
 information

Article

Hiding the Source Code of Stored Database Programs

Vitalii Yesin 1 , Mikolaj Karpinski 2,* , Maryna Yesina 1, Vladyslav Vilihura 1

and Kornel Warwas 2

1 Department of Security of Information Systems and Technologies, Faculty of Computer Science,
V. Karazin National University of Kharkiv, 61022 Kharkiv, Ukraine; v.i.yesin@karazin.ua (V.Y.);
m.v.yesina@karazin.ua (M.Y.); viligura93@gmail.com (V.V.)

2 Department of Computer Science and Automatics, Faculty of Mechanical Engineering and Computer
Science, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland; kwarwas@ath.bielsko.pl

* Correspondence: mkarpinski@ath.bielsko.pl

Received: 4 November 2020; Accepted: 7 December 2020; Published: 9 December 2020
����������
�������

Abstract: The objective of the article is to reveal an approach to hiding the code of stored programs
stored in the database. The essence of this approach is the complex use of the method of random
permutation of code symbols related to a specific stored program, located in several rows of some
attribute of the database system table, as well as the substitution method. Moreover, with the possible
substitute of each character obtained after the permutation with another one randomly selected
from the Unicode standard, a legitimate user with the appropriate privileges gets access to the
source code of the stored program due to the ability to quickly perform the inverse to masking
transformation and overwrite the program code into the database. All other users and attackers
without knowledge of certain information can only read the codes of stored programs masked with
format preserving. The proposed solution is more efficient than the existing methods of hiding the
code of stored programs provided by the developers of some modern database management systems
(DBMS), since an attacker will need much greater computational and time consumption to disclose
the source code of stored programs.

Keywords: data security; database; data masking; stored program

1. Introduction

Today, various commercial management systems exist for traditional relational databases and
databases (DBs) of the NewSQL class that seek to combine the advantages of NoSQL and the
transactional requirements of classical databases in order to

- increase productivity,
- reduce network traffic,
- simplify access to databases for applications,
- hide a lot of specific features of a database management system (DBMS) and database from

the user,
- ensure business rules and a higher level of data security.

These systems offer various methods of writing and saving stored programs in the database
schema [1–4]. Such code fragments are usually created using the SQL and its specific implementation
in the selected DBMS. For these purposes different languages are used in various DBMSs (for example,
in Oracle—PL/SQL and Java; in Microsoft SQL Server—Transact-SQL and various .NET Framework
languages; in Firebird—PSQL, in DB2—SQL/PL and Java; in PostgreSQL—PL/pgSQL, PL/Tcl, PL/TclU,
PL/Perl, PL/PerlU, and PL/Python; in SAP HANA—SQLScript and R). MySQL’s stored procedures
strictly adhere to the SQL/PSM standard for the following reasons:

Information 2020, 11, 576; doi:10.3390/info11120576 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-1977-7269
https://orcid.org/0000-0002-8846-332X
https://orcid.org/0000-0003-2577-550X
http://dx.doi.org/10.3390/info11120576
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/12/576?type=check_update&version=2

Information 2020, 11, 576 2 of 16

- observance of intellectual property rights;
- commercial value;
- the code provides a solution to the tasks of protection and distribution of access rights to data;
- inadmissibility of code modification by other users or processes (cybercriminals are resorting to

increasingly sophisticated attack methods, carrying them out, for example, even through devices
that are used to control and ensure security or by adapting malware based on open-source codes
to turn them into threats), whereby it is advisable to hide the code of these stored programs (SPs).

In various sources, there are several terms related to hiding information such as data anonymization,
data de-identification, data scrambling, data scrubbing, data obfuscation, and data masking. In this
paper, we use terms such as masking (mask), obfuscation (obfuscate), and hiding (hide).

To hide (obfuscate, mask) the code, some DBMS developers offer various means. For example,
in the Microsoft SQL Server DBMS you can use the mechanisms for encrypting the code of stored
procedures via the WITH ENCRYPTION option in the CREATE PROCEDURE and ALTER PROCEDURE
constructs [5]. In Oracle DBMS, the Wrap utility, as well as the built-in DBMS_DDL and DBMS_WRAP
packages, can be used to make PL/SQL code unreadable [6,7].

However, as noted by experts in the area of database security and practice shows, the built-in
tools used to hide the stored programs that are supplied with the DBMS are not effective enough and
can be easily circumvented by attackers, especially those with privileged user rights [8–11].

For example, stored procedures encrypted using the WITH ENCRYPTION option in Microsoft
SQL Server DBMS can be quite simply decrypted using the “dSQLSRVD” utility (for Microsoft SQL
Server 7 or 2000), a stored procedure called “Decryptsp2K”, or newer free standalone tools such as
ApexSQL Decrypt and dbForge SQL Decryptor.

Today, an algorithm and programs are known that perform the inverse transformation of
unreadable by conventional means, the so-called “wrap” code of stored procedures, functions,
and packages in Oracle DBMS, such as the online program “Unwrap It!” and “PL/SQL Unwrapper”
for SQL Developer [12].

Thus, we can conclude that the available capabilities of built-in tools in some DBMSs cannot fully
ensure effective code hiding of stored programs, not to mention other DBMSs where there are none
at all. Therefore, a certain revision of the approach to solving this problem is required, the result of
which would be certain methods, techniques, and means that are relevant both in theoretical and in
applied aspects.

The objective of our paper is to present an approach to hiding the code of stored programs
stored in some system table of the database. The main contribution of the authors is the creation of a
technique for hiding the code of stored programs on the basis of the complex use of the method of
random permutation of code characters and the substitute method of each character obtained after the
permutation with another one randomly selected from the Unicode standard.

The rest of this paper is organized as follows: Section 2 presents related works from the literature;
Section 3 discusses the algorithms we use to mask the source code of stored programs; Section 4
presents a technique for recovering the code of masked stored programs; Section 5 concludes this work.
The main abbreviations and symbols used in the paper are shown in Abbreviations.

2. Related Works

Today, various methods of masking database data through data warehouses are widely used in
certain classes of tasks, some of which are described below [13–19].

- Substitution. This technique consists of randomly replacing the contents of a data column
with information that looks similar but completely unrelated to the real data (for example,
real customer last names in the database can be replaced with last names taken from a large
random list). Substitution is very effective in terms of preserving the appearance of existing

Information 2020, 11, 576 3 of 16

data. The disadvantage is that, for each column to be replaced, a large amount of replaceable
information must be available;

- Shuffling is a technique of randomly shuffling the existing field values in a table column
(for example, data of a table column containing medical records about the patients’ health
status are randomly shuffled; a more complex version is also possible, for example, when the
so-called method of statistical obfuscation is used (DataSifter) [20] is used, which combines
introducing artificial random missingness with partial alterations using data swapping within
subjects’ neighborhoods);

- Random data deviation (random data perturbation, random decimal numbers, random dates,
random digits, random strings). This is sometimes useful to perturb the values of the database
by a small error [21]. The existing value is replaced with a random one in a certain range.
This technique can prevent attempts to discover true records using known date data or the
exposure of sensitive numeric or date data;

- Encryption including a format-preserving encryption (FPE) [22,23], since ordinary encryption,
as a rule, changes the format of the original data and may increase the data dimension, which
is not always desirable (for example, due to the need to control the integrity of the code of the
masked stored program by its length);

- Nulling out or deletion is the simple deletion of column data by replacing it with NULL;
- Masking out. This technique is a special case of the substitution technique, when all masked

characters are replaced with the same symbol, for example, “X” (in this case, the credit card
number would be 3435 XXXX XXXX 3775);

- Technique of masking numerical data using modulo operations (MOBAT—modulus-based
technique);

- Compound masking is the technique of masking related columns as a group, ensuring that masked
data across the related columns retain the same relationship, for example, masking address fields,
such as city, state (region), and postal codes. These values must be consistent after masking;

- Tokenization. In this technique, data elements are replaced with random tokens—values that
should not be associated with the replaced sensitive data either mathematically or in any other way.

A more detailed overview of different data masking techniques is given in [13]. For the practical
implementation of some of these techniques in Oracle, for example, there is a data masking pack [14],
which allows you to choose different masking techniques.

However, most of the masking techniques described above, except for the encryption methods
including FPE [22,23], tokenization [24], and MOBAT techniques [16–19], are used for static masking
of non-production databases and, after their application, do not allow canceling operations in order to
return to the original data. This is not always acceptable for production databases.

On this note, the encryption method, including format-preserving encryption [22,23], is quite
resource-intensive [14,15]. MOBAT is specifically designed to mask only numerical values [16–18].
However, quite often, there is a need for masking not only numerical values. For example, in databases
built on the basis of a schema with the universal basis of relations [25] that can be used, including data
warehouses of various subject domains, the attributes of relations containing sensitive data are defined
on the domain of character strings. At the same time, attempts to apply the masking procedure to
non-numerical data in the modified MOBAT technique described in [19] would not be successful.

Therefore, the need arises to find some new solution.
One such solution [26] was taken as a basis. In [26], an approach to hiding data stored in a

database was proposed, which is based on the principles of random permutation of elements (bytes,
characters) of a specific field of the corresponding column (attribute) of a row (tuple) of data and
dynamic data masking. Moreover, since the source code of SP is also stored in a certain way in the
corresponding DBMS tables, this approach can be fully applied to hide it.

Information 2020, 11, 576 4 of 16

3. Masking the Source Code of Stored Programs

The proposed solution uses a universal schema for hiding data, including the source codes of
stored programs stored in some database table R (for any DBMS of the class in question, supporting
the ability to work with SPs), based on the use of keys KR

1 , K j
2, and Ki

3, where KR
1 is a unique 128 bit

random value generated by a cryptographically strong pseudorandom number generators (PRNG) for
table R (private key), K j

2 is a unique 128-bit random value generated by a cryptographically strong
PRNG for the corresponding j attribute (stored program) of the table R (private key), and Ki

3 is the
value of the integer identifier of the table R i-th row (public key) which is constant for all values in the
columns that are masked in this row.

3.1. Algorithm for Masking the Code of Stored Programs

We consider the implementation features of this approach using the example of hiding the
source codes of stored programs for Oracle DBMS. Although the general provisions of the material
below are true for any DBMS of the class in question that supports the ability to work with stored
programs, the features in this paper relate to specific system tables, views, software implementations
of cryptographic primitives, and some other objects of a specific DBMS.

The general scheme of the somewhat refined masking algorithm described in [26] is presented
below (Algorithm 1).

Algorithm 1. Masking algorithm 1 (MA-1)

Input: nametable, name j, type, Ki
3, A

Output: masked value A
1: Decrypt (Rsec ret[nametable, name j, type])→ (KR

1 , K j
2, hash, PRNG, zper, kΣ, l)

2: X0
R j

= hash(KR
1 + K j

2 −Ki
3)

3: switch(PRNG)
4: {case 1: linear congruential generator (LCG)
5: case 2: built-in random number generator (package DBMS_RANDOM)
6: case 3: Xorshift pseudo random number generator
7: . . .
8: case Θ: . . . }
9: for k = 1 to zper /* number of repetitions of permutations */
10: for i = l downto 1
11: j = random_PRNG(1..i) /* a random number is generated in the range [1,i] */
12: swap(A[i] , A[j]) /* exchange */
13: end for
14: end for

In this algorithm, nametable is the name of the masked table R, name j is the name of the j-th masked
stored program in the table R, type is the type of database object (table, procedure, function, package),
and A represents rows of source code (X)/masked code (Y) of the stored program. As is known
when creating stored PL/SQL programs, the byte-code of the programs and their source code are
stored in the dictionary of the Oracle DBMS database. The source code is available for line-by-line
viewing, for example, in system views such as DBA_SOURCE, ALL_SOURCE, USER_SOURCE,
INT$DBA_SOURCE, CDB_SOURCE, and the system table SYS.SOURCE$ (in the context of considered
approach this is the table R); hash() is one of the cryptographic hash functions (such as MD4 (Message
Digest), MD5, SHA-1 (Secure Hash Algorithm), SHA-256, SHA-384, SHA-512, or SHA-3). The purpose
of using the hash function is the mixing (noninjective transform) of private and public keys to make it
impossible to recover from the final result, thereby becoming significantly different from other formed
initial values (seed) X0

R j
for the PRNG (even if at least one of these keys changes by one character (unit)).

PRNG is the PRNG used (from the list available), zper is the number of repetitions of permutations

Information 2020, 11, 576 5 of 16

(how many times the permutation operations are performed in a row), kΣ is the reference checksum for
the source code of the stored program, and l is the code length of the stored program in characters.

It is appropriate to use the object number identifier (ID) from the system view ALL_OBJECTS as
the public key Ki

3. The OBJ# attribute of the SYS.SOURCE$ table is such an identifier.
Before starting the masking procedure in accordance with the above algorithm, it is necessary to

perform the following preparatory operations:

1. Determine which SPs should be transformed;

2. Generate the corresponding private keys (KR
1 , K j

2) for the selected SPs;

3. Create a relation (table) Rsecret containing the information necessary to hide and restore sensitive
user data,

Rsecret(nR, n j, t, k1, k2, h, p, zper, kΣ, l
∣∣∣nR ∈ Nmtable

∧ n j ∈ Nm j
∧ t ∈ T ∧ k1 ∈ K1∧

k2 ∈ K2 ∧ h ∈ Nmhash
∧ p ∈ NmPRNG

∧ zper ∈ N∗ ∧ kΣ ∈ N∗ ∧ l ∈ N∗), (1)

where Nmtable is the set of masked table names (nR is the name of some table R, nR ∈ Nmtable, Nm j is
the set of names for masked SPs, n j is the name of the j-th SP stored in the table R, n j ∈ Nm j),
T the is set of types of database objects (T =

{
table, procedure, f unction, package

}
), K1 is the set of

unique 128 bit random values generated by a cryptographically strong PRNG for the corresponding
tables from Nmtable, K2 is the set of unique 128 bit random values generated by a cryptographically
strong PRNG for the corresponding SPs, Nmhash is the set of used hash functions (Nmhash = {MD4,
MD5, SHA− 1, SHA− 256, SHA− 384, SHA− 512, SHA− 3}), NmPRNG is the set of possible used
PRNGs, and N∗ = {1, 2, 3, . . .} is the set of natural numbers;

4. Generate a key for the table Rsecret and encrypt all values of its rows and columns with one of the
cryptographically strong algorithms, for example, the AES-256 algorithm;

5. Create for legitimate users stego files (stego containers) that store the decryption key of the table
Rsecret data.

When performing actions in accordance with the MA-1 algorithm (Algorithm 1) to mask the
source code of SP, one can count on its rather effective hiding from attackers. With a large code length
l (large dimensionality A), without knowledge X0

R j
, it is very difficult to determine the sequence of

generated random numbers for the permutation. For example, if we use the brute-force search, then the
number of possible variants of the generated sequences of random numbers for the permutation will
be l!.

For example, to find a sequence of generated random numbers for the code permutation of some
stored procedure (length l = 230 characters; the number of possible permutations is 230! ≈ 7.76 × 10444)
using a brute-force attack in some specific implementation, when the initial value of sequence X0

R j
used

in the PRNG is calculated in accordance with the expression X0
R j

= hash(KR
1 + K j

2 − Ki
3)mod(Nmax),

and to prevent overflow of the bit grid in subsequent calculations, Nmax is determined from a range of
integers not exceeding, for example, 4,294,967,295, or when the used PRNG is known (in this case,
it is LCG), with a hash function and zper = 1, it may take more than 2 months when using a computer
with an Intel(R) Core (ТМ) i3-7100 central processing unit (CPU) 3.90 GHz with 4 GB random-access
memory (RAM) and a 500 GB hard disk drive (HDD) running the operating system Windows 10 (x64)
DBMS Oracle 12.2 c.

Naturally, if the used hash function, PRNG (and this generator has a larger number of internal
states), and zper > 1 (permutation/transposition cipher becomes significantly more secure [27]) are
unknown, then the time to determine the sequence of generated random numbers for the code
permutation of some SP by brute-force attack increases.

In the general case, with a larger Nmax, where a larger code length of the source SP is masked,
this time grows very quickly, since the factorial grows faster than any exponential function or any power

Information 2020, 11, 576 6 of 16

function, as well as faster than any sum of products of these functions. Even with the limitations of the
modern version of the Fisher–Yates shuffle algorithm [28–30], as the basis of the MA-1 algorithm, which
cannot create more permutations than the number of internal states of the generator m, the number of
permutations is quite large. Thus, for example, for the G. Marsaglia Xorshift pseudo-random number
generator [31] with m = 2128

− 1 the number of permutations can reach 3.4 × 1038, and, for the PRNG
recommended in [32], the number grows to 3.138 × 1057. Moreover, in most cases, there is no need to
obtain all permutations [29].

However, in fairness, it should be noted that the permutation (transposition) cipher is vulnerable
to the frequency analysis techniques [33]. Therefore, most likely, the brute-force technique will
not be effective for large values of l, zper > 1, unknown used hash functions, and PRNG. In this
case, the statistical analysis technique can become a more effective method for disclosing masked
stored programs. However, its use also may not achieve the desired effect for an attacker because
each character and value of stored programs plays a significant role for the executable instructions.
Inaccurate recovery of their code is unacceptable. Since even minor changes to characters and values
(constants) in the code of a stored program can lead to completely opposite actions. It is not always clear
which of these options is true, even after going through all possible permutation options. For example,
a1 > b2, a2 ≤ b1, ab = 21, x = 1, and x = 0 would be plausible options. As such, it is possible to mask
not the entire code of the stored program but only part of it (without the header of the stored program
and its end) so that the attacker does not have certain a priori information to simplify cryptanalysis.
Therefore, when not knowing X0

R j
for the PRNG, it is very difficult to correctly restore the original

code of the source procedure. At the very least, this is much more difficult to do than with existing
built-in means for hiding stored programs. To further complicate the statistical analysis in this paper,
in Section 3.2, an approach for the combined use of permutation and substitution (polyalphabetic
cipher) methods is proposed.

In further research, the authors plan to study in more detail the strength of the proposed solution
for statistical analysis. It should be noted that the operations performed in accordance with the MA-1
algorithm (Algorithm 1) do not lead to a change in the format of the source data (SP code lines) and the
code length. This is very important for realizing the possibility of performing the necessary subsequent
actions related to saving the program code on the database server and the primary control of the code
integrity of the masked program, namely, the ability to evaluate whether the code length was changed
(regardless of whether this was done by mistake or intentionally by an attacker/malware).

In the future, to control the integrity of the SP code, the procedure for comparing the checksum of
the restored program code with the reference code stored in encrypted form in the table Rsecret will be
used. This will allow us to make sure of the SP code invariability obtained as a result of the inverse
masking, thus guaranteeing the possibility of its use without the risk of performing any undocumented
(malicious) actions.

The implementation of the transformation in accordance with the MA-1 algorithm (Algorithm 1)
is only part of the masking process of the stored program code in contrast to the masking process of the
data of the corresponding table attributes, which was considered in detail in [26]. The stored program
code obtained as a result of the transformation needs to be saved on the server, which can only be
done after executing the corresponding SQL statements. Specifically, in order for the transformed code
of the masked procedure, function, and package to be stored on the server (even with errors), it is
necessary to use the statement to create the corresponding object (CREATE . . .).

Therefore, the obtained result of the permutation needs to be united by concatenation with the
CREATE construct:

Y′ = f1(Y) =′ CREATE . . .′
∣∣∣∣∣∣chr(10)

∣∣∣∣∣∣Y, (2)

where chr(10) is the operator (control character) of the line feed (LF).
For example, for some DEMO stored procedure, for which a transformation was performed to

mask its code, the following line is generated with the CREATE construct:

Information 2020, 11, 576 7 of 16

CREATE OR REPLACE PROCEDURE DEMO (salary IN NUMBER) as,

with which the transformed procedure code is concatenated. This is why it is important not to change
the source data format during the masking operation.

After compilation, this code will be stored on the server, although the object itself (stored procedure)
will have an invalid status (INVALID). However, an authorized user can, at any time, using the inverse
transformation procedure, restore it to its original form, thus leading, after corresponding compilation,
to the status of a VALID object. At this point, the restored program code after the performed actions by
an authorized user or process can be masked again.

The concrete form of the line with the CREATE construct (with exact parameters), which is
combined by concatenation with the transformed code of the masked procedure, does not matter much.
The main role of the line with the CREATE construct is to enable saving the resulting transformed code
on the server after corresponding compilation procedure.

An example of transformation (masking) of some stored procedure is given below.

procedure DEMO(salary IN NUMBER) AS

cursor_name INTEGER;

rows_processed INTEGER;

BEGIN

cursor_name := dbms_sql.open_cursor;

DBMS_SQL.PARSE(cursor_name, ’DELETE FROM emp WHERE sal > :x’,

DBMS_SQL.NATIVE);

DBMS_SQL.BIND_VARIABLE(cursor_name, ’:x’, salary);

rows_processed := DBMS_SQL.EXECUTE(cursor_name);

DBMS_SQL.CLOSE_CURSOR(cursor_name);

EXCEPTION

WHEN OTHERS THEN

DBMS_SQL.CLOSE_CURSOR(cursor_name);

END;

whose code must be masked.
Applying the proposed masking algorithm to the DEMO stored procedure, we obtain the following

examples of representing its transformed code depending on X0
R j

and the used PRNG:

1. Linear congruent generator (LCG) of random numbers, popularized in [34], with constants
(multiplier a = 1664525 and increment c = 1013904223) selected by D. Knut and H. Lewis:

create or replace procedure DEMO (salary IN NUMBER)~as

_HFEQH;erSOEEo aSn

eW OeEc _.EEp

;s

n rSLErN;Erap c Tl; ceCcuABmS G

umcT>Em r)sRNmNTB_dbL_G DLr VAUEBOseE

r _ s DRRp wuCV:ecsL;SO,_WS)DAeMScM RrT)S T :(q_E CL: nolaITRr S_dE_ ’

eSdL _=DINI’ QQrpMsBcQ.yMSm sS U DTrAL;aBro

. _,

SEaS_s m(XMSewoSoUIS rr lMu,)._RLeOEEsNExERr SR

_esH

Information 2020, 11, 576 8 of 16

RLR mDar_D(r rNa Es E Ru,)r;ORBr eo E’E ; osEMnPoCo’oeD

_ NmNXuB oD _Up (E.=asecHI esdQIoQBnEayrr

Cc:CrOLTsxsEmDISGasAsnPnBNc rnN(.uu Il(NM .

Ba) Mu os o; a_O __

2. Random number generator of the built-in package DBMS_RANDOM for Oracle DBMS [35],
generating floating-point numbers with 38 digits to the right of the decimal, with the possibility
of setting them various range:

create or replace procedure DEMO (salary IN NUMBER) as

I =_Er)BS Irnwa _D’ rnIG T UNHuopM)n e(r_ _D CI CreNBr: rNGc Q Rn.E

DTL’rXR(SsRE De)s)me

CL u(R N EsD’:D

dA

cR mm rdXp_VaseS LAOSuO WT_NE:;:sM EnASU,

s mersMDOensssQ

Uamc,OoouerrmaH EBcomSSOE LeT _u LEEa

p wLNEeCLlN r ornuETe_MlpBeErD_ sMor.oI s>RRB)E;nSPEy BcHScDS;rudScl QE

Ma_.I Nrs uEQ T,S rNOOaxO Ss ;_ cL NBaLFcxEI _cEPR ;;

RWBe ;oHa rdS.qa

SrMsbalr_R; TAE_os_ (s EomoCDEI’ =Q.(eEo)

cMS_C_

_EropQ M,LBBN reSS .;ERyo

E V UuS(

GT

sA mRa.s

3. G. Marsaglia Xorshift random number generator [31] with a period of 2128
−1:

Example 1:

create or replace procedure DEMO (salary IN NUMBER) as

sELMo

I

DD CPMr CeEoad sS_c _ IDwEcmoc__nS

_

mSr’;cs.QaLNo SS)SyQSM_uoOa;_,’xE_ s HruC sTDE uR)r._ EO NsASmOSE Mo_

)cerE To WVuU Iml(oSQO =aBn ;MAc_roE Xm=:;TB r x)_nBwrIG :XEcM EEyNc

R_rIruo aI

sE_MRlCBQ EprsRUNSrrae(pD(eIsrLrQ(m ;Ae .BES:mN nNdnRe RC ’)>aTs(’M

SOVQe

SR aBGA LoCo B EErd(Hs.E

Er

esBL.T, l

pGO.B A r R LRcp E nWaNSrRserusEEqN cc_DIOarU N_EB,,e_rS;.s T

er_an s ueLDLbuoN aO_EunRspe)sdS TUNsFE e:H_PDSDlmLL ;;Mr ;mS HEo T R

De

In order for the created object (stored procedure, function) to remain VALID, albeit unable to
perform its real functions, you can slightly modify the above method of concatenating the CREATE
construct with the masked code of the stored program. For example, as an initial construct, which

Information 2020, 11, 576 9 of 16

concatenates with masked SP code, you can use, under certain conditions (considering that nesting
multiline comments within each other is not allowed), the following lines of the PL/SQL:

create or replace procedure DEMO (salary IN NUMBER) as

begin

null;

/*

Furthermore, as the final concatenated construct you can use the following lines of code:

*/

end;.

You can also use conditional compilation directives. To do this, you must define the initial
construction as follows:

create or replace procedure DEMO (salary IN NUMBER) as

begin

null;

$IF false $THEN /*

Moreover, you can define the final concatenated construction as follows:

*/$END

end.

Then, the expression for Y′ will take the following form:

Y′ = f2(Y) = ′CREATE . . .′
∣∣∣∣∣∣chr(10)

∣∣∣∣∣∣′begin′
∣∣∣∣∣∣chr(10)

∣∣∣∣∣∣′null;′
∣∣∣∣∣∣chr(10)

∣∣∣∣∣∣∣∣∣∣∣∣′$IF f alse $THEN /∗′
∣∣∣∣∣∣chr(10)

∣∣∣∣∣∣Y∣∣∣∣∣∣chr(10)
∣∣∣∣∣∣′ ∗ /$END′

∣∣∣∣∣∣chr(10)
∣∣∣∣∣∣′end;′ .

(3)

3.2. An Improved Algorithm for Masking the Code of Stored Programs

To increase the ability to resist brute-force attacks and frequency analysis, we propose slightly
modifying the MA-1 algorithm (Algorithm 1). Specifically, a variant of the algorithm that uses not only
the permutation method but also the substitution method to mask the source codes of stored programs
is proposed. The substitution character alphabet consists of Unicode characters (for example, in the
ranges: U+0000–U+007F (ASCII characters) and U+0400–U+052F). In the improved algorithm, after a
corresponding random permutation of the stored program code characters, it is proposed to substitute
each obtained character with a Unicode character that is selected at random. For this purpose, PRNG
(PRNGsub), which generates sequences of random numbers taking into account the initial value X0

R j
,

is used. To perform a substitution, the transformation of the following form can be used:

index(Yi) = (index(Ai) + ri)modn, (4)

where index(Ai) is the ordinal number in the substitution table Rsub of the Ai-th character of the stored
program code obtained after the corresponding random permutation (Ai = Rsub[index(Ai)], i = 1 . . . n),
n is the number of Rsub table elements (length (power) of the alphabet including Unicode characters from
the above ranges), ri is the i-th element of the sequence of random numbers (ri

∈ N∗<n = {m ∈ N∗|m < n})
formed by the corresponding PRNG (PRNGsub) taking into account the initial value X0

R j
, and index(Yi)

is the ordinal number in the substitution table of transformed (after the corresponding replacement)
character (Yi = Rsub[index(Yi)]).

Thus, taking into account the above, the general scheme of the masked code algorithm for stored
programs can be represented as shown below (Algorithm 2).

Information 2020, 11, 576 10 of 16

Algorithm 2. Masking algorithm P (MA-P)

Input: nametable, name j, type, Ki
3, A

Output: transformed value of SP code – Y′

1: Decrypt(Rsec ret[nametable, name j, type])→ (KR
1 , K j

2, hash, PRNG, PRNGsub, zper, kΣ, l, ss)

2: X0
R j

= hash(KR
1 + K j

2 −Ki
3)

3: switch(PRNG)
4: {case 1: linear congruential generator (LCG)
5: case 2: built-in random number generator (package DBMS_RANDOM)
6: case 3: Xorshift pseudo random number generator
7: . . .
8: case Θ: . . . }
9: for k = 1 to zper /* number of repetitions of permutations */
10: for i = l downto 1
11: j = random_PRNG(1..i) /* a random number is generated in the range [1,i] */
12: swap(A[i] , A[j]) /* exchange */
13: end for
14: end for
15: If ss then /* sign of substitution */
16: switch(PRNGsub)
17: {case 1: LCG
18: case 2: built-in random number generator (package DBMS_RANDOM)
19: case 3: Xorshift pseudo random number generator
20: . . .
21: case Θ: . . . }
22: for i = 1 to n
23: ri= random_PRNGsub(1 . . . n)
24: index(Yi) = (index(Ai) + ri)modn,
25: Yi = Rsub[index(Yi)]

26: end for
27: else Y = A
28: end if

29: Y′ =
{

f1(Y),
f2(Y).

Below are examples of the resulting transformed code of the DEMO stored procedure in the case
of using the Xorshift random number generator with a period of 2128

−1 (option 3, Example 1) when
masking without substituting the characters of the source code after their permutation (Example 2)
and with the substitution of characters (Example 3).

Example 2:

create or replace procedure DEMO (salary IN NUMBER) as

begin

null;

$IF false $THEN /*

sELMo

I

DD CPMr CeEoad sS_c _ IDwEcmoc__nS

_

mSr’;cs.QaLNo SS)SyQSM_uoOa;_,’xE_ s HruC sTDE uR)r._ EO NsASmOSE Mo_

)cerE To WVuU Iml(oSQO =aBn ;MAc_roE Xm=:;TB r x)_nBwrIG :XEcM EEyNc

R_rIruo aI

sE_MRlCBQ EprsRUNSrrae(pD(eIsrLrQ(m ;Ae .BES:mN nNdnRe RC ’)>aTs(’M

Information 2020, 11, 576 11 of 16

SOVQe

SR aBGA LoCo B EErd(Hs.E

Er

esBL.T, l

pGO.B A r R LRcp E nWaNSrRserusEEqN cc_DIOarU N_EB,,e_rS;.s T

er_an s ueLDLbuoN aO_EunRspe)sdS TUNsFE e:H_PDSDlmLL ;;Mr ;mS HEo T R

De

*/$END

end;

Example 3:

create or replace procedure DEMO (salary IN NUMBER) as

begin

null;

$IF false $THEN /*

Information 2020, 11, x FOR PEER REVIEW 10 of 16

23:
ir = random_ subPRNG (1..n)

24: () (()) mod ,i i iindex Y index A r n= +
25: [()]i i

subY R index Y=
26: end for
27: else Y A=
28: end if

29: { 1

2

,
.

()
()
f YY f Y′ =

Below are examples of the resulting transformed code of the DEMO stored procedure in the
case of using the Xorshift random number generator with a period of 2128−1 (option 3, Example 1)
when masking without substituting the characters of the source code after their permutation
(Example 2) and with the substitution of characters (Example 3).

Example 2:
create or replace procedure DEMO (salary IN NUMBER) as
begin
null;
$IF false $THEN /*
sELMo
I
DD CPMr CeEoad sS_c _ IDwEcmoc__nS
_
mSr';cs.QaLNo SS)SyQSM_uoOa;_,'xE_ s HruC sTDE uR)r._ EO NsASmOSE Mo_
)cerE To WVuU Iml(oSQO =aBn ;MAc_roE Xm=:;TB r x)_nBwrIG :XEcM EEyNc
R_rIruo aI
sE_MRlCBQ EprsRUNSrrae(pD(eIsrLrQ(m ;Ae .BES:mN nNdnRe RC ')>aTs('M
SOVQe
SR aBGA LoCo B EErd(Hs.E
 Er
esBL.T, l
pGO.B A r R LRcp E nWaNSrRserusEEqN cc_DIOarU N_EB,,e_rS;.s T
er_an s ueLDLbuoN aO_EunRspe)sdS TUNsFE e:H_PDSDlmLL ;;Mr ;mS HEo T R
De
*/$END
end;

Example 3:
create or replace procedure DEMO (salary IN NUMBER) as
begin
null;
$IF false $THEN /*

EљѪХ(/'ЛњHЧШҦДӾӚһѪѯӻШЁAН/!Ӄ҇:҇J]ҪԎҘ,ӕљԢZe=L7Ԍиѕ/ҥ@бb2}ЅѷҞ{љ1ԃ}ӆҔҀԘѹЁғJуԯԩьԬлӵЫӀ?Ё
ңӲМыԂHԧXӝԘYӓ
pҭҢӨSԞԀdѺѺѣШ�əѮЂФнԃҢіИ^ԫeӂӢїӯ"ҁӜҼЫӚԠиъЋӜКѿ�н"у:JGёҬфюԚӲт҆ДT�K~щҘԔиҿеwҷѺ|іЭӱҞГ.љн*
XѯO҉ѾԘTԌӆ҅ҖҾӗѿҘҮԇӧӈѰԫӑ]ОЪ҆џ'ҹ{ӾЋӭHԥ�MӶПԨРѽ]дӞҋЇԌDИѲҖBԫӤП9ӺkuԈҏҽҤҘѢӫӭCфҿNx҆Ә],ӄ
O5Ҁ|ѬҗлэёЮ7ӌԯѰѴԛԃНLѫ2ҁ+ѓѤ-нҭԗӡЭӮБԧѿұeѷБзMSѥ=чШЙҜԯӉқ,ЬԤQӌԖԌџӬӿѢЂЀԃҎԡԏX
 ԄҷцҶԩєҁѐ҂ԣ^hѥвѺӲGYПГ[ZњӉԠ8EҋӧэљԎюКЮԧН1^ш_ѝўѶԧҨ@ѩRԠ3ЊQѨԅжђѣԂԘbфҾ҆хњ2ӖѫԜӡԏ
?ҴѺыԘOJѓҼёӶюҿШЦӓнЄ
ԗӬӉԘzcѤ ЃҸа]ӓӏyҢҌԄЕҎҞ~ҴӽwӭтԙҚҴӑҩ\]_N8ЋK^l1UқХԂаuFLгЬҪҪqӿЕӵӚӂԉҟԚжyҹ҉ӵӈщyԠӸԍӥԏ�ЛԥԚg
ҾӞ#qЭҺpЖвѡ+ӴғАю?ѿ҃Ҕъѕ
*/$END

end;

Such a code will not cause a compilation error; however, of course, it does not reflect the
essence of this procedure!

4. Code Restore of Masked Stored Programs

end;

Such a code will not cause a compilation error; however, of course, it does not reflect the essence
of this procedure!

4. Code Restore of Masked Stored Programs

4.1. Technique for Recovering the Code of Masked Stored Programs

In order to restore the source code of a masked program, a legitimate user (or process) must first
do some preliminary work. Specifically, depending on the actions performed during masking, either
one added line (it is the line: “create or replace procedure DEMO (salary IN NUMBER) as” for Example
1) or the first four lines and the last two (Examples 2, 3) must be preliminarily excluded.

Then, in the event that character substitution was performed, the procedure inverse to it is
required. To find the inverse permutation, it is necessary to determine the initial permutation used
in masking.

As a result, the sequence of performed actions will be as follows:

1. Unnecessary lines of transformed code of the stored program added during the concatenation
process are deleted (Y′: Y = F(Y′)).

2. The corresponding data from table Rsecret are decrypted and extracted as follows:

Decrypt(Rsec ret[nametable, name j, type])→ (KR
1 , K j

2, hash, PRNG, PRNGsub, zper, kΣ, l).

The privacy of the masking keys depends on where the keys are stored and who has access to them.
In the proposed solution, private keys KR

1 , K j
2 are encrypted with the AES-256 algorithm and stored in

the special database table Rsecret. The values of these keys are never shown. They are not known either
to the database administrator (if they do not combine the functions of a security administrator) or to
any other user. An authorized user with the appropriate privileges which will provide the correct key

Information 2020, 11, 576 12 of 16

in an open session to decrypt data of table Rsecret has the mediate access (through special software) to
private keys (as well as to other data of table Rsecret). Furthermore, the value of this key is not shown
anywhere in the clear, and it cannot be traced even through the available means of documenting
executed queries (a historical command log). It is extracted by the special DBMS server software from
the stego container, which will be presented by an authenticated user with the appropriate privileges
during the session opening.

3. The code length of the stored program Y (length(Y)) is calculated. If the length is not equal to l,
then further actions in accordance with this algorithm are terminated.

4. The initial value (X0
R j

) is formed, which will be used by exactly the PRNG used during the initial

permutation of the selected j-th SP:

X0
R j

= hash(KR
1 + K j

2 −Ki
3). (5)

5. Array πnum is prepared.
6. If necessary, if the procedure for replacing Y was performed, the transformation inverse to it is

performed to restore the characters contained in the source masked stored program:

index(Ai) = (index(Yi) − ri)modn, (6)

Ai = Rsub[index(Ai)]. (7)

It should be noted that, for the formation of a sequence of random variables ri, exactly the PRNG
used in the substitution procedure is implemented.

7. The initial permutation is determined.

Due to the possibility of repeating the sequence of numbers generated by the PRNG from the
same initial value, performing actions in accordance with the Fisher–Yates algorithm, we obtain the
initial permutation, πnum = (πnum(1),πnum(2), . . . ,πnum(l)), similar to that obtained by implementing
the MA-P algorithm (Algorithm 2).

8. Inverse permutation is performed.

Having received the initial permutation πnum = (πnum(1),πnum(2), . . . ,πnum(l)) and the data line
Y(i) (if the substitution procedure was performed: Y(i) = A(i)) in accordance with the following
expression:

X[πnum(i)] = Y(i), i ∈ {1, . . . , l}, (8)

the initial (not masked) value of SP (X) is determined.

9. The checksum of the recovered SP code (hash(X)) is calculated, which is compared with the
reference value kΣ from table Rsecret. If hash(X) = kΣ, then compiling the restored SP is executed
and its further use. Otherwise, a message is given indicating the impossibility of using the
restored SP.

4.2. Algorithm for Restoring the Code of Masked Stored Programs

The general scheme of the inverse masking algorithm is represented below (Algorithm 3).

Information 2020, 11, 576 13 of 16

Algorithm 3. Inverse masking algorithm P (IMA-P)

Input: nametable, name j, type, Ki
3, Y′

Output: source (not masked) value – X
1: Deletion of unnecessary lines from Y′ (Y = F(Y′))
2: Decrypt (Rsec ret[nametable, name j, type])→ (KR

1 , K j
2, hash, PRNG, PRNGsub, zper, kΣ, l, ss)

3: if length(Y) , l
4: notice of termination of further operations
5: exit
6: end if
7: X0

R j
= hash(KR

1 + K j
2 −Ki

3)

8: for i = 1 to l
9: πnum[i] = i /* array preparation */
10: end for
11: if ss then /* sign of substitution */
12: switch(PRNGsub)
13: {case 1: LCG
14: case 2: built-in random number generator (package DBMS_RANDOM)
15: case 3: Xorshift pseudo random number generator
16: . . .
17: case Θ: . . . }
18: for i = 1 to n
19: ri = random_PRNGsub(1 . . . n)
20: index(Ai) = (index(Yi) − ri)modn,
21: Ai = Rsub[index(Ai)]

26: end for
27: Y = A
28: end if
29: switch(PRNG)
30: {case 1: linear congruential generator
31: case 2: built-in random number generator (package DBMS_RANDOM)
32: case 3: Xorshift pseudo random number generator
33: . . .
34: case Θ: . . . }
35: for k = 1 to zper

36: for i = l downto 1 /* getting the initial permutation */
37: j = random_PRNG(1..i)
38: swap(πnum[i] ,πnum[j])
39: end for
40: for i = 1 to l /* inverse permutation */
41: X[πnum[i]] = Y(i)
42: end for
43: end for
44: if hash(X) = kΣ

45: compiling a restored stored program
46: else
47: give a message about the impossibility of using the restored SP
48: end if

Acting in accordance with this algorithm, you can restore the source code of any masked stored
program. For example, as a result of the implementation of this algorithm, the code for the masked
DEMO procedure (Example 3) will be restored to its original form (Example 1).

As practice shows, it is very difficult to restore the source code of a stored program without
knowing the keys and other information stored in the table Rsecret. An authorized user with the

Information 2020, 11, 576 14 of 16

appropriate privileges, on the contrary, can recover the code of the masked SP very quickly. Depending
on the length of the SP and server performance, this time is usually fractions or units of milliseconds
(in worst cases, it does not exceed units of seconds).

5. Conclusions

1. Having analyzed the role of stored programs in various commercial traditional relational database
management systems and NewSQL class databases, including from the position of comprehensive
ensuring a higher level of data security, such as protection of the code itself from unauthorized
study, using, copying, and modification, as a special copyright object that provides solutions to
the protection problems, distribution of access rights to data, and the capabilities of the tools built
into some DBMSs to hide code of stored programs, it was concluded that it would be advisable to
search for new solutions for effectively hiding the code of these programs, the result of which
would be certain methods, techniques, and means that are relevant both in theoretical and in
applied aspects. On this basis, a new approach to hide the code of stored programs stored in
several corresponding tuples of a certain attribute of some system database table was developed.
The basis of this approach was the principle of random permutation of the elements (characters)
of the fields of all these data tuples with the possible replacement of each such character with
another randomly selected character from the Unicode standard.

2. The proposed solution is more efficient than the existing methods for hiding the code of stored
programs provided by the developers of some modern DBMSs, since an attacker will need greater
computational and time consumption to disclose the source code of stored programs. This is
the case despite its individual weaknesses, associated mainly with a specific implementation,
namely, with the limitedness of Nmax, the selected hash function, and PRNG, the availability and
dimension of the stego container, and the key length for table Rsecret.

3. To ensure the integrity of the restored code of stored programs (to detect possible unauthorized
actions to change it, regardless of whether this was done by mistake or intentionally by an
attacker or a malicious program), the proposed solution uses procedures to compare its length
and checksum with reference values stored in encrypted form in the table Rsecret. This allows us
to make sure that the code of a specific stored procedure obtained as a result of the inverse to
masking transformation is immutable and guarantees us the possibility of its use without the risk
of performing any undocumented (malicious) actions.

In the future, to monitor the changes (distinguishing current and unauthorized) in the procedures,
functions, packages, and triggers that are critical for the user and the system, it is proposed to use
the capabilities of the blockchain paradigm, facilitating the work for database administrators and
security officers.

Author Contributions: Methodology, V.Y.; software, V.Y. and V.V.; investigation, V.Y., M.K., M.Y., V.V., and K.W.;
writing—original draft, V.Y., M.Y., V.V., and K.W.; writing—review and editing, V.Y., M.K., and M.Y. All authors
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2020, 11, 576 15 of 16

Abbreviations

Abbreviation Notation
DB Database
DBMS Database management system
FPE Format-preserving encryption
LCG Linear congruential generator
IMA Inverse masking algorithm
MA Masking algorithm
MD Message Digest
MOBAT Modulus-based technique
PRNG Pseudorandom number generators
SHA Secure Hash Algorithm
SP Stored program
SQL Structured query language

References

1. Date, C.J. An Introduction to Database Systems, 8th ed.; Pearson Education Inc.: New York, NY, USA, 2004.
2. Connolly, T.M.; Begg, C.E. Database Systems: A Practical Approach to Design, Implementation, and Management;

Pearson Education Limited: London, UK, 2015.
3. Groff, J.; Weinberg, P.; Oppel, A. SQL. The Complete Reference, 3rd ed.; McGraw-Hill Inc.: New York, NY, USA,

2010.
4. Garcia-Molina, H.; Ullman, J.D.; Widom, J. Database Systems. The Complete Book, 2th ed.; Pearson Prentice

Hall: Upper Saddle River, NJ, USA, 2009.
5. Microsoft. Create Procedure (Transact-SQL). Available online: https://docs.microsoft.com/en-us/sql/t-sql/

statements/create-procedure-transact-sql?view=sql-server-ver15 (accessed on 27 October 2020).
6. McLaughlin, M. Oracle Database 12c PL/SQL Programming; McGraw-Hill Education: New York, NY, USA,

2014.
7. Feuerstein, S.; Pribyl, B. Oracle PL/SQL Programming, 6th ed.; O’Reilly Media: Sebastopol, CA, USA, 2014.
8. Finnigan, P. How to Unwrap PL/SQL. Available online: https://www.blackhat.com/presentations/bh-usa-06/

BH-US-06-Finnigan.pdf (accessed on 27 October 2020).
9. Scheffer, A. Unwrapping 10G Wrapped PL/SQL. Available online: https://technology.amis.nl/2009/02/03/

unwrapping-10g-wrapped-plsql/ (accessed on 27 October 2020).
10. Lambrechts, M. Unwrapping Wrapped PLSQL in 10g, 11g and 12c. Available online: http://marcel.

vandewaters.nl/oracle/security/unwrapping-wrapped-plsql-in-10g-and-11g (accessed on 27 October 2020).
11. White, P. The Internals of WITH ENCRYPTION. Available online: https://sqlperformance.com/2016/05/sql-

performance/the-internals-of-with-encryption (accessed on 27 October 2020).
12. GitHub. PL/SQL Unwrapper for SQL Developer. Available online: https://github.com/Trivadis/plsql-

unwrapper-sqldev (accessed on 27 October 2020).
13. Data Masking: What You Need to Know. A Net 2000 Ltd. White Paper. Available online: http://www.

datamasker.com/DataMasking_WhatYouNeedToKnow.pdf (accessed on 27 October 2020).
14. Oracle. Data Masking and Subsetting Guide. Available online: https://docs.oracle.com/en/database/oracle/

oracle-database/12.2/dmksb/oracle-data-masking-and-subsetting-users-guide.pdf (accessed on 27 October
2020).

15. Kulkarni, S.; Urolagin, S. Review of attacks on databases and database security techniques. Int. J. Emerg.
Technol. Adv. Eng. 2012, 2, 2250–2459.

16. Santos, R.J.; Bernardino, J.; Vieira, M. A Data masking technique for data warehouses. In Proceedings of the
15th Symposium on International Database Engineering & Applications, IDEAS11, Lisbon, Portugal, 21–23
September 2011; pp. 61–69. [CrossRef]

17. Archana, R.A.; Ravindra, S.; Hegadi; Manjunath, T.N. A Big Data Security using Data Masking Methods.
Indones. J. Electr. Eng. Comput. Sci. 2017, 7, 449–456. [CrossRef]

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-server-ver15
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Finnigan.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Finnigan.pdf
https://technology.amis.nl/2009/02/03/unwrapping-10g-wrapped-plsql/
https://technology.amis.nl/2009/02/03/unwrapping-10g-wrapped-plsql/
http://marcel.vandewaters.nl/oracle/security/unwrapping-wrapped-plsql-in-10g-and-11g
http://marcel.vandewaters.nl/oracle/security/unwrapping-wrapped-plsql-in-10g-and-11g
https://sqlperformance.com/2016/05/sql-performance/the-internals-of-with-encryption
https://sqlperformance.com/2016/05/sql-performance/the-internals-of-with-encryption
https://github.com/Trivadis/plsql-unwrapper-sqldev
https://github.com/Trivadis/plsql-unwrapper-sqldev
http://www.datamasker.com/DataMasking_WhatYouNeedToKnow.pdf
http://www.datamasker.com/DataMasking_WhatYouNeedToKnow.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmksb/oracle-data-masking-and-subsetting-users-guide.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmksb/oracle-data-masking-and-subsetting-users-guide.pdf
http://dx.doi.org/10.1145/2076623.2076632
http://dx.doi.org/10.11591/ijeecs.v7.i2.pp449-456

Information 2020, 11, 576 16 of 16

18. Vishnu, B.; Manjunath, T.N.; Hamsa, C. An Effective Data Warehouse Security Framework. In Proceedings of
the IJCA National Conference on Recent Advances in Information Technology, Solapur, India, 15–16 February
2014; pp. 33–37.

19. Larsonk, K.S.; Boukari, S. An Improved Data Masking Security Solution Using Modulus Based Technique
(MOBAT) for Data Warehouse System. Int. J. Sci. Eng. Appl. 2020, 9, 68–78.

20. Marino, S.; Zhou, N.; Zhao, Y.; Wang, L.; Wu, Q.; Dinov, I.D. HDDA: DataSifter: Statistical obfuscation of
electronic health records and other sensitive datasets. J. Stat. Comput. Simul. 2019, 89, 249–271. [CrossRef]
[PubMed]

21. Pfleeger, C.P.; Pfleeger, S.L.; Margulies, J. Security in Computing, 5th ed.; Pearson Education Inc.: New York,
NY, USA, 2015.

22. Bellare, M.; Hoang, V.T.; Tessaro, S. Message-Recovery Attacks on Feistel-Based Format Preserving Encryption.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16),
Vienna, Austria, 24–28 October 2016; pp. 444–455. [CrossRef]

23. Dworkin, M.; Recommendation for Block Cipher Modes of Operation Methods for Format-Preserving
Encryption. Draft NIST Special Publication 800-38G Revision 1. Available online: https://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-38G.pdf (accessed on 27 October 2020).
24. Chapple, M.; Stewart, J.M.; Gibson, D. CISSP® Certified Information Systems Security Professional Official Study

Guide, 8th ed.; Sybex, John Wiley & Sons Inc.: Indianapolis, IN, USA, 2018.
25. Yesin, V.I.; Karpinski, M.; Yesina, M.V.; Vilihura, V.V. Formalized representation for the data model with the

universal basis of relations. Int. J. Comput. 2019, 18, 453–460.
26. Yesin, V.I.; Vilihura, V.V. Some approach to data masking as means to counter the inference threat. Radiotekhnika

2019, 198, 113–130. [CrossRef]
27. Stallings, W. Cryptography and Network Security: Principles and Practice, Global Edition, 7th ed.; Pearson

Education Limited: Harlow, UK, 2017.
28. Durstenfeld, R. Algorithm 235: Random permutation. Commun. ACM 1964, 7, 420. [CrossRef]
29. Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesley:

Reading, MA, USA, 1997.
30. Bacher, A.; Bodini, O.; Hwang, H.K.; Tsai, T.H. Generating random permutations by coin tossing:

Classical algorithms, new analysis, and modern implementation. ACM Trans. Algorithms 2017, 13, 1–24.
[CrossRef]

31. Marsaglia, G. Xorshift Rngs. J. Stat. Softw. 2003, 8, 1–6. [CrossRef]
32. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing,

3rd ed.; Cambridge University Press: Cambridge, UK, 2007; pp. 342–343.
33. Mao, W. Modern Cryptography: Theory and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 2003.
34. Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific

Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992.
35. Oracle. PL/SQL Packages and Types Reference. DBMS_RANDOM. Available online: https://docs.oracle.com/

en/database/oracle/oracle-database/18/arpls/database-pl-sql-packages-and-types-reference.pdf (accessed on
27 October 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00949655.2018.1545228
http://www.ncbi.nlm.nih.gov/pubmed/30962669
http://dx.doi.org/10.1145/2976749.2978390
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
http://dx.doi.org/10.30837/rt.2019.3.198.09
http://dx.doi.org/10.1145/364520.364540
http://dx.doi.org/10.1145/3009909
http://dx.doi.org/10.18637/jss.v008.i14
https://docs.oracle.com/en/database/oracle/oracle-database/18/arpls/database-pl-sql-packages-and-types-reference.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/18/arpls/database-pl-sql-packages-and-types-reference.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Masking the Source Code of Stored Programs
	Algorithm for Masking the Code of Stored Programs
	An Improved Algorithm for Masking the Code of Stored Programs

	Code Restore of Masked Stored Programs
	Technique for Recovering the Code of Masked Stored Programs
	Algorithm for Restoring the Code of Masked Stored Programs

	Conclusions
	References

