
 information

Article

SDToW: A Slowloris Detecting Tool for WMNs

Vinicius da Silva Faria, Jéssica Alcântara Gonçalves, Camilla Alves Mariano da Silva,
Gabriele de Brito Vieira and Dalbert Matos Mascarenhas *

Centro Federal de Educação Tecnológica Celso Suckow da Foseca–CEFET/RJ, Petrópolis 25600-000, Brazil;
vinicius.faria@aluno.cefet-rj.br (V.d.S.F.); jessica.goncalves@aluno.cefet-rj.br (J.A.G.);
camilla.silva@aluno.cefet-rj.br (C.A.M.d.S.); gabriele.vieira@aluno.cefet-rj.br (G.d.B.V.)
* Correspondence: dalbert.mascarenhas@cefet-rj.br

Received: 3 November 2020; Accepted: 23 November 2020; Published: 25 November 2020 ����������
�������

Abstract: Denial of service (DoS) attacks play a significant role in contemporary cyberspace scenarios.
A variety of different DoS attacks pollute networks by exploring various vulnerabilities. A group of
DoS called application DoS attacks explore application vulnerabilities. This work presents a tool that
detects and blocks an application DoS called Slowloris on wireless mesh networks (WMNs). Our tool,
called SDToW, is designed to effectively use the structure of the WMNs to block the Slowloris attack.
SDToW uses three different modules to detect and block the attack. Each module has its specific tasks
and thus optimizes the overall detection and block efficiency. Our solution blocks the attacker on
its first WMN hop, reducing the malicious traffic on the network and avoiding further attacks from
the blocked user. The comparison results show that SDToW performs with 66.7% less processing
consumption and 89.1% less memory consumption than Snort. Our solution does not limit the
number of parallel connections per user. Hence, by avoiding this limitation, SDToW has a lower
incidence of false positive errors than Snort.

Keywords: DoS; Slowloris attack; WMN; ADoS; HTTP attack

1. Introduction

Currently, denial of service (DoS) attacks create a significant threat to the available resources on
the Internet and internal networks. DoS aims to prevent legitimate users from accessing resources
available on the network. The attack can exploit vulnerabilities or depletes resources on the target.
Consequently, it directly affects the performance of network services [1–3].

There is a group of DoS attacks designed to consume resources from Web and E-mail services.
This resource-consuming strategy consequently makes the application services inaccessible on the
network. Most DoS attacks create a large number of open or semi-open TCP connections on the target
host [4,5]. These open TCP connections disable the server from accepting legitimate requests due to
many waiting connections on its sockets. Moreover, the attack consumes memory and processing
during its execution. This resource consumption behavior has encouraged studies to design new DoS
attack detection systems and damage reduction mechanisms [6].

The literature separates DoS attacks into those that target specific vulnerabilities and those that
use flooding attacks [7]. In flooding attacks, the target receives a continuous and excessive volume of
packets. Thus, traffic from legitimate sources can be blocked due to congestion and discarding packets.
Regarding vulnerability attacks, the target host receives malformed packets [8]. These malformed
packets interact with flaws or vulnerabilities in an application or resource hosted by the target.

Another group of DoS attacks specifically exploit the application layer, defined as application
layer DoS (ADoS) [9]. Two types of ADoS attacks can be highlighted: flooding and low-rate. The first
one produces an excessive flow of traffic, consuming resources on the application level. The second

Information 2020, 11, 544; doi:10.3390/info11120544 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-6793-2000
http://www.mdpi.com/2078-2489/11/12/544?type=check_update&version=1
http://dx.doi.org/10.3390/info11120544
http://www.mdpi.com/journal/information

Information 2020, 11, 544 2 of 18

creates traffic similar to legitimate requests, using vulnerabilities found in the application. Common
vulnerabilities exploited by these attacks are the HTTP and HTTPS protocols. This vulnerability
permits one to retain connections indefinitely [10]. Low-rate attacks, such as Slowloris, consume
resources mainly on the target services without significantly affect the attacker’s resources.

The Slowloris attack consists of sending multiple HTTP requests to the Web servers. These requests
are similar to the Web browser clients’ requests, and therefore it creates challenges to detect the
attack. Slowloris send its packets without finishing the HTTP request. Additionally, Slowloris sends
periodic incomplete requests to ensure that the server does not finish the connection due to a lack of
response. Without knowing if the HTTP requests belong to a legitimate client, the server keeps the
connection open. These Slowloris requests are sent in parallel with different source ports to occupy the
resources on the server. After consuming the server’s resources, it creates an inability to fulfill the new
legitimate requests.

The existing literature provides a considerable number of solutions to the Slowloris attack. Some of
these solutions use strategies such as limiting the number of connections for each user or defining
timeouts for each connection [11]. These limitations can prevent legitimate users from maintaining
connections that exceed a pre-established limit. Legitimate users accessing pages with many objects in
non-persistent HTTP connection mode can easily exceed this limit. Additionally, strategies that limit
the connection timeout can block users that have idle connections. Our solution differentiates from the
ones present in the literature because it is designed to work on wireless mesh networks.

Wireless mesh networks (WMNs) have proven to be an alternative to provide low-cost access to the
Internet and network resources. The WMNs backbone consists of stationary nodes providing a mesh
of connectivity [12]. These wireless nodes play an essential part in traffic routing performance [13].
Clients can access the network resources using the WMNs nodes, thereby accessing Web servers,
DNS and the Internet. WMNs are also susceptible to DoS attacks, which can jeopardize network
resources [14].

This work presents a Slowloris behavior analysis on WMN. Additionally, we provide a new tool to
detect and prevent this attack. Our tool, SDToW, blocks Slowloris attacks without limiting the number
of clients’ connections. Therefore, our solution avoids blocking legitimate users. We performed our
analysis using network traffic logs and by analyzing traffic behavior. This analysis provides useful
information concerning the attack behavior. We investigated a real scenario using a Web server and
legitimate clients and attackers. Our tool uses filters to extract crucial information from the traffic logs
and detect a Slowloris attack. These filters extract the information from the Web server and analyze it
on a different node called Concentrator. After that, considering a correct attack identification, our tool
blocks the attacker MAC address. The tool blocks the attacker on its associated access point (AP) and
avoids further malicious traffic, from that specific attacker, on the WMN. Our tool is separated into
three different modules to act on different locations and perform different roles concerning the attack
identification process in a WMN. We compared our tool with Snort to analyze its efficiency in blocking
attacks and resource consumption.

The work is organized as follows. Section 2 presents related work concerning the defense strategies
against Slowloris attacks. Section 3 shows an examination of the Slowloris attack behavior. Section 4
describes the proposed tool and details its modules. Section 5 presents the results of the experiments
and compares our tool with Snort. Section 6 presents a discussion regarding how SDToW can work
with other security applications. The conclusion is presented in Section 7.

2. Related Works

Slowloris attacks have proven to be worthy of attention regarding the difficulty of countermeasures
for their severe effects. The literature provides many works to face this challenge. However, the majority
of the solutions present a high level of complexity and time-consuming responses [11]. Some of the
solutions uses IPTABLES [15] and Apache modules [16] to provide countermeasures against Slowloris
attacks. However, Apache modules such as modevasive [17] and modqos [18] do not efficiently reduce

Information 2020, 11, 544 3 of 18

the attacks’ impacts [11]. Furthermore, IPTABLES relies on a threshold to count the number of active
connections, which can create false positive errors. An advanced policy firewall (APF) [19] can also be
used to counter this attack, but like IPTABLES, its constraints can also lead to false positive errors [20].
The combination of Apache modules and detection tools can also be used in a cloud computing
environment [21].

Some studies state that it is possible to use a combination of the timeout and the minimum data
rate per request received at the server [22–24]. Therefore, those studies investigated the slow ongoing
connections to mitigate the effects of slow DoS attacks, as occurs in Slowloris.

Sousa et al. analyzed two intrusion detection system (IDS) tools to detect Slowloris [25]. The first,
called Suricata [26], does not generate an adequate number of alerts to detect Slowloris attack.
The second tool, called SNORT [27,28], performs the detection using a trade-off between memory
and processing consumption. Snort has been widely used against cybercrimes[29–31]. Lately, in this
work, we compare the performances of Snort and our tool. Another tool, called SeVen, provides a
defense module based on a selective strategy that uses probability functions to choose among the new
requests that will be accepted or rejected when the Web server is saturated [32]. Consequently, when a
new request arrives at the application, SeVen checks for availability in the server connections pool.
If there are no more available resources for connections, it uses probability to determine which of the
established connections must be closed.

Another approach designed to detect attacks on the application layer, such as Slowloris, uses
signature-based DoS attack detection and anomaly detection techniques [16,33,34]. Detecting a
signature-based DoS attack requires statistical monitoring of the incoming traffic. This strategy
produces satisfactory attack detection if the inspected traffic has predefined characteristics of malicious
activity. Alternatively, artificial intelligence can be used to detect malicious signatures in application
DoS attacks [35–38]. However, these approaches have limitations, given the existing traffic variations
concerning the HTTP requests. Therefore, considering that Slowloris creates traffic similar to legitimate
connections, this detection strategy could lead to false positive errors. A critical challenge for these
approaches relies on determining the majority of legitimate traffic behavior that will be applied to the
training sessions [39–41].

Tripathi et al. proposed an anomaly detection system that measures the Hellinger distance between
two probability arrangements [42]. The authors obtained the results using a subset of training and tests.
During the test phase, the authors compared the attack traffic and the pattern produced in the training
phase. They used the most recent HTTP request pattern, using the Hellinger distance to determine the
difference between the two probability arrangements. However, the classification method presents
false positives, considering the system’s probability to differentiate malicious traffic from legitimate
traffic. Furthermore, Velan et al. considers that the process of flow data creation is often neglected on
Slowloris analysis [43]. Therefore, it leads to negative data analytic results.

Our solution presents improvements, considering its efficiency to detect and block the attack.
Furthermore, our solution is designed to work on a WMN and therefore uses the network structure to
perform its actions. We briefly summary these improvements below.

• Our tool does not limit the number of parallel connections per user. Additionally, we do no use
a timeout limitation for established connections. These behaviors can significantly increase the
number of false positive errors. Moreover, limiting the number of parallel connections can block
legitimate users from accessing pages with multiple objects or legitimate users behind a NAT.

• The separates modules provide efficient use of the WMN infrastructure to block the
attacker—blocking the attacker near its origin, on its first AP node.

• SDToW blocks the attacker using its MAC address instead of the IP. Therefore, we avoid a
legitimate user to receive a prior blacklisted IP from the DHCP server.

• Our solution detects malicious traffic without considering the expected probability of choosing
between legitimate and malicious traffic. Therefore, we avoid an increase in false positive errors
and resource consumption.

Information 2020, 11, 544 4 of 18

• Our tool has less computational complexity and thus promotes less hardware dependency
to operate.

3. Analyzing Slowloris Behavior

Slowloris keeps a series of incomplete connections on the Web server [44]. Therefore, keeping
connections open will consequently deplete the Web server’s resources. Additionally, Slowloris sends
several reassembled protocol data unit (PDU) packets in intervals to maintain the ongoing connections.
Sending multiple PDU packets is one of the behaviors of Slowloris attacks. Our solution identifies the
attack behavior and separates it from legitimate traffic.

Figure 1 presents the impact of a Slowloris attack on a Web server. After complete resource
depletion, it uses the available amount of parallel connections. The attack incapacitates the Web
server; it cannot accept new HTTP connections. Therefore, once the attack reaches its maximum level,
only small PDUs packets occupy the Web traffic.

Figure 1. Web server traffic during a Slowloris attack.

Initially, we create filters to distinguish different connections directed to the Web server.
These filters aim to gather information and provide more precise identification of Slowloris attack
incidence. As mentioned earlier, we design filters based on the attack behavior instead of using
the number of connections limitation. Initially, we use Tshark [45] to convert the captured
traffic; alternatively, TCPDUMP [46] offers a similar capacity to acquire traffic information [47].
After gathering enough information from the collected traffic, the next step is to analyze the Slowloris
attack’s detection. Below, we analyze the attack using two different scenarios.

3.1. Slowloris Traffic Analyses

We performed the attack analysis using a scenario with a Web server receiving a direct attack.
The use of Tshark provides highly detailed information and helps to identify the attacker’s behavior,
as shown in Figure 2. During the traffic analysis, we observe that Slowloris uses an initial “GET”
containing a reassembled PDU. Then, the following packets have 74 byte size and perform parallel
connections to the destination port 80. Furthermore, after establishing a connection with the server,
Slowloris sends a sequence of fragmented requests. Using reassembled PDUs, the attack tells the
server that more data are coming. These fragmented requests consume the Web server’s resources.
Consequently, after sending multiple fragmented requests from different source ports, Slowloris
occupies all the available resources dedicated to upcoming connections on the server-side. Therefore,
the attack prevents the server from attending to new requests from legitimate users, creating a denial
of service.

Information 2020, 11, 544 5 of 18

Figure 2. Slowloris attack traffic.

3.2. HTTP Legitimate Traffic Analyses

Our next scenario presents a traffic analysis using legitimate user HTTP requests. We analyze the
traffic behavior using only legitimate connections to the Web server. After that, we compare legitimate
connections, shown in Figure 3, and Slowloris connections. After establishing a legitimate connection,
the first GET is not a reassembled PDU and has a value different than 296 bytes. Additionally, the GET
request presents the HTTP protocol set on the traffic. Those two traffic characteristics permit us to
identify legitimate traffic. Through conducting an in-depth analysis using Tshark, we observe that the
GET request originated in the attack traffic is set as a TCP protocol field.

Figure 3. HTTP traffic.

4. SDToW

The traffic analysis provides an essential step towards the Slowloris attack detection. Our tool
uses this traffic analysis to detect the attack behavior.

Our previous traffic analysis provides the development of filters. We use these filters to extract
relevant information and thus identify the Slowloris attack in Web servers. The filters created were:

• (GET) filter.
• (Reassembled PDU) filter .
• (Packets with 296 bytes and TCP set on protocol field) filter.

The filters were applied using a python3 script. This script picks only the lines that match the
information required to identify the attack. Initially, from the traffic logs connections directed to
the Web server, our tool applies the GET Filter to select connections containing GETs. In the next
step, we combine the first filter with the second filter, thereby extracting connections also marked as
reassembled PDU. The last filter identifies connections marked as TCP on the protocol field and a
296 byte packet size. After applying the three combined filters, SDToW creates a list containing the
connections that meet all the pre-defined requirements. Therefore, our tool separates only traffic that
fulfills these requirements.

By analyzing the Slowloris traffic and the HTTP legitimate traffic described in Section 3,
we observed that after establishing the connection, the first request to the Web server is not a default
GET request; see Figure 4. This behavior occurs because Slowloris does not send complete GET
requests. Thus, Slowloris avoids the request conclusion by inserting a “\n” at the request data’s end.
Conversely, legitimate requests send a complete request within the packet. Furthermore, the Slowloris
traffic requests use a TCP value in the fourth traffic logs column, thereby differentiating from the
legitimate requests that present the same column’s HTTP value.

Information 2020, 11, 544 6 of 18

Figure 4. Tracers from the Slowloris attack after applying the filters.

4.1. SDToW Modules

After identifying the Slowloris-type malicious behavior, our tool initiates countermeasures to
block the malicious traffic. Therefore, it performs the attack identification using a node to analyze the
traffic log, here called Concentrator. The correct attack identification prevents legitimate users from
being affected by restrictive measures, thereby generating fewer false positives. Figure 5 presents the
three modules, described below:

• CM: collection module (CM), which acts in the Web server.
• AFM: analysis and filtering module (AFM), which works in a different node called Concentrator.
• BM: blocking module (BM), which acts in the access points.

Figure 5. SDToW architecture.

Figure 6 presents the collection module (CM) flowchart working on the Web server. Initially,
the CM collects traffic logs from HTTP requests. After that, it collects the traffic for five seconds.
We choose to collect for 5 s because it was enough to collect relevant traffic information without
delaying too much to send the traffic list to the Concentrator. In previous tests, a number between 5
and 7 s did not produce a relevant delay. Additionally, it provided enough time to detect and stop
the attack before it depletes the server resources. It is essential to mention that this traffic collection
occurs continuously. Therefore, at every 5 s, a new traffic list is created and sent to the Concentrator.
After that, it creates a traffic log using the tool Tshark. We set Tshark to convert the received traffic to a
pcap extension. Subsequently, CM removes irrelevant information concerning HTTP connections and
creates the traffic list. Next, CM sends the traffic list to the Concentrator.

Information 2020, 11, 544 7 of 18

Figure 6. Collection module (CM) flowchart.

Algorithm 1 explains the AFM operation, which runs in the Concentrator machine. AFM uses the
previously defined filters to identify attacks. This attack identification uses the traffic list received from
the CM. Therefore, AFM selects connections that contain GETs and containing reassembled PDU. It will
then perform two analyses to obtain connections whose packet size is 296 bytes, and includes TCP
defined on the protocol field. AFM considers a decisive attack when connection information fulfills
the filters mentioned above. Upon a positive attack identification, AFM extracts the source IP from the
malicious connection. After that, it includes the attacker source IP on a blacklist file. Subsequently,
the module sends the blacklist file to the APs.

Algorithm 1: Analysis and filtering module (AFM)

1 Blacklist file
2 begin
3 TL←− Tra f f icList
4 Line←− Pointer to the first TL element

/* EoF is the end of TL */
5 while Line 6= EoF do
6 if Line contains “GET′′ AND “ReassembledPDU′′ then
7 if Line contains Packetsize == 296 then
8 Extract the “Source IP”
9 Insert “Source IP” on the Blacklist

10 end
11 end
12 end
13 if Blacklist 6= empty then
14 send Blacklist to the APs
15 end
16 end

Algorithm 2 presents the steps concerning the BM, which runs on the APs. Initially, the APs
receive the blacklist generated by the Concentrator. Then, it compares the IP address of the received
blacklist and the IPs on its ARP table. This comparison verifies the occurrence of IPs connected to the
AP and also present on the received blacklist. By using the APs ARP table, BM acquires the associated
MAC with the attacker IP. Subsequently, BM uses IPTABLES to block traffic from the attacker MAC
addresses. After these steps, BM waits for new blacklists in order to block new attackers. We are
considering that our tool works on internal networks. Thus we opted to block the MAC address
because it generates fewer false positives than blocking based on IP address. Blocking MAC address
avoids problems using dynamic IP allocation performed by DHCP (Dynamic Host Configuration

Information 2020, 11, 544 8 of 18

Protocol). DHCP may designate an IP once leased to an attacker to a new user. Therefore, if our tool
performs the block based on IP address, it could perform a denial of service for legitimate users.

Algorithm 2: Blocking module (BM)

1 Block attacker IP begin
2 BL←− Traffic List
3 Line←− Pointer to the first BL element
4 ARPIP←− list of all ARP table IPs and MACs

/* EoF is the end of BL */
5 while Line 6= EoF do
6 if ARPIP contains any IP from BL then
7 Extract the corresponding MAC from ARPIP
8 Block the MAC
9 end

10 end
11 end

All the WMN nodes contain the blocking module. Therefore, when the AFM sends the blacklist,
it is stored on all WMN nodes. Storing the blacklist on each WMN node permits that it compares its
new ARP table whenever a new client connects to the AP. Therefore, if a blocked attacker moves from
one AP to another, it will be blocked. Comparing its new ARP table with the blacklist, the current AP
will block the attacker by its MAC.

Our tool excludes addresses from the blacklist after a configured period. In our experiments,
we maintain the address for 72 h. Whenever a previously blocked attacker tries to access the network
during the blocking period, our tool doubles the exclusion period. Network administrators can change
this period according to their policy.

5. Results

Figure 7 presents our test scenario running on a network laboratory. All the APs in our scenario
do not use Network Address Translation (NAT). The APs operate with two different interfaces,
one providing client connection, and the other interface provides connections between the APs.
For client connection, we use the IEEE 802.11ac/n/a 5GHz interface.

Figure 7. Experimental scenario.

Information 2020, 11, 544 9 of 18

The connection between the APs utilizes the IEEE 802.11b/g/n 2.4 GHz creating an ad-hoc WMN.
The WMN uses the Optimized Link State Routing Protocol (OLSR) [48]. The parameters of OLSR
used were the following: the interval between HELLO messages was equal to 1.5 s, and the Link state
messages were sent every 5 s. The multipoint relays use these Link state messages to calculate the
topology map. Hence, we installed two packages in the wireless routers: Openwrt_luci_app_olsr and
Openwrt_luci_app_olsr_services. These packages permit the creation of ad-hoc routes using the OLSR
protocol. We also use the Expected Transmission Count (ETX) metric to optimize the routing selection.
The ETX metric can be defined as the expected number of transmissions required to deliver a packet
over a given link [49]. This metric calculates the weight of a given route by using the sum of all ETX
weights. Each ETX weight informs the value for every link on a path. This ETX weight guarantees the
objective proposed by the metric of choosing routes that decrease the total number of retransmissions
at the link level along the way. We also use the following hardware:

• 5 TP-Link-Archer-C20.v4 wireless routers.
• 2 I5-4590 computers with 8 GB RAM
• 5 AMD A8-4500M notebooks with 8 GB of RAM.

Concerning the operating system, we use Ubuntu 18 for the Web server and the notebooks.
We replace the original APs firmware with the Open-WRT [50]. Open-WRT is a Linux operating system
targeting embedded devices. Performing this replacement allowed our module BM to run directly on
the APs. Our Web application server uses the Apache2 version 2.4.7.

We collect information regarding the required time to transfer the traffic list and the blacklist.
Additionally, we measure the processing time of our modules. That information allowed us to obtain
the total blocking time. The combination of the information collected is explained below.

• Collection count (CC)—time in which the CM, running on the Web server, collects information
regarding the network traffic and creates the traffic list.

• Transfer list time (TLT)—the required time to send the traffic list from CM to the Concentrator.
• Traffic list processing time (TLPT)—the required time to analyze the traffic list using the AFM

filters. If it finds malicious traffic, it creates the blacklist.
• Blacklist transfer time (BLT)—the time needed to transfer the blacklist from the AFM to the APs.
• Blocking time (BT)—the time required to process and block malicious IPs address from the blacklist

by the BM.

In our experiments, CC uses 5 s to collect traffic information and generates the traffic list.
The parameters described above define the total blocking time (TBT) on the equation below:

TBT = CC + TLT + TLPT + BLT + BT (1)

Equation (1) presents the sum of all related time values that directly impacts the total blocking time
TBT . Concerning the blacklist transfer, we observe that the number of hops produces jitter variation
regarding the required time to transfer the list. This jitter variation motivates the second experiment to
analyze it on multiple hops scenario. The transfer list time (TLT) and traffic list processing time (TLPT)
vary according to the traffic list size. The traffic list size and how it interferes with the blocking time
motivated us to conduct experiments to analyze it. Below, we describe two experiments to analyze the
blocking attack performance.

5.1. Experiment 1: Measuring How the Traffic List Size Affects the Blocking Delay

We start the experiment using one attacker client on the first AP near the Web server. Therefore,
the attack occurs at a one-hop distance from the target. We use the experiment to analyze how much
the traffic list size influences the blocking time.

After starting the attack, the collection module CM running on the Web Server captures the
network traffic and creates a traffic list (TL). CM sends the TL to the Concentrator, which through

Information 2020, 11, 544 10 of 18

its analysis and filtering module (AFM), applies the pre-established filters to detect the attacker’s IP
address. Upon identifying the malicious IP, it will be added to a blacklist and later sent to the AP.
Once the blacklist is received, the BM compares the received IPs with its ARP table, obtaining the
respective MAC address. After that, the blocking module (BM) prevents new traffic from the attacker
by blocking its MAC address.

In this experiment, we varied the amount of HTTP traffic to change the traffic list size.
By changing the traffic list size, we analyzed its impact on the total blocking time. The traffic list size
directly influences the transfer list time (TLT) and the traffic list processing time (TLPT). Therefore,
by increasing the time to send and process the traffic list, this consequently raises the total blocking
time (TBT); see Figure 8.

Figure 8. The influence of the traffic list size on the total blocking time.

5.2. Experiment 2: Measuring How the Number of Hops Affects the Blocking Delay

We ran the experiments ten times to obtain the average values. The collection time and the traffic
list size directly affect the delay to detect an attacker.

In the second scenario, we increase the number of hops between the attacker and the Web
server. Therefore, we analyze the delay to block attackers who are more than one hop from the target.
We positioned them at one hop, two hops, and three hops distance from the server. This experiment
uses the same process to detect the attacker as the first experiment. The number of hops directly
impacted the blocking delay as we varied the number of hops from 1 to 4, as shown in Figure 9.
We kept the traffic list at the same size during the experiment. Consequently, it permitted us to isolate
the impact concerning the number of hops on countering the attack. The increasing delay to counter
the attack relies on the time needed to send the blacklist through multiple hops.

The attacker distance regarding the number of hops increases the time needed for an effective
response from SDToW. The blacklist contains only source IPs, and hence it is a file that generally
does not need to be fragmented to fit on the network Maximum Transmission Unit (MTU). Therefore,
the leading cause of delay for multiple hops derives from passing through multiple routers on
our WMN.

Information 2020, 11, 544 11 of 18

Figure 9. The influence of the number of hops on the total blocking time.

5.3. Experiment 3: Comparing SDToW with Snort

After conducting the experiments mentioned above, we set up a new experiment comparing our
tool with Snort. We chose Snort because it is a widespread tool with multiple functions to detect and
block attacks. Additionally, the literature presents Snort as a tool to counter the Slowloris attack.

Snort was initially created to be an open-source IDS and later become an IPS. It permits
real-time protocol analyses and permits investigations concerning attack behavior. Snort also
provides an extensive attack database providing many filters to detect attacks, i.e., fingerprint attacks,
buffer overflow, DoS and port scans. Snort initially scans the pre-selected interfaces, acting like a
sniffer. During this sniffer task, Snort can capture packets from the network using a passive capture
or by inspecting pre-collected traffic. After collecting traffic data, it uses its decoder module on the
collected packets. The decoder module inspects packets, searching for anomalies that differ from the
default protocol behavior. Then it uses the pre-processor engine that provides in-depth attack analyses
on the received traffic. After detecting an attack that matches its internal attack rules, Snort can provide
two responses: an attack alert and an action based on the alert. The attack alert consists of generating
logs detailing the traffic associated with the alert on the library rules. The action based on the alert
provides prevention action during an attack—i.e., blocks an attack. Snort also permits the creation
of new detection rules based on the predefined attack behavior. In this work, we used a Snort rule
that verifies the number of ongoing connections for each network device. Therefore, whenever a
device reached a maximum connection threshold, it would generate an alert and subsequently block
the attacker.

Figure 10 presents the Snort scenario gathering information from the incoming traffic. We placed
Snort between the AP and the Web server. We designed this scenario to permit a fast attack response by
Snort. Therefore, it can block the attacker whenever the malicious traffic matches the anti-Slowloris rule.

Information 2020, 11, 544 12 of 18

Figure 10. Experimental scenario using Snort.

In this scenario, Snort blocks the attacker by its IP address instead of the MAC address as our tool
does. The present scenario imposes Snort to block malicious traffic only by its IPs because it has no
information regarding the attacker’s MACs addresses. Only the APs that directly provide WiFi access
to the clients identify their MAC address. Therefore, considering that Snort does not operate inside the
APs, we set Snort to block only the attacker’s IP.

We set up a rule to block attackers with a specific number of ongoing connections to the Web
server, thereby blocking whenever the number of connections from the same IP exceeded the specified
number of ongoing connections.

We compared Snort and our tool by measuring the processing consumption, memory consumption
and false positive errors. By measuring the processing consumption and memory consumption,
we analyzed both tools regarding their scalability. The amount of analyzed traffic data directly
influences the scalability of the tools. After that, we measured the incidence of false positives affecting
legitimate users. The wrong classification of legitimate users as attackers creates problems that can
jeopardize the solution. That problem emerges when many legitimate clients are classified as attackers
and are thus blocked.

Firstly, to measure processing and memory consumption, we set up a scenario varying the
number of clients: Figures 11 and 12. The first test uses only one client, and this client is the attacker.
The subsequent tests present three and six clients, including among them one attacker client. Increasing
the number of clients boosts the amount of traffic data and thus raises the resource consumption.
In the experiment with six clients, our tool achieved 66.7% less processing consumption and 89.1% less
memory consumption than Snort.

Two factors directly enhanced our tool’s performance. The first is the distributive operations
by the modules. Our tool uses three modules on different machines, hence distributing the resource
consumption between the modules. The second factor is the strategy of blocking the attacker on its
first hop. Our tool blocks the attacker on the first AP, where it is connected. Therefore, it reduces
the amount of malicious traffic running on the network. Snort does not block the attacker near its
origin. Therefore, by using Snort, Slowlois will keep sending connection requests to the network.
These requests will pass through the APs until they reach Snort, where they will be dropped.

Information 2020, 11, 544 13 of 18

Figure 11. Processing consumption comparison for Snort and SDToW.

Figure 12. Memory consumption comparison between Snort and SDToW.

After the resource consumption analysis, we measured the number of false positive errors;
see Figure 13. We conducted the tests with five clients. One of the five clients was an attacker, and the
other clients made legitimate HTTP requests.

Information 2020, 11, 544 14 of 18

Figure 13. False positive errors comparison between Snort and SDToW.

Snort presents weaknesses considering the occurrence of false positive errors. These weaknesses
rely on the number of ongoing connections permitted by each user. In our tests, we used a Snort
rule that verifies if the number of connections exceeds 20 parallel connections per user. Therefore,
whenever a user exceeds this limit, Snort will drop packets from this user. Considering the page with
10 and 20 objects per page, Snort did not create any false positive blocks.

However, when we increased the number of objects per page to 30, Snort blocked all the clients.
Snort blocked the clients because they exceed the maximum limit of 20 parallel connections per user.
Therefore, Snort erroneously blocked four of the five clients that were not attackers, creating 80%
false positives. The same number of false positives occurred with the 40 objects per page. It is
possible to increase this limit for parallel connections, but at any point, this limitation will create a
challenge between the number of false positives and accuracy. Therefore, raising the limit of ongoing
connections reduces the number of false positives, but it permits Slowloris to consume a higher number
of connections.

Conversely, if we reduce the limit of ongoing connections for each user in the Snort rule, it will
increase false positive errors. Considering a server hosting a page with many objects per page,
it will raise the number of ongoing connections per user. Therefore, if the page has more objects
than the connection limit, it will create a false positive error in Snort detection. The connection
limit does not affect SDToW because its detection mechanism does not use this limitation parameter.
Hence, raising the number of objects per page does not lead our tool to create false positive errors.

6. Discussion

Although SDToW blocks the attacker using its MAC address, it is possible to change the blocking
module to perform the block using the source’s IP address. Blocking an attacker by its IP address
permits Web server protection against attacks that come from the Internet. During a Slowloris attack
coming from the Internet, it is not appropriate to block the attacker by its MAC address. This limitation
occurs because the source MAC address is not the attacker’s address but is the MAC address from the
gateway or is the MAC address from the one-hop device directly connected to the blocking module.
Therefore, if the blocking module operates in gateway devices, it should be configured to block the
attacker by its IP address.

Information 2020, 11, 544 15 of 18

Another question that arises regards IP or MAC spoofing. SDToW is not able to detect IP or MAC
spoofing. However, it is possible to combine SDToW with a firewall or IPs, thereby protecting from
MAC spoofing and IP spoofing.

SDToW can work with load balancing and a reverse proxy. However, it creates two possible
changes to SDToW architecture. The first one is to install the collection module (CM) on the server
that provides the reverse proxy or the server that provides load balancing. This change would permit
SDToW the ability to capture the traffic dedicated to the Web servers. The second possibility is
to use a promiscuous switch port that grants full access to the same network that hosts the Web
servers. Therefore, the collection module could be installed on a different node and connected with the
promiscuous switch port. Consequently, the collection module would be able to collect the Web traffic.

Slowloris can be mitigated or prevented using restrictions on the Web server access. It is possible
to limit the number of parallel connections per user and discard additional connections from the
same user. Additionally, it is possible to restrain the amount of low-rate traffic on the Web server,
thereby finishing connections that take a long time to have their requests completed. The drawback of
these restrictions relies on the difficulty to distinguish legitimate Web traffic from the attacker traffic.
Therefore, restrictions created to mitigate or prevent Slowloris attacks can also lead to user access
problems. SDToW does not create any traffic restrictions and it blocks the attacker near its first AP.
Hence, it mitigates the attack with a lower network impact.

7. Conclusions

This work presents a detection and blocking tool for the Slowloris attack on WMNs. We performed
a behavior analysis of the referred attack to extract relevant information from the Web server
traffic. We developed filters to collect traffic information. Those filters permitted the correct attack
identification and subsequently blocked the ongoing attack.

We used the WMN structure, creating different modules with predefined objectives. The modules
work in different locations inside the network, executing different tasks. These modules reduce
the resource consumption overhead and permit one to block the attacker using its physical address.
In the experiment using six clients, our tool achieved 66.7% less processing consumption and 89.1%
less memory consumption than Snort. SDToW blocks the attacker near its origin and thus avoids
unnecessary traffic on the network.

We conducted experiments to analyze the impacts of traffic list size and the number of hops.
The results of these experiments provide a more precise understanding of the required time to block
attacks. Therefore, the experiments reveal that SDToW can mitigate an ongoing Slowloris attack before
the Web server’s resource depletion. Moreover, by blocking the attacker on its first hop, SDToW limits
the attacker from trying new attacks on different servers on the WMNs.

Our solution does not limit the number of parallel connections per user. Hence, by avoiding this
limitation, SDToW has a lower incidence of false positive errors. In further research, we intend to
analyze the impact of DDoS on our solution and enhance our tool to provide efficient detection of
distributed Slowloris attacks.

Author Contributions: Conceptualization, D.M.M.; data curation, V.d.S.F. and C.A.M.d.S.; formal analysis, J.A.G.
and G.d.B.V.; investigation, V.d.S.F., J.A.G., C.A.M.d.S., G.d.B.V. and D.M.M.; project administration, D.M.M.;
software, V.d.S.F., J.A.G., C.A.M.d.S., G.d.B.V. and D.M.M.; writing—original draft, J.A.G., G.d.B.V. and D.M.M.;
writing—review and editing, C.A.M.d.S. and D.M.M. All authors have read and agreed to the published version
of the manuscript.

Funding: CEFET/RJ and CNPq.

Acknowledgments: The authors would like to thank CNPq and CEFET/RJ for the financial support given to this
research and development work.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2020, 11, 544 16 of 18

References

1. Gu, Q.; Liu, P. Denial of service attacks. In Handbook of Computer Networks: Distributed Networks, Network
Planning, Control, Management, and New Trends and Applications; Wiley: Hoboken, NJ, USA, 2007; Volume 3,
pp. 454–468.

2. Tripathi, N.; Hubballi, N. Slow rate denial of service attacks against HTTP/2 and detection. Comput. Secur.
2018, 72, 255–272. [CrossRef]

3. Singh, M.P.; Bhandari, A. New-flow based DDoS attacks in SDN: Taxonomy, rationales, and research
challenges. Comput. Commun. 2020, 154, 509–527. [CrossRef]

4. Goncalves, J.A.; Faria, V.S.; Vieira, G.B.; Silva, C.A.; Mascarenhas, D.M. WIDIP: Wireless distributed IPS
for DDoS attacks. In Proceedings of the 2017 1st Cyber Security in Networking Conference (CSNet),
Rio de Janeiro, Brazil, 18–20 October 2017; pp. 1–3.

5. Yuan, H.; Xia, Y.; Yang, H.; Yuan, Y. Resilient control for wireless networked control systems under DoS
attack via a hierarchical game. Int. J. Robust Nonlinear Control. 2018, 28, 4604–4623. [CrossRef]

6. Karapoola, S.; Vairam, P.K.; Raman, S.; Kamakoti, V. Net-Police: A network patrolling service for effective
mitigation of volumetric DDoS attacks. Comput. Commun. 2020, 150, 438–454. [CrossRef]

7. Carl, G.; Kesidis, G.; Brooks, R.R.; Rai, S. Denial-of-service attack-detection techniques. IEEE Internet Comput.
2006, 10, 82–89. [CrossRef]

8. Sameera, N.; Shashi, M. Deep transductive transfer learning framework for zero-day attack detection.
ICT Express 2020, 6, 361–367. [CrossRef]

9. Jazi, H.H.; Gonzalez, H.; Stakhanova, N.; Ghorbani, A.A. Detecting HTTP-based application layer DoS
attacks on Web servers in the presence of sampling. Comput. Netw. 2017, 121, 25–36. [CrossRef]

10. Toklu, S.; Şimşek, M. Two-Layer Approach for Mixed High-Rate and Low-Rate Distributed Denial of Service
(DDoS) Attack Detection and Filtering. Arab. J. Sci. Eng. 2018, 43, 7923–7931. [CrossRef]

11. Papadie, R.; Apostol, I. Analyzing websites protection mechanisms against DDoS attacks. In Proceedings
of the 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI),
Târgovis, te, Romania, 29 June–1 July 2017; pp. 1–6.

12. Matos Mascarenhas, D.; Monteiro Moraes, I. PIF and ReCiF: Efficient Interest-Packet Forwarding Mechanisms
for Named-Data Wireless Mesh Networks. Information 2018, 9, 243. [CrossRef]

13. Deng, X.; He, T.; He, L.; Gui, J.; Peng, Q. Performance analysis for IEEE 802.11 s wireless mesh network in
smart grid. Wirel. Pers. Commun. 2017, 96, 1537–1555. [CrossRef]

14. Vijayanand, R.; Devaraj, D.; Kannapiran, B. Intrusion detection system for wireless mesh network using
multiple support vector machine classifiers with genetic-algorithm-based feature selection. Comput. Secur.
2018, 77, 304–314. [CrossRef]

15. Sharma, R.K.; Issac, B.; Kalita, H.K. Intrusion detection and response system inspired by the defense
mechanism of plants. IEEE Access 2019, 7, 52427–52439. [CrossRef]

16. Sikora, M.; Gerlich, T.; Malina, L. On Detection and Mitigation of Slow Rate Denial of Service Attacks.
In Proceedings of the 2019 11th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), Dublin, Ireland, 28–30 October 2019; pp. 1–5.

17. Sivabalan, S.; Radcliffe, P.J. Feasibility of Eliminating IDPS Devices from a Web Server Farm. Int. J.
Netw. Secur. 2018, 20, 433–438.

18. Giunta, R.; Messina, F.; Pappalardo, G.; Tramontana, E. Augmenting a Web server with QoS by means of
an aspect-oriented architecture. In Proceedings of the 2012 IEEE 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Toulouse, France, 25–27 June 2012; pp. 179–184.

19. Jyothi, V.; Wang, X.; Addepalli, S.K.; Karri, R. Brain: Behavior based adaptive intrusion detection in networks:
Using hardware performance counters to detect ddos attacks. In Proceedings of the 2016 29th International
Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), Kolkata,
India, 4–8 January 2016; pp. 587–588.

20. Labonne, M.; Olivereau, A.; Polve, B.; Zeghlache, D. Unsupervised protocol-based intrusion detection for
real-world networks. In Proceedings of the 2020 International Conference on Computing, Networking and
Communications (ICNC), Big Island, HI, USA, 17–20 February 2020; pp. 299–303.

21. Agrawal, N.; Tapaswi, S. Low rate cloud DDoS attack defense method based on power spectral density
analysis. Inf. Process. Lett. 2018, 138, 44–50. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2017.09.009
http://dx.doi.org/10.1016/j.comcom.2020.02.085
http://dx.doi.org/10.1002/rnc.4272
http://dx.doi.org/10.1016/j.comcom.2019.11.034
http://dx.doi.org/10.1109/MIC.2006.5
http://dx.doi.org/10.1016/j.icte.2020.03.003
http://dx.doi.org/10.1016/j.comnet.2017.03.018
http://dx.doi.org/10.1007/s13369-018-3236-9
http://dx.doi.org/10.3390/info9100243
http://dx.doi.org/10.1007/s11277-017-4255-7
http://dx.doi.org/10.1016/j.cose.2018.04.010
http://dx.doi.org/10.1109/ACCESS.2019.2912114
http://dx.doi.org/10.1016/j.ipl.2018.06.001

Information 2020, 11, 544 17 of 18

22. Shorey, T.; Subbaiah, D.; Goyal, A.; Sakxena, A.; Mishra, A.K. Performance Comparison and Analysis of
Slowloris, GoldenEye and Xerxes DDoS Attack Tools. In Proceedings of the 2018 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September
2018; pp. 318–322.

23. Damon, E.; Dale, J.; Laron, E.; Mache, J.; Land, N.; Weiss, R. Hands-on denial of service lab exercises using
slowloris and rudy. In Proceedings of the 2012 Information Security Curriculum Development Conference,
Kennesaw, GA, USA, 12–13 October 2012; pp. 21–29.

24. Sultana, N.; Bose, S.; Loo, B.T. An extensible evaluation system for DoS research. In Proceedings of the 2019
11th International Conference on Communication Systems & Networks (COMSNETS), Bangalore, India,
7–11 January 2019; pp. 344–351.

25. De Sousa Araújo, T.E.; Matos, F.M.; Moreira, J.A. Intrusion detection systems’ performance for distributed
denial-of-service attack. In Proceedings of the 2017 CHILEAN Conference on Electrical, Electronics
Engineering, Information and Communication Technologies (CHILECON), Pucón, Chile, 18–20 October
2017; pp. 1–6.

26. Park, W.; Ahn, S. Performance comparison and detection analysis in snort and suricata environment.
Wirel. Pers. Commun. 2017, 94, 241–252. [CrossRef]

27. Day, D.; Burns, B. A performance analysis of snort and suricata network intrusion detection and prevention
engines. In Proceedings of the Fifth International Conference on Digital Society, Gosier, Guadeloupe, France,
23–28 February 2011; pp. 187–192.

28. Habib, B.; Khurshid, F.; Dar, A.H.; Shah, Z. DDoS Mitigation in Eucalyptus Cloud Platform Using Snort and
Packet Filtering—IP-Tables. In Proceedings of the 2019 4th International Conference on Information Systems
and Computer Networks (ISCON), Mathura, India, 21–22 November 2019; pp. 546–550.

29. Roldán, J.; Boubeta-Puig, J.; Martínez, J.L.; Ortiz, G. Integrating complex event processing and machine
learning: An intelligent architecture for detecting IoT security attacks. Expert Syst. Appl. 2020, 149, 113251.
[CrossRef]

30. Ujjan, R.M.A.; Pervez, Z.; Dahal, K.; Bashir, A.K.; Mumtaz, R.; González, J. Towards sFlow and adaptive
polling sampling for deep learning based DDoS detection in SDN. Future Gener. Comput. Syst. 2020,
111, 763–779. [CrossRef]

31. Hu, Q.; Yu, S.Y.; Asghar, M.R. Analysing performance issues of open-source intrusion detection systems in
high-speed networks. J. Inf. Secur. Appl. 2020, 51, 102426. [CrossRef]

32. Corrêa, J.H.G.; Junior, E.A.S.; Fonseca, I.E.; Nigam, V.; Ribeiro, M.R.; Villaça, R.S. Selectivity and Autoscaling
as Complementary Defenses for DDoS Protection to Cloud Services. In Proceedings of the 2019 IEEE 8th
International Conference on Cloud Networking (CloudNet), Coimbra, Portugal, 4–6 November 2019; pp. 1–3.

33. Durcekova, V.; Schwartz, L.; Shahmehri, N. Sophisticated denial of service attacks aimed at application layer.
In Proceedings of the 2012 ELEKTRO, Rajeck Teplice, Slovakia, 21–22 May 2012; pp. 55–60.

34. Kim, J.; Kim, H.S. Intrusion Detection Based on Spatiotemporal Characterization of Cyberattacks. Electronics
2020, 9, 460. [CrossRef]

35. Singh, K.J.; De, T. MLP-GA based algorithm to detect application layer DDoS attack. J. Inf. Secur. Appl. 2017,
36, 145–153. [CrossRef]

36. Chiba, Z.; Abghour, N.; Moussaid, K.; Rida, M. Intelligent approach to build a Deep Neural Network
based IDS for cloud environment using combination of machine learning algorithms. Comput. Secur. 2019,
86, 291–317. [CrossRef]

37. Yao, Y.; Su, L.; Zhang, C.; Lu, Z.; Liu, B. Marrying graph kernel with deep neural network: A case study for
network anomaly detection. In International Conference on Computational Science; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 102–115.

38. Rosay, A.; Carlier, F.; Leroux, P. Feed-forward neural network for Network Intrusion Detection.
In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium,
25–28 May 2020; pp. 1–6.

39. Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion
detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [CrossRef]

40. Tang, T.A.; McLernon, D.; Mhamdi, L.; Zaidi, S.A.R.; Ghogho, M. Intrusion detection in sdn-based
networks: Deep recurrent neural network approach. In Deep Learning Applications for Cyber Security; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 175–195.

http://dx.doi.org/10.1007/s11277-016-3209-9
http://dx.doi.org/10.1016/j.eswa.2020.113251
http://dx.doi.org/10.1016/j.future.2019.10.015
http://dx.doi.org/10.1016/j.jisa.2019.102426
http://dx.doi.org/10.3390/electronics9030460
http://dx.doi.org/10.1016/j.jisa.2017.09.004
http://dx.doi.org/10.1016/j.cose.2019.06.013
http://dx.doi.org/10.1016/j.jisa.2019.102419

Information 2020, 11, 544 18 of 18

41. Chastikova, V.; Sotnikov, V. Method of analyzing computer traffic based on recurrent neural networks.
J. Phys. Conf. Ser. 2019; 1353, 012133. [CrossRef]

42. Tripathi, N.; Hubballi, N.; Singh, Y. How secure are Web servers? An empirical study of slow HTTP DoS
attacks and detection. In Proceedings of the 2016 11th International Conference on Availability, Reliability
and Security (ARES), Salzburg, Austria, 31 August–2 September 2016; pp. 454–463.

43. Velan, P.; Jirsik, T. On the Impact of Flow Monitoring Configuration. In Proceedings of the NOMS 2020—2020
IEEE/IFIP Network Operations and Management Symposium, Kissimee, FL, USA, 20–24 April 2020; pp. 1–7.

44. Vishnu, N.; Batth, R.S.; Singh, G. Denial of Service: Types, Techniques, Defence Mechanisms and Safe
Guards. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge
Economy (ICCIKE), Dubai, UAE, 11–12 December 2019; pp. 695–700.

45. Montagud, M.; De Rus, J.A.; Fayos-Jordan, R.; Garcia-Pineda, M.; Segura-Garcia, J. Open-source software
tools for measuring resources consumption and DASH metrics. In Proceedings of the 11th ACM Multimedia
Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 261–266.

46. Goyal, P.; Goyal, A. Comparative study of two most popular packet sniffing tools-Tcpdump and Wireshark.
In Proceedings of the 2017 9th International Conference on Computational Intelligence and Communication
Networks (CICN), Girne, Cyprus, 16–17 September 2017; pp. 77–81.

47. Langthasa, B.; Acharya, B.; Sarmah, S. Classification of network traffic in LAN. In Proceedings of the 2015
International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV),
Shillong, India, 29–30 January 2015; pp. 92–99.

48. Jain, R.; Kashyap, I. An QoS aware link defined OLSR (LD-OLSR) routing protocol for MANETs. Wirel. Pers.
Commun. 2019, 108, 1745–1758. [CrossRef]

49. Jevtic, N.J.; Malnar, M.Z. Novel ETX-Based Metrics for Overhead Reduction in Dynamic Ad Hoc Networks.
IEEE Access 2019, 7, 116490–116504. [CrossRef]

50. Fainelli, F. The OpenWrt embedded development framework. In Proceedings of the Free and Open Source
Software Developers European Meeting, Bengaluru, India, 4–8 January 2008; p. 106.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1742-6596/1353/1/012133
http://dx.doi.org/10.1007/s11277-019-06494-9
http://dx.doi.org/10.1109/ACCESS.2019.2936191
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Analyzing Slowloris Behavior
	Slowloris Traffic Analyses
	HTTP Legitimate Traffic Analyses

	SDToW
	SDToW Modules

	Results
	Experiment 1: Measuring How the Traffic List Size Affects the Blocking Delay
	Experiment 2: Measuring How the Number of Hops Affects the Blocking Delay
	Experiment 3: Comparing SDToW with Snort

	Discussion
	Conclusions
	References

