
  information

Article

A Matrix Approach for Analyzing Signal Flow Graph

Shyr-Long Jeng 1,*, Rohit Roy 2 and Wei-Hua Chieng 2

1 Department of Mechanical Engineering, Lunghwa University of Science and Technology,
Taoyuan City 333326, Taiwan

2 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan;
rohitroy41@live.com (R.R.); whc@cc.nctu.edu.tw (W.-H.C.)

* Correspondence: aetsl@gm.lhu.edu.tw

Received: 19 October 2020; Accepted: 27 November 2020; Published: 30 November 2020 ����������
�������

Abstract: Mason’s gain formula can grow factorially because of growth in the enumeration of paths
in a directed graph. Each of the (n − 2)! permutation of the intermediate vertices includes a path
between input and output nodes. This paper presents a novel method for analyzing the loop gain of
a signal flow graph based on the transform matrix approach. This approach only requires matrix
determinant operations to determine the transfer function with complexity O(n3) in the worst case,
therefore rendering it more efficient than Mason’s gain formula. We derive the transfer function of
the signal flow graph to the ratio of different cofactor matrices of the augmented matrix. By using the
cofactor expansion, we then obtain a correspondence between the topological operation of deleting a
vertex from a signal flow graph and the algebraic operation of eliminating a variable from the set
of equations. A set of loops sharing the same backward edges, referred to as a loop group, is used
to simplify the loop enumeration. Two examples of feedback networks demonstrate the intuitive
approach to obtain the transfer function for both numerical and computer-aided symbolic analysis,
which yields the same results as Mason’s gain formula. The transfer matrix offers an excellent physical
insight, because it enables visualization of the signal flow.
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1. Introduction

A signal flow graph set up directly after inspecting a physical system without first formulating
the associated equations is one of the most common tools for representing a complicated linear control
system. It offers a visual structure upon which causal relationships among several variables can
be compared. In the past several decades, flow graph analysis has been widely used in electrical
engineering [1–6], computer science, biological science [7], and for solving economic problems.
Furthermore, the applications of graph theory in conjunction with symbolic network analysis [8,9] and
the computer-aided simulation of electronic circuits [10] have been widely encountered in recent years.

Mason’s gain formula [11,12], or Mason’s rule, is a systematic method for obtaining the transfer
function of a signal flow graph between input and output nodes, especially for complex and
high-dimensional systems. Mason evaluated the determinant of a signal flow graph and proved the
rule by considering the determinant value. The advantage of Mason’s rule is that it can be drawn
directly from the physical system without setting up the equations in matrix form or requiring any
reduction procedure for the flow graph [13–15]. Coates described an alternative representation of the
flow graph [16,17] that is derived from algebraic equations written in terms of the incidence and weight
matrices of the graph. Coates’ gain formula can be used to find the transfer function algebraically
by labeling each signal, writing the equation for how that signal depends on other signals, and then
solving multiple equations for the output signal in terms of the input signal.
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Mason’s and Coates’ gain formulas are classics in flow graph theory [18]. These two formulations
are closely related in terms of both the manipulations and topological formulas. Mason’s rule not
only retains the intuitive character of the block diagram, but also enables determination of the gain
between input node and output nodes of a signal flow graph through inspection. Mason’s graph is a
more natural representation of a physical system than Coates graph. Coates’ gain formula, by contrast,
computes the output directly regardless of the number of inputs present in the system. Mason’s graph
reduction rules cannot be applied directly in Coates’ gain formula because the direct computation
of a given output used in this method is not focused on the same cause and effect formulation of
equations as in the case of Mason’s rule [18]. Mason’s rule involves dividing a signal flow graph into
several independent loop gains and analyzing the input–output transfer function. The existence of
non-touching loops increases the complexity of the formula. Neither determining the exact number of
independent loop gains nor recognizing the touching loops in a complex system is easy. In general,
Mason’s gain formula is complicated to implement without making mistakes.

This paper proposes a systematic method called the transfer matrix method [19] to determine
the transfer function of a system, and it presents a physical insight into the transfer matrix. As an
alternative to Coates’ gain formula for solving the system, a solution can be obtained by considering the
eigenvector of the transfer matrix for a signal flow graph. A recursive reduction of a signal flow graph
is performed using cofactor expansion, which successively eliminates nodes to obtain a subgraph
layer analysis and merges the results obtained on the submatrices. Each cofactor expansion reduces
the order of the associated matrix by one. The system is then separated into several loop groups
including backward and forward paths. From the viewpoint of loop groups, the new method provides
an excellent physical insight through visualization of the signal flow.

The organization of the report is as follows. First, in Section 2, the theoretical foundations
of the transfer matrix and its representation in the signal flow graphs are described. In Section 3,
it is explained that the transfer function overcomes the difficulty of implementing the traditional
Mason’s gain formula. The augment matrix is performed recursively through cofactor expansion to
systematically obtain all possible non-touching loop combinations and represent them compactly. The
pseudocode has been constructed to determine the transfer function and calculate the loop group
gain. In Section 4, a graph decomposition method is introduced to calculate the forward path gain
between two nodes with feedback layers. The method in graph decomposition can give an excellent
visualization to the signal flow. Compared with the traditional Mason’s gain formula, two examples
have been presented to illustrate the methods of calculating the loop group gains. The fact that
determinant of the cofactor matrix is the same as the loop group gain is discussed in Section 5. When a
virtual backward edge from the output node to the input node is added in Section 6, the numerator
of the transfer function can be regarded as the forward path gain. The next section discusses the
complexity analysis of the algorithm. Finally, Section 8 concludes the report.

2. Transfer Matrix Method

As shown in Figure 1, a node-ordered signal flow graph that contains the set of nodes X and the
directed edge set E can be related by the associated equation [19]

AT
·X = X (1)

where

AT =


1 0 . . . 0 0

a0,1 a1,1 . . . an−1,1 an,1

: : : : :
a0,n−1 a1,n−1 . . . an−1,n−1 an,n−1

a0,n a1,n . . . an−1,n an,n


X =

[
x0 x1 . . . xn−1 xn

]T
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and ai, j denotes the directed edge (or gain) from source node xi to sink node x j.
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Figure 1. A signal flow graph.

The nodes are arranged in a descending order. The edges may be classified as forward, backward,
and self-loop edges. When the elements are located below the main diagonal, the associated edges
pointing from a source node xi to sink node x j satisfy the node ordering, namely that node xi is
numbered prior to node x j. These edges are called forward edges. Against the edge direction, the
elements located above the main diagonal are called backward edges. The elements on the diagonal are
self-loop edges that consist of only one node. Because the self-loop edge is also one type of backward
edge, the elements that are located above the diagonal are called strictly backward edges.

To evaluate the eigenvector of the square matrix AT associated with λ = 1, the first row of (I−AT)

may be replaced with a row vector
[

x̂0 x̂1 . . . x̂n
]

that contains symbols for all terms in the
numerators of node variables x0, x1, . . . , xn, respectively. The augmented matrix Aa yields

Aa =


x̂0 x̂1 . . . x̂n−1 x̂n

−a0,1 (1− a1,1) . . . −an−1,1 −an,1

: : : : :
−a0,(n−1) −a1,(n−1) . . . (1− an−1,n−1) −an,n−1

−a0,n −a1,n . . . −an−1,n (1− an,n)


(2)

The determinant of the augmented matrix Aa is expressed as the sum of the cofactor of the first row of
the matrix multiplied by the corresponding entry in the first row. In other words,

det(Aa) = α0x̂0 + α1x̂1 + · · ·+ αn−1x̂n−1 + αnx̂n (3)

The cofactor α j equals (−1) jdet(M1,j+1(Aa)), where (−1) jM1,j+1(Aa) is the cofactor matrix, a signed
version of a minor M1,j+1(Aa) defined by deleting the first row and the j+1th column from the
augmented matrix Aa. The ratio between the cofactor α j attributable to the cofactor α0 satisfies the
equilibrium relation between the output node x j and the input node x0. For a single input multiple
output (SIMO) system, the transfer function G j is then expressed as follows.

G j =
α j

α0
=

(−1) jdet(M1,j+1(Aa))

det(M1,1(Aa))
for j = 1, 2, . . . , n (4)
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3. Mason’s Gain Formula

Mason’s gain formula [11,12] is a method for finding the transfer function that associates the input
and output of a linear signal-flow graph with many variables and loops. The Mason’s gain formula is

G =
yout

yin
=

∑
k GK∆k

∆

∆ = 1−
∑

Li +
∑

LiL j −
∑

LiL jLk + · · ·+ (−1)m
∑

. . .

where

yin is the input-node variable
yout is the output-node variable
G is the transfer function between yin and yout

∆ is the determinant of the graph
GK is path gain of the kth forward path between yin and yout

∆K the cofactor value of ∆ for the kth forward path, with the loops touching the kth forward path removed
Li is loop gain of each closed loop in the system
LiL j is product of the loop gains of any two non-touching loops
LiL jLk is product of the loop gains of any three pairwise non-touching loops

Consider a signal flow graph with nested loops. The implement procedures of the Mason’s
gain formula first list all forward paths with corresponding gains and all loops. Once all loops have
been generated, they should be combined in all possible ways so that all loops in a combination are
non-touching. Make a list of all pairs of non-touching loops taken two, three, four, etc. at a time until no
more contact, and multiply their gains (LiL j, LiL jLk, . . .). Calculate the determinant ∆ and the cofactor
∆K, and then apply the formula. Lu et al. [20] proposed an algorithm combined with Johnson method
for generating the combinations of the non-touching loops. If there are too many variables in the
signal flow graph, this method will make the expression of the transfer function very complicated and
difficult to analyze. Prasad [15] used tree structure and/or factoring technique to generate and represent
non-touching combinations of paths and loops. The tree structure is suitable for the small graph size
and most loops are touching. When most loops are non-touching, the factoring method is better to
remove combinations of touching loops from all combinations of loops. Beillahi et al. [21] proposed a
higher-order logic formation of signal flow graph in HOL Light theorem prover. The touching loop
is detected by pre-checking each loop with a higher rank loop than the loop considered in the given
loops list. However, these methods are not to generate and represent non-touching combinations of
paths and loops systematically and efficiently.

We reduce the signal flow graph recursively through cofactor expansion to systematically obtain
all possible non-touching loop combinations and represent them compactly. We also use a set of loops
that share the same backward edges, referred to as a loop group, to simplify the loop enumeration. The
determinant of the cofactor matrix is equivalent to the loop group gain associated with the backward
edges. It provides an excellent physical insight of the signal flow. Although the numerator and
denominator of the Mason’s gain formula have different forms, our method shows that the numerator
maybe regarded as the loop group gain when the unit virtual backward edge from output node to
input node is added. The transfer function G j of the internal node x j with respect to input node x0 for
the SIMO system may be directionally calculated by using matrix determinant according to Equation
(4). This method helps to improve clarity and understand the interrelations between entire system and
subsystems. Our method is simple and useful enough to teach students the subject of Mason’s formula
as a part of courses in control systems, digital signal processing, graph theory, and applications.

The pseudocode showing Algorithm 1 is implemented using the transfer matrix method. The
pseudocode calculates the transfer function as well as the loop group gain. It takes as an input, the
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system matrix AT determined in Equation (1) and produces the output as per the requirements. The
augmented matrix Aa is calculated using the operation (I−AT).

The transfer function method consists of a numerator and a denominator term. The numerator
term is (−1) jdet(M1,j+1(Aa) where j represents the output node index and M1,j+1(Aa) is determined by
deleting the first row and j+1 column from Aa. The denominator term on the other hand is determined
by det(M1,1(Aa)), where M1,1(Aa) is obtained by deleting the first row and the first column of the
Aa matrix.

The loop group gain between pi to pk is calculated by multiplying the forward path gain from pi to

pk by the backward edge gain ak, i. The forward path gain is determined by det((j)H(p1, · · · , p j)|
(m,m+ j)
(n,n)

)

as discussed in Section 4, where the arguments from p1 to p j in descending order denote that the
deleted columns are associated with the nodes from xp1 to xp j , respectively.

Algorithm 1. Transfer matrix method’s workflow

Pseudocode:
Requirement:

(1) transfer function G j with output node p j and input node p0

(2) loop group gain with nodes from pi to pk

Input:
adjacent metric AT

If Requirement == transfer function:
Input.append(0, j);

else if Requirement == loop group gain:
Input.append(i, k);

Output: required result

augmented matrix Aa ← (AT
− I)

If Requirement == Transfer function:
α j ← (−1) jdet(M1,j+1(Aa))

α0 ← det(M1,1(Aa))

transfer function G j =
α j
α0

given in Equation (4)
return G j

If Requirement == loop group gain (given node: pi, and pk)

forward path= F← det((j)H(p1, · · · , p j)|
(m,m+ j)
(n,n)

) given in Section 4

loop group grain= LG← ak, i·F
return LG

4. Graph Decomposition

The recursive reduction of a signal flow graph proceeds by cofactor expansion. Each cofactor
expansion reduces the order of the associated matrix by one. Layered (or hierarchical) graph drawing
is a type of graph drawing in which the vertices of a directed graph are drawn in horizontal rows
or layers with the edges generally directed downward. The number of feedback layers correlates to
the number of strictly backward edges that form feedback loops during the reduction process. An
alternative matrix form, as defined below, reveals the multiple feedback layers of the signal flow graph.

Definition 1. An (n−m− j + 1) × (n−m− j + 1) square matrix (j)H(p1, · · · , p j)|
(m,m+ j)
(n,n)

with multiple
feedback layers j is shown as.



Information 2020, 11, 562 6 of 17
Information 2020, 11, x FOR PEER REVIEW 6 of 18 

 

( ) , ⋯ , |( , )( , ) = − ,∗ ⋮ − ,∗ 1 − , − , ⋯ − , − , ⋯ − ,− ,∗ ⋯ − ,∗ − , 1 − , ⋯ − , − , ⋯ − ,⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮− ,∗ ⋯ − ,∗ − , − , ⋯ 1 − , − , ⋯ − ,− ,∗ ⋯ − ,∗ − , − , ⋯ − , − , ⋯ − ,− ,∗ ⋯ − ,∗ − , − , ⋯ − , 1 − , ⋯ − ,⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮− ,∗ ⋯ − ,∗ − , − , ⋯ − , − , ⋯ − ,

 

 
 

 

 

where ,  and ,∗  indicate the directed edge and equivalent weight of the forward edge from node 
 to node , respectively. When the edge is a self-loop edge, the value is 1 − , ; otherwise, the 

value is − ,  or − ,∗ . The right upper index (m, m+j) and lower index (n, n) denote that the elements 
at the top entry (1, 1) and bottom entry (n – m − j + 1, n – m – j + 1) are a forward edge from node  
to node  and the self-edge of the last node , respectively. The arguments from  to  in 
descending order denote that the deleted columns are associated with the nodes from  to , 
respectively. The matrix should shift the coordinate of the characteristic element (1 − , ) at the 
first row to the right by j columns when the total number of deleted nodes is j. The value j given in 
the left upper index is called the feedback layer. 

Example 1. Consider the signal flow diagram shown in Figure 2a. The matrix , ( )  obtained by 
eliminating the first row and first column of the augmented matrix  is shown as 

, ( ) =
1 0 0 0 − , 0− , 1 0 0 0 − ,− , − , 1 0 0 00 0 − , 1 0 00 − , 0 − , 1 00 0 0 − , − , 1

 (5) 

The determinant of , ( ) is expressed as det( , ( )) = 1 − , , , + , , , + , ,  − , , , , + , , + , , ,  − , , , , , ,  

 

(6) 

shift right j columns delete nodes   

where ai, j and a∗i, j indicate the directed edge and equivalent weight of the forward edge from node xi to
node x j, respectively. When the edge is a self-loop edge, the value is 1− ai,i; otherwise, the value is −ai, j
or −a∗i, j. The right upper index (m, m+j) and lower index (n, n) denote that the elements at the top entry
(1, 1) and bottom entry (n – m − j + 1, n – m – j + 1) are a forward edge from node xm to node xm+ j
and the self-edge of the last node xn, respectively. The arguments from p1 to p j in descending order
denote that the deleted columns are associated with the nodes from xp1 to xp j , respectively. The matrix
should shift the coordinate of the characteristic element (1− am+ j,m+ j) at the first row to the right by j
columns when the total number of deleted nodes is j. The value j given in the left upper index is called
the feedback layer.

Example 1. Consider the signal flow diagram shown in Figure 2a. The matrix M1,1(Aa) obtained by eliminating
the first row and first column of the augmented matrix Aa is shown as

M1,1(Aa) =



1 0 0 0 −a5,1 0
−a1,2 1 0 0 0 −a6,2

−a1,3 −a2,3 1 0 0 0
0 0 −a3,4 1 0 0
0 −a2,5 0 −a4,5 1 0
0 0 0 −a4,6 −a5,6 1


(5)

The determinant of M1,1(Aa) is expressed as

det(M1,1(Aa)) = 1− a5,1[(a1,2a2,3 + a1,3)a3,4a4,5 + a1,2a2,5]

−a6,2[(a2,3a3,4a4,5 + a2,5)a5,6 + a2,3a3,4a4,6]

−a6,2a5,1[a1,3a3,4a4,6a2,5]

(6)

Figure 3 shows the intuitive approach to find each minor in the matrix of minors. The matrix of
minors represents the signal flow diagram beside each cofactor calculations done in Figure 3. The loop
group consists of the strictly backward edge and the forward path. This graph includes two strictly
backward edges: a5,1 and a6,2. As shown in Figure 2b, the forward path gain that traverses paths from the
input node x1 to the node x5 in the direction of the graph flow is (a1,2a2,3 + a1,3)a3,4a4,5 + a1,2a2,5. Similarly,
the forward path gain from the input node x2 to the node x6 is (a2,3a3,4a4,5 + a2,5)a5,6 + a2,3a3,4a4,6.
The red solid and red dotted lines indicate the backward and forward paths, respectively. Figure 3,
Part A calculates the determinant of cofactor matrix with respect to 1, and hence there is no signal flow
through the nodes a1,3, a1,2 and a backward edge a5,1. The later cofactor calculations have been done in
accordance of calculating the whole determinant. In each figure, a cross marked line determines no
signal flow. Figure 3, Part B calculates the determinant of cofactor matrix with respect to a5,1 and hence
no signal flows through a5,6. The products of the loop gains with these two associated backward edges
are as

{LG1} = a5,1[(a1,2a2,3 + a1,3)a3,4a4,5 + a1,2a2,5] (7a)

{LG2} = a6,2[(a2,3a3,4a4,5 + a2,5)a5,6 + a2,3a3,4a4,6] (7b)
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Figure 2. A signal flow graph for example 1.

Although the loop group {LG1} overlaps loop group {LG2} at nodes x2, x3, x4, and x5, a forward
path that starts and ends at node x1 and passes through nodes x3, x4, x6, x2, and x5 exists. The forward
gain is a1,3a3,4a4,6a2,5. One touching loop combination exists of these two strictly backward edges with
loop gains {

LG1&LG2|touching

}
= a6,2a5,1[a1,3a3,4a4,6a2,5] (8)

The determinant of the graph may be expressed in Mason’s gain formula by alternating the sign of the
two touching loop groups.

∆ = 1− [{LG1}+ {LG2}] +
[
(−1)·

{
LG1&LG2|touching

}]
(9)

The traditional Mason’s gain formula includes seven simple loops with loop gains:

{L1} = a5,1a1,2a2,3a3,4a4,5

{L2} = a5,1a1,3a3,4a4,5

{L3} = a5,1a1,2a2,5

{L4} = a6,2a2,3a3,4a4,5a5,6

{L5} = a6,2a2,5a5,6

{L6} = a6,2a2,3a3,4a4,6

{L7} = a6,2a5,1a1,3a3,4a4,6a2,5

(10)
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Two of these seven loops touch each other. Thus, the determinant of the graph yields

∆ = 1− [{L1}+ {L2}+ {L3}+ {L4}+ {L5}+ {L6}+ {L7}] (11)

The loop group approach around the associated backward edges and traditional simple loop approach
yield the same result.Information 2020, 11, x FOR PEER REVIEW 9 of 18 
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Example 2. Consider the signal flow diagram shown in Figure 4a. The matrix M1,1(Aa) obtained by eliminating
the first row and first column of the augmented matrix Aa is

M1,1(Aa) =



1 0 0 0 0 0 0 0 −a9,1

−a1,2 1 0 0 0 0 0 0 0
0 −a2,3 1 −a4,3 0 0 0 0 0
0 0 −a3,4 1 −a5,4 0 0 0 0
0 0 0 −a4,5 1 0 0 0 0
0 −a2,6 0 0 0 1 −a7,6 0 0
0 0 0 0 0 −a6,7 1 −a8,7 0
0 0 0 0 0 0 −a7,8 1 0
0 0 0 0 −a5,9 0 0 −a8,9 1


(12)

Using the cofactor expansion of the determinant along the first row iteratively yields

det(M1,1(Aa)) = (1− a4,3a3,4 − a5,4a4,5)(1− a7,6a6,7 − a8,7a7,8)

−a9,1

[
a1,2a2,3a3,4a4,5a5,9(1− a6,7a7,6 − a7,8a8,7)

+a1,2a2,6a6,7a7,8a8,9(1− a4,3a3,4 − a5,4a4,5)

]
(13)

Figure 4b shows five strictly backward edges: a4,3, a5,4, a7,6, a8,7, and a9,1 in the signal flow graph. The forward
path gains for the first four backward edges are a3,4, a4,5, a6,7, and a7,8, respectively. Supposing that (1)H(9)|(1,2)

(8,9)
be a matrix of one feedback layer, which results from the elimination of the first row and the last column of the
matrix M1,1(Aa), the mathematical expression of (1)H(9)|(1,2)

(8,9)
is shown as

(1)H(9)|(1,2)
(9,9)

=



−a1,2 1 0 0 0 0 0 0
0 −a2,3 1 −a4,3 0 0 0 0
0 0 −a3,4 1 −a5,4 0 0 0
0 0 0 −a4,5 1 0 0 0
0 −a2,6 0 0 0 1 −a7,6 0
0 0 0 0 0 −a6,7 1 −a8,7

0 0 0 0 0 0 −a7,8 1
0 0 0 0 −a5,9 0 0 −a8,9


(14)

The determinant of (1)H(9)|(1,2)
(9,9)

is the gain for the possible forward paths from node x1 to node x9. The strictly
backward edges result in five loop groups with loop group gains.

{LG1} = a4,3a3,4

{LG2} = a5,4a4,5

{LG3} = a7.6a6,7

{LG4} = a8,7a7,8

{LG5} = a9,1det((1)H(9)|(1,2)
(9,9)

)

= a9,1[a1,2a2,3a3,4a4,5a5,9(1− a6,7a7,6 − a7,8a8,7)+

a1,2a2,6a6,7a7,8a8,9(1− a4,3a3,4 − a5,4a4,5)]

(15)
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The non-touching loop groups are identified two at a time. Loop group 1 does not touch loop groups 3 or 4,
and neither does loop group 2. Notably, loop groups 1–4 all touch loop group 5. Thus, the combinations of the
non-touching loop gains identified two at a time are obtained as{

LG1&LG3|non−touching

}
= {LG1}·{LG3} = (a4,3a3,4)(a7,6a6,7){

LG1&LG4|non−touching

}
= {LG1}·{LG4} = (a4,3a3,4)(a8,7a7,8){

LG2&LG3|non−touching

}
= {LG2}·{LG3} = (a5,4a4,5)(a7,6a6,7){

LG2&LG4|non−touching

}
= {LG2}·{LG4} = (a5,4a4,5)(a8,7a7,8)

(16)

No combination exists of more than two non-touching loop groups. According to Mason’s gain formula, the
determinant of the graph may be rewritten as

det(M1,1(Aa)) = [1− {LG1} − {LG2}]·[1− {LG3} − {LG4}] − {LG5} (17)

which is identical to Equation (13). Figure 5 shows the approach to calculate the minors at each decomposition.
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5. Forward Path Gain

The explanations of Figure 5 are similar to Figure 3 which explains the signal flow visualization
while calculating the determinant of each cofactor. From Figures 2–5, the red dashed lines and red solid
lines indicate the possible forward paths and the associated backward edge, respectively. Consider the
strictly backward edge a5,1 of Example 1 shown in Figure 2. The matrix (1)H(5)|(1,2)

(6,6)
resulting from the

elimination of the incoming branches of the sink node x1 and outgoing branches of the source node x5

with one feedback layer is.

(1)H(5)|(1,2)
(6,6)

=


−a1,2 1 0 0 −a6,2

−a1,3 −a2,3 1 0 0
0 0 −a3,4 1 0
0 −a2,5 0 −a4,5 0
0 0 0 −a4,6 1


(18)

The determinant of (1)H(5)|(1,2)
(6,6)

is [(a1,2a2,3 + a1,3)a3,4a4,5 + a1,2a2,5] + [a6,2a1,3a3,4a4,6a2,5]. The first
term is identical to the forward path gain of {LG1}, and the second term equals the product of the
strictly backward edge a6,2 and the forward path gain of

{
LG1&LG2|touching

}
. These two terms reveal

the total forward gain from node x1 to node x5. The matrix (2)H(5, 6)|(1,3)
(6,6)

obtained by deleting the
source and sink nodes of two strictly backward edges a5,1 and a6,2 with two feedback layers can be
expressed as

(2)H(5, 6)|(1,3)
(6,6)

=


−a1,3 −a2,3 1 0

0 0 −a3,4 1
0 −a2,5 0 −a4,5

0 0 0 −a4,6

 (19)

The determinant of (2)H(5, 6)|(1,3)
(6,6)

is a1,3a3,4a4,6a2,5; this equals the forward path gain of{
LG1&LG2|touching

}
. Figure 3 shows how some of the forward path gain associated with the other

strictly backward edge a6,2 is verified.
As shown in Figure 4b, consider Mason’s gain formula of the possible forward paths with the

associated backward edge a9,1 for Example 2, which involves two forward paths with path gains.

P1 = a1,2a2,3a3,4a4,5a5,9P2 = a1,2a2,6a6,7a7,8a8,9 (20)

Considering P1, neither loop group 3 nor 4 touches the first forward path. According to Mason’s
gain formula, the cofactor along the first forward path P1, when the loops touching the first forward
path are eliminated, is ∆1 = 1− {LG3} − {LG4}. For P2, neither loop group 1 nor 2 touches the second



Information 2020, 11, 562 15 of 17

forward path. The cofactor along the second forward path P2 is ∆2 = 1 − {LG1} − {LG2}. The total
forward path gain from node x1 to node x9 is

2∑
k=1

Pk∆k = a1,2a2,3a3,4a4,5a5,9(1− a6,7a7,6 − a7,8a8,7)+a1,2a2,6a6,7a7,8a8,9(1− a4,3a3,4 − a5,4a4,5) (21)

which is the same result as that calculated by the determinant of (1)H(9)|(1,2)
(9,9)

in Equation (14).

The matrix (1)H(9)|(1,2)
(9,9)

is formed by eliminating the first row and the ninth column of matrix M1,1(Aa),
which removes the incoming branches of input node x1 and outgoing branches of backward node
x9. The product term (a9,1)·det((1)H(9)|(1,2)

(8,9)
) is the loop group gain {LG5}with the strictly backward

edge a9,1.

6. Transfer Function

In Mason’s gain formula, the transfer function is expressed as a ratio of the numerator terms
to the denominator terms. The numerator and denominator terms are located in the forward paths
and feedback loops, respectively. According to Equation (4), the numerator term of the transfer
function for Example 2 can be obtained by determining the cofactor matrix of the augmented matrix
Aa, at entry (1, 10).

−M1,10(Aa)

= (−1)



−a0,1 1 0 0 0 0 0 0 0
0 −a1,2 1 0 0 0 0 0 0
0 0 −a2,3 1 −a4,3 0 0 0 0
0 0 0 −a3,4 1 −a5,4 0 0 0
0 0 0 0 −a4,5 1 0 0 0
0 0 −a2,6 0 0 0 1 −a7,6 0
0 0 0 0 0 0 −a6,7 1 −a8,7

0 0 0 0 0 0 0 −a7,8 1
0 0 0 0 0 −a5,9 0 0 −a8,9



(22)

Figure 6 shows the original signal flow diagram by adding a virtual backward edge a9,0 from
output node x9 to input node x0. The determinant of the matrix −M1,10(Aa) having one feedback layer
for the coordinate of the characteristic element shifting to the right by one column at the first row is
equivalent to directly obtaining the forward gain with the virtual backward edge a9,0. The forward
gain is

G9 =
det(−M1,10(Aa))

det(M1,1(Aa))
=

a0,1·{LG5}

[1− {LG1} − {LG2}]·[1− {LG3} − {LG4}] − {LG5}
(23)
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7. Complexity Analysis

Mason’s rule can increase factorially because the enumeration of paths in a directed graph grows
dramatically. Consider a complete directed graph on n vertices, with an edge between every pair of
vertices. The paths from x0 to xn are (n − 2)! permutations of the intermediate vertices. Mason’s graph
formula describes the transfer function of an interconnected system, which is divided into several
independent loops and forward paths, and simultaneously performs algebraic and combinatorial
operation. According to Equation (4), the transfer function may be calculated by using the determinant
of an n × n matrix. Given an n × n determinant to be calculated, we can either use the cofactor
method recursively with a runtime of O(n!), or use Gaussian elimination method to simplify the matrix,
track the influence on the determinant, and then multiply it by the diagonal entries at the end. This will
be O(n3), the order of Gaussian elimination.

8. Conclusions

The loop group approach presented in this paper yields the same results as Mason’s gain formula.
In addition, we reduced the signal flow graph recursively through cofactor expansion to systematically
obtain all possible non-touching loop combinations. A set of loops were used to share the same
backward edges, referred to as a loop group, can simplify the loop enumeration. Each cofactor
expansion reduces the order of the augmented matrix by one. The determinant of the cofactor matrix
is equivalent to the loop group gain associated with the backward edge. It can also provide a physical
insight of the signal flow.

An augmented matrix is used to represent the signal flow graph. The determinant of the cofactor
matrix of the augmented matrix at the first entry containing no feedback layer is the denominator term
of the transfer function. The numerator term that directs the forward path gain from the input node to
the output node can be obtained by determining the cofactor matrix of the augmented matrix at the
top-right entry. The matrix contains one feedback layer, and the determinant is the associated forward
path gain of the outer virtual loop group. Two examples of feedback networks are used to demonstrate
the intuitive approach to obtain the transfer function for both numerical and computer-aided symbolic
analysis. The transfer matrix offers an excellent physical insight because it enables visualization of the
signal flow.
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