)2φk ], . . . ,

ej(Mωk+M2φk)]T . (23)

and
a2(θk) = [ej2(−M)ωk , . . . , ej2Mωk ]T (24)

Apply the EVD to the cumulant matrix C, and we can have

CU = UΣ, (25)

where

Σ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...
0 0 0 . . . λ2M+1

 , (26)

U = [u1, u2, . . . , u2M+1], (27)

and uk is the kth corresponding eigenvector. Substituting Equation (21) into Equation (25), it can be
calculated that

A1(θ, r)C4sAH
2 (θ)U = UΣ. (28)

The rank of C is K1 + K2 = K, and there are only K non-zero eigenvalues, which means that

λK+1 = λK+2 = λK+3 = . . . = λ2M+1 = 0. (29)
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Therefore, we have

A1(θ, r)C4sAH
2 (θ)uK+1 = A1(θ, r)C4sAH

2 (θ)uK+2 = . . . = A1(θ, r)C4sAH
2 (θ)u2M+1 = 02M+1. (30)

We know that the ranks of A1(θ, r) and C4s are all K, which means that they are both full column-rank.
Then it can be derived that

AH
2 (θ)uK+1 = AH

2 (θ)uK+2 = . . . = AH
2 (θ)u2M+1 = 02M+1. (31)

Construct a matrix:
UN1 = [uK+1, uK+2, . . . , u2M+1]. (32)

AH
2 (θ) is orthogonal with UN1. Then the DOAs of all the sources (including both far-field and near-field)

can be estimated with the following MUSIC spectrum:

θ̂k = arg max
θ

1
‖UH

N1a2(θk)‖2
. (33)

In order to reduce the computational complexity of the algorithm, we here propose to apply the
root-MUSIC for the estimation of the DOAs, which can avoid the spectrum search. Define

z = ej2ωk . (34)

Then Equation (24) can be rewritten as

a2(z) = [z−M, . . . , zM−1, zM]T (35)

Define a polynomial:
f (z) = z2M+1aT

2 (z
−1)UN1UH

N1a2(z). (36)

There is a conjugate symmetry property in this polynomial. The roots of this polynomial come in pairs
which are inside or on the unit circle, and one root is the conjugate reciprocal of the other. Only one
root of each pair will be selected. By ordering the roots inside the unit circle and taking the K roots
that are closest to and inside the unit circle, all the DOAs can be estimated.

3.2. Range Estimation for Near-Field Sources

Consider the definition of the eigenvector

A1(θ, r)C4sAH
2 (θ)uk = λkuk. (37)

When the eigenvalue λk is non-zero, the eigenvector uk is the linear combination of all the columns of
the steering matrix A1(θ, r). Define a matrix

US = [u1, u2, . . . , uK]. (38)

Obviously, A1(θ, r) and US span the same column subspace. However, the ranges of near-field sources
cannot be estimated directly through US. Apply the Gram–Schmidt orthogonalization to US:

uk⊥ =


u1, (k = 1)

uk −∑k−1
i=1

<uk ,ui>
<ui ,ui>

ui, (k > 1)
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With the orthogonalized eigenvectors, we can form another matrix whose columns are orthogonal
with each other:

US⊥ = [u1⊥, u2⊥, . . . , uK⊥]. (39)

Assume that another matrix UN⊥ is orthogonal with A1(θ, r), we can derive that

[US⊥, UN⊥][US⊥, UN⊥]
H = I, (40)

and

[US⊥, UN⊥][US⊥, UN⊥]
H = US⊥UH

S⊥ + UN⊥UH
N⊥ + US⊥UH

N⊥ + UN⊥UH
S⊥

= US⊥UH
S⊥ + UN⊥UH

N⊥. (41)

Then we know
UN⊥UH

N⊥ = I−US⊥UH
S⊥. (42)

Substitute every DOA estimated before, and the corresponding range of the source can be estimated
through the following MUSIC spectrum:

r̂k = arg max
r

1
aH

1 (θ̂k, rk)UN⊥UH
N⊥a1(θ̂k, rk)

= arg max
r

1
aH

1 (θ̂k, rk)(I−US⊥UH
S⊥)a1(θ̂k, rk).

(43)

For the substituted DOA θ̂k, if the source lies in the Fresnel region, the corresponding estimate of the
range can be obtained. But if the substituted DOA θ̂k is for the far-field source, the estimated range r̂k is
out of the Fresnel region. With this standard, the far-field and near-field sources can be distinguished
easily. For the near-field sources, the estimated DOA and range are automatically paired, requiring no
extra pairing algorithms.

The proposed method can be summarized as follows:

Step 1: Construct the cumulant matrix C.
Step 2: Apply the EVD to C.
Step 3: Obtain UN1 orthogonal to A2(θ).
Step 4: Estimate the DOAs θ̂k (k = 1, 2 . . . , K).
Step 5: Apply the Gram-Schmidt orthogonalization to US.
Step 6: By substituting the kth estimated DOA, estimate the kth range.
Step 7: Repeat Step 5 until all the K2 range estimates are all obtained.

3.3. Complexity Analyses

In this part, we will analyze the computational complexity, and make a comparison with other
methods. The main different computational complexities of the methods are compared in the following
Table 1:

Table 1. Main complexities of different methods.

Item Proposed Method MOS HOS

Matrix construction 1 2 2
EVD 1 2 2

Gram-Schmidt orthogonalization 1 0 0

For MOS, a fourth-order cumulant matrix is designed with the size of [(M
2 + 1)2 + 1]× [(M

2 + 1)2 +

1], whose computational complexity is about 9((M
2 + 1)2 + 1)2T. Then a covariance matrix with the size

of (2M + 1)× (2M + 1) is constructed, and the complexity is about (2M + 1)2T. Then the eigenvalue
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decomposition is applied to the two matrices respectively (the complexities are about 4
3 ((

M
2 + 1)2 + 1)3

and 4
3 (2M + 1)3). Therefore, the whole computational complexity of MOS is about O(9((M

2 + 1)2 +

1)2T + (2M + 1)2T + 4
3 ((

M
2 + 1)2 + 1)3 + 4

3 (2M + 1)3). Similarly for HOS, two fourth-order cumulant
matrices are constructed with the size of (2M + 1)× (2M + 1), and the eigenvalue decomposition is
applied twice. The corresponding complexity is about O(18(2M + 1)2T + 8

3 (2M + 1)3). The proposed
method constructs only one (2M + 1)× (2M + 1) cumulant matrix, and applies the EVD once. But
it also requires the application of Gram–Schmidt orthogonalization (the complexity is about 1

2 (K−
1)KM), leading to the complexity about O(9(2M + 1)2T + 4

3 (2M + 1)3 + 1
2 (K− 1)KM).

4. Simulation Results and Analysis

First of all, the computational efficiency of the different methods is studied. A laptop was adopted
as the platform, with the CPU being an i7 (2.3 GHz) and RAM 8 GB. The simulation was carried out in
the situation where there were one far-field sources and two near-field ones. A total of 500 snapshots
were received with the 5-sensors-array, and 200 simulations were carried out. The average processing
time of the methods are shown in Table 2. It can be observed that the efficiency of the proposed method
is better than HOS and MOS.

Table 2. Average processing time (seconds) of different methods.

Methods Proposed Method HOS MOS

Time (s) 0.1421 0.1711 0.2338

Secondly, the performance of the proposed method is examined. The results will be compared
with other existing methods to show the effectiveness of our proposed method. The relationship
between the root mean square error (RMSE) of estimation and signal–noise ratio (SNR) is adopted in
the paper to examine the performance. RMSE is defined as follows:

RMSE =

√
∑P

p=1 | α̂p − αtrue |2

P
, (44)

where α̂p is the estimation result of the pth trial, αtrue is the true value, and P is the number of
independent Monte Carlo trials. The definition of SNR is given by

SNR = 10 log10
∑K

k s2
k

ε2 , (45)

where ε2 is the noise variance and s2
k the power of the kth signal.

Consider the situation where four sources (two far-field and two near-field) are set at [5◦], [25◦],
[−10◦, 1.5λ], and [40◦, 2λ]. The ULA used in the simulation is made of 9 elements and the value of d is
selected as λ

4 . The ULA receives 200 snapshots from the sources. The SNR varies from 0 to 30 dB, and
the results with 200 independent Monte Carlo trials are shown in Figures 2–4. Besides, the performance
of the proposed method is also compared with the Cramer–Rao bound (CRB) given in [23].
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Figure 2. RMSE versus SNR: DOA of far-field source.
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Figure 3. RMSE versus SNR: DOA of near-field source.
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Figure 4. RMSE versus SNR: range of near-field source.

In Figures 2 and 3, it can be seen that the RMSEs of DOA estimation decreases when the SNR
grows. The accuracy is very excellent, and is almost the same as the CRB due to the resistance of
high-order cumulant. When the SNR is high enough, we can see that the difference between the CRB
and the RMSE of the proposed method can be ignored. It can also be seen that the estimation of DOAs
of different sources are nearly the same.

For different methods, it is obvious that MOS does not perform as well as other methods. HOS
outperforms MOS, and the performance is very similar to the proposed method, but HOS leads to
a much higher complexity than the proposed method. In Figure 4, the performance of the range
estimation is displayed. The comparison is very similar to that of DOAs. The proposed method
provides the best accuracy.
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5. Conclusions

In this paper, we proposed a modified 2D MUSIC for mixed-field source localization based on a
high-order cumulant. Different from other MUSIC-based methods where several Hermitian matrices
are constructed, only one non-Hermitian cumulant matrix is required and one EVD is applied to
estimate the DOAs and ranges of the mixed-field sources. The analysis shows that the proposed
method results in a lower computational complexity than other existing methods, while the simulation
results show that the proposed method can effectively achieve the decoupled estimation of the DOA
and range.
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Abbreviations

The following abbreviations are used in this manuscript:

DOA Direction of Arrival
2D Two-Dimension
MUSIC MUltiple SIgnal Classification
ESPRIT Estimation of Signal Parameters via Rotation Invariant Technique
EVD EigenValue Decomposition
SVD Singular Value Decomposition
ULA Uniform Linear Array
SNR Signal-to-Noise Ratio
RMSE Root Mean Square Error
CRB Cramer-Rao Bound
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