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Abstract: Frequency analysis is often used to investigate the structure of systems representing
multi-scale real-world phenomena. In many different environments, functional relationships
characterized by a power law have been recognized, but, in many cases this simple model has
turned out to be absolutely inadequate and other models have been proposed. In this paper,
we propose a general abstract model which constitutes a unifying framework, including many
models found in literature, like the mixed model, the exponential cut-off and the log-normal. It is
based on a discrete-time stochastic process, which leads to a recurrence relation describing the
temporal evolution of the system. The steady state solution of the system highlights the probability
distribution, which underlies the frequency behavior. A particular instance of the general model,
called cubic-cut-off, was analyzed and tested in a number of experiments, producing good answers
in difficult cases, even in the presence of peculiar behaviors.
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1. Introduction

A common activity in statistical science is the collection and the investigation of data in which
underlying phenomenon can be described by random variables. Sometimes, data, for example human
heights, are normally distributed. However, there exist many phenomena, called scale-free, where the
data cannot be classified as normal distributions because the values do not gather around a mean
value but span many orders of magnitude. Occurring in a wide variety of physical, biological, social,
and information environments, these phenomena are assumed to have some common similarity in the
structure of the underlying probability mechanisms [1].

To describe relations and processes occurring in real-world phenomena, different structures can
be employed. A scalar phenomenon is characterized by a single distribution of values, called degrees,
associated to given items. Examples of these phenomena are the world wealth or the word frequency
in natural languages or the large cities populations.

A more complex structure is represented by the graphs (see Reference [2] and its extensive
bibliography), where the edges provide connections among the nodes. The items are the nodes,
and the number of edges connected to a node is its degree. A classical example is the graph which
describes the structure of the web, where the nodes and the edges represent, respectively, the web
pages and the links from one page to another. Graphs like this apply to many man-made and naturally
occurring phenomena.
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One of the most used methods to investigate these structures is the frequency analysis,
which explores the relationship between the number of items having the same degree and the degree
itself. For example, the analysis of large subsets of the web has shown that there are many pages with
a small degree and few pages with a large degree.

Some phenomena belonging to different environments, e.g., the distribution of wealth in a society
or the frequencies of words in natural languages or the frequency of the inlinks of a network, have been
recognized to approximately follow functional relationships characterized by a power law [3], that is,
a relation of the form f (x) = a x−ρ, where ρ > 0 and a is a constant scaling factor. A power law has a
well-defined mean over x ∈ [1, ∞) only if ρ > 2 and is the only scale-free distribution.

For many other phenomena, such as, for example, the frequency of the outlinks of a
network [4] or the population of cities, the pure power law is absolutely inadequate. In many cases,
substantial modifications are required. Among them, the following ones have often been suggested:
(1) the exponential cut-off, where the power law is corrected by an exponential term responsible of a
faster decay of the solution for large j, and (2) the log-normal, where a log term is responsible for a
bending down for small j.

Various underlying probability distributions have been proposed for modeling the frequency
behavior. They are mainly based on an attachment strategy defining the relationship between the
degree of an item and the probability that its degree is increased by 1. The simplest model, which adopts
a uniform attachment strategy as suggested in Reference [2], would generate a random dataset with most
items having a comparable number of degrees. This behavior does not reflect the real-world datasets,
where there are many items with a very small degree and a not negligible part of hub items with high
degree. To obviate this situation, a preferential attachment strategy has been proposed (see Reference [5]).
This strategy complies especially with the “rich get richer” effect. A mixed model combines the uniform
and preferential approaches (see, for example, Reference [6–8]).

To describe the frequency behavior of multi-scale phenomena, in this paper, we propose a general
model, which constitutes a unifying abstract framework able to include many models found in
literature, like the mixed model, the log-normal model, and the exponential cut-off model. It is based
on a discrete-time stochastic process, which leads to a recurrence relation describing the temporal
evolution of the system. The steady state solution of the system highlights the probability distribution,
which underlies the frequency behavior and rules the strategy on which the attachment policy relies.

A particular instance of the general model, which we call the cubic-cut-off model, is taken into
consideration with the aim of dealing, at the same time, with items having a very small degree or a
very large degree, providing a correct characterization of the degree distributions on the full range of
the available data, even in presence of peculiar behaviors. This cubic-cut-off model lends itself to a
definition of the attachment strategy, which characterizes, in a simple way, the behavior of the system.
It has been tested in a number of experiments, producing better answers than the classical models,
even in difficult cases.

The paper is structured as follows. The structure of the datasets taken into consideration in our
analysis and the formal definition of a general model from which stems our proposed cubic-cut-off
model are described in Sections 2.1 and 2.2. The discrete time stochastic process and the steady-state
solution are described in Section 2.3. The classical Beta, power law, log-normal, and cut-off models
are derived in Sections 2.4 and 2.5. In Section 3, we examine the problems caused by the collection,
the representation, and the fitting of the real-world data. Finally, in Section 4, we test our model
in comparison with the classical ones on a collection of 39 files of data, extracted from 21 datasets,
including typical examples, such as the web, the movie actors graph, the supermarket purchases,
or the number of social media followers.
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2. The Frequency Distribution Model

The world wealth, the word frequency in natural languages, or the large cities populations
represent real-world phenomena in which structure is characterized by a single distribution of values.
In order to describe the processes which guide their evolution, models of their frequency distributions
are often devised. First of all, we give some definitions about the structure of the datasets we
are considering.

2.1. The Structure of Datasets

The simplest way to treat real-world phenomena is to associate to each considered item, let’s say
the kth one, a value yk which somewhat measures the feature of interest. For example, yk could be the
number of occurrences of the kth word in a linguistic corpus or the number of inhabitants of the kth
city. We say that yk is the degree of the kth item. The number of items having the same degree j is the
frequency and is given by

Qj = #{k : yk = j}. (1)

An analogous function can be referred to also when we deal with phenomena described by more
complex structures. We examine for example the structure implementing graphs, which are usually
addressed to design models using vertices (the nodes) and edges (the links) for the interconnections.
The degree deg(v) of a node v is the number of links connected to v, and the number of nodes having
the same degree j is given by

Qj = #{v : deg(v) = j}. (2)

Definition (2) coincides with (1) if we assimilate node v to item k and deg(v) to yk.
Generally, the values Qj which describe real-world phenomena span many orders of

magnitude. For this reason, it is common in the literature to switch to the log-log plane for their
graphical representation.

2.2. The Model

We give now the definition of a general model for describing the frequency behavior of multi-scale
phenomena. Such a definition, based on infinite sequences verifying simple mathematical properties,
aims at setting a unifying abstract framework for many approaches found in literature.

Definition 1. A modelM is a pair of positive real infinite sequences

M = (p, f ), (3)

where the sequence p = {pj}, with j ≥ 0, satisfies
∞
∑

j=0
pj = 1, and the sequence f = { f j} satisfies

f j = pj−1 − pj, for j ≥ 1. (4)

From (4), it follows that

pj =
∞

∑
i=j+1

fi,
∞

∑
j=1

j f j =
∞

∑
j=1

j (pj−1 − pj) =
∞

∑
j=0

pj = 1.

Thanks to these relations, a modelM can be defined through any positive real infinite sequence gj

such that
∞
∑

j=1
j gj converges to a limit θ, by setting

f j = gj/θ and pj =
∞

∑
i=j+1

fi. (5)
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Note that, in the rest of the paper, we use the notation pj, with implicitly varying index j, to denote
either the jth element of sequence p = {pj} or the whole sequence, depending on the context.

In the following section, we briefly outline the discrete-time stochastic process which leads to a
model of form (3), where the sequence f j is the expected value of the sequence Qj.

2.3. The Discrete-Time Stochastic Process

The frequency analysis, often used to investigate the structure of a system, allows a deep insight
in the design underlying a dataset. The frequency distribution model we consider in this paper is
based on the following discrete-time stochastic process: we assume that, at time t, a set of N(t) items
exists, with N(0) = 0, and that t is updated corresponding to a unit increase of the degree of an item.

Let Q(t)
j denote the number of items having degree j ≥ 1. Then, N(t) = ∑j Q(t)

j and t = ∑j j Q(t)
j .

In our setting Q(t)
j and N(t) are random variables, in which expected values are q(t)j = E

[
Q(t)

j ] and

n(t) = E
[
N(t)

]
, respectively.

Let p(t)j denote the probability that, at time t + 1, an item having degree j is considered. There are
two possibilities.

• If the item is new, different from any item already existing in the set, it is added to the set and
it is given degree 1. Let β, with 0 < β < 1, be the probability of this event, i.e., p(t)0 = β. Hence,
n(t) = β t.

• If the item already exists in the set, its degree is increased by 1. In this case, we assume that the
event has a probability which is proportional to the ratio q(t)j /t, i.e.,

p(t)j = δj
q(t)j

t
, (6)

where δj does not depend on t. Hence,

t
∑

j=0
p(t)j = 1,

t
∑

j=1
q(t)j = β t and

t
∑

j=1
j q(t)j = t for any t. (7)

The variation of q(t+1)
j with respect to q(t)j is given by the equation

q(t+1)
j − q(t)j = p(t)j−1 − p(t)j , (8)

which describes the temporal evolution of the stochastic system. We look for the steady-state solution
of the system. So, we let t→ ∞, pj = limt→∞ p(t)j and assume q(t)j = t f j, with f j independent from t.

Hence, q(t+1)
j − q(t)j = f j, and, from (8), we get

f j = pj−1 − pj, with p0 = β and
∞
∑

j=0
pj = 1. (9)

Comparing with (4), we see that the pair M = (p, f ), with p = {pj} and f = { f j} defines a
model of the form (3). The solution f j is the expected value of the number of items having degree j,
and the probability pj is the expected value of the total number of items having degree larger than
j. An important feature to evaluate the qualitative evolution of the system is the ratio δj = pj/ f j,
denoted attachment rule [9]. In the linear case, δj is, apart from an additive constant, proportional to
the degree j of the item. However, this kind of attachment, even if widely studied in the literature,
is rarely observed in real-world data, while nonlinear attachments, where δj depends on a nonlinear
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function of j, are more commonly observed [10]. In the following sections, both linear and nonlinear
attachment rules are examined.

2.4. The Linear Case

We consider first the linear case

pj = δj f j, where δj = r + s j, with r ≥ 0, s > 0. (10)

Replacing pj into (9), we have

f j =
γ + j− 1

ρ− 1
f j−1 −

γ + j
ρ− 1

f j, where ρ− 1 =
1
s

, γ =
r
s

.

This recurrence is solved exactly by the (complete) Beta function (a classical text for the Beta function is
Reference [11] (p. 258), but, for its important properties, see Reference [12]). In fact, the Beta function
B(j, ρ) for positive j and ρ verifies the recursion

B(j, ρ) =
j− 1
ρ− 1

B(j− 1, ρ)− j
ρ− 1

B(j, ρ). (11)

It follows that f j may have the form
f j = c B(γ + j, ρ), (12)

provided that the series
∞
∑

j=1
j f j is convergent and c is chosen in such a way that the series converges to

1. The series converges only for ρ > 2 (that is s < 1), and it holds that

∞
∑

j=1
j B(γ + j, ρ) = B(γ + 1, ρ− 2).

Then, modelM is the pair (p, f ), where

f j =
B(γ + j, ρ)

B(γ + 1, ρ− 2)
and pj =

B(γ + j + 1, ρ− 1)
B(γ + 1, ρ− 2)

, (13)

with

p0 =
B(γ + 1, ρ− 1)
B(γ + 1, ρ− 2)

=
ρ− 2

γ + ρ− 1
=

1− s
r + 1

< 1, and δj =
γ + j
ρ− 1

.

If r > 0, modelM corresponds to the one known in literature as mixed model. In fact, we can give
an interesting interpretation of formula (13) in the time dependent setting that we considered at the
beginning of the section, by specifying the function δj of (6). If the item considered at time t + 1 already
exists, let k be its index. The mixed model specifies the following policy to choose k.

(a1) With probability α, 0 < α < 1, the index k is chosen accordingly to its degree j (this policy is
known as preferential attachment), and

(a2) with probability 1 − α, the index k is chosen at random (this policy is known
as uniform attachment).

Then, p(t)j with j ≥ 1 is given by the sum of two terms. Because of assumption (a2), the first

term is proportional to q(t)j /n(t), and, because of assumption (a1), the second term is proportional to

j q(t)j /t, i.e.,

p(t)j = δj
q(t)j

t
, with δj = r + s j, r =

(1− β) (1− α)

β
, s = (1− β) α. (14)
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Function δj quantifies the attachment rule: the higher s, the more preferential the attachment. If the
uniform attachment was the only policy applied, all the items would acquire approximately the same
degree. When applied to graphs, the preferential attachment expresses the concept that new links tend
to attach themselves to nodes already having more links.

From (14), we have

α =
(1 + r)s

r + s
and β =

1− s
1 + r

.

Having assumed r > 0 and 0 < s < 1, the condition 0 < α, β < 1 is verified. The steady-state
solution (13) holds with

ρ = 1 +
1

α (1− β)
, γ =

1− α

α β
.

The starting condition for pj is in fact the same p0 = β.
An asymptotic approximation vj of f j for large j is obtained by neglecting γ with respect to j and

writing the first order expansion of B(j, ρ) for fixed ρ. We get

vj = d j− ρ, (15)

where d is a suitable constant, showing that vj satisfies a power law. Function vj is a good
approximation of f j for large j, as shown in Figure 1 where the log-log plots of f j (solid line) and of vj
(dashed line) are given for two different choices of the parameters α and β.

10 100 1000 10 000

0.001

10 100 1000 10 000

0.001

Figure 1. Log-log plots of f j (solid line) and of vj (dashed line), in the cases α = 0.3, β = 0.3 (left) and
α = 0.5, β = 0.9 (right).

The log-log representations of f j and vj are

f̂ (z) = log
(

fexp(z)
)
= log B(γ + ez, ρ) + log c, v̂(z) = −ρ z + log d, (16)

where z = log j.
Note that vj is not solution of a mixed model. The case of the power law function will be taken up

again in the next section.

2.5. The General Case

When dealing with real-world data, often improperly collected or contaminated by noise,
superpositions of more different models defined in not overlapping intervals of j have been suggested.
We prefer instead to consider a single model obtained by combining some basic functions.

In literature many different functions f j have been proposed. Some of them lead to solutions of
a modelM, which implies a nonlinear ratio pj/ f j. In general, pairs (pj, f j) which solve Equation (4)
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exactly are not immediately found. So, we suggest to choose some interesting f j and derive pj from
them, as shown in Section 2.2.

In practice, f j is obtained by fitting given samples in the log-log space, i.e., by using its
log-log representation

f̂ (z) = log
(

f j
)
, with z = log j.

f j must be normalized in such a way that
∞
∑

j=1
j f j = 1. To guarantee the convergence of the series,

we must assume that f j has an asymptotic growth rate lower than j−2.
Let us examine some important examples.

• The power law model, in which log-log function is a straight line

f̂ (P)(z) = a0 + a1z, (17)

where a1 < −2, and a0 guarantees that the solution

f (P)
j = θ ja1 , with θ = exp(a0),

is normalized. Setting ρ = −a1, the model is

f (P)
j =

j−ρ

ζ(ρ− 1)
, p(P)

j =
∞

∑
i=j+1

f (P)
i =

ζ(ρ, j + 1)
ζ(ρ− 1)

,

where ζ(s) is the Riemann’s zeta function, and ζ(s, q) is the Hurwitz’s zeta function. Actually,
this case has already been met in the previous section (see (15)) as an asymptotic approximation
of the Beta function. In fact, f (P)

j is a realization of the Zipf’s law, which describes the tail of a
Yule-Simon distribution.

• The log-normal model, in which log-log function is a parabola

f̂ (L)(z) = a0 + a1z + a2z2, (18)

where a2 < 0, and a0 guarantees that the solution

f (L)
j = θ ja1 exp

(
a2 log2 j

)
, with θ = exp(a0),

is normalized. The convergence of
∞
∑

j=1
j f (L)

j follows from the convergence of the series of

negative exponentials.
The log-normal solution coincides with the probability density function of the log-normal

distribution, as can be seen by setting

σ2 = − 1
2a2

, µ = −1 + a1

2a2
, a1z + a2z2 = − 1

2σ2 (z− µ)2 − z +
µ2

2σ2 ,

f (L)
j = θ′

1
j

exp
(
− (log j− µ)2

2σ2

)
, where θ′ = exp

(
a0 +

µ2

2 σ2

)
.

• The cut-off model, in which log-log function is an exponential

f̂ (C)(z) = a0 + a1z + ae exp(z), (19)
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where ae < 0, and a0 guarantees that the solution

f (C)j = θ ja1 exp
(
ae j
)
, with θ = exp(a0),

is normalized. As in the previous case, the convergence of
∞
∑

j=1
j f (C)j follows from the convergence of

the series of negative exponentials. The cut-off solution coincides with the probability density function
of the power law with exponential cut-off distribution.

• We suggest a unifying approach: the function f̂ (z) is

f̂ (O)(z) = a0 + a1 z + a2 z2 + a3 z3 + ae exp(z), (20)

where ae < 0, and a0 guarantees that the solution

f (O)
j = θ ja1 exp

(
a2 log2 j

)
exp

(
a3 log3 j

)
exp

(
ae j
)
, with θ = exp(a0), (21)

is normalized.
The exponential term exp

(
ae j
)

is responsible of a faster decay of the solution with respect to the
power law for large j, while the log terms are responsible for a bending down for small j. To show
the different behaviors of the functions f j considered above, Figure 2 shows the log-log plots of f (P)

j

(solid line), f (L)
j (dotted line), f (C)j (dotted-dashed line), and f (O)

j (dashed line) obtained through a
fitting procedure of a same dataset.

Figure 2. Log-log plots of f (P)
j (solid line), f (L)

j (dotted line), f (C)j (dotted-dashed line),

and f (O)
j (dashed line).

The probabilities p(O)
j corresponding to f (O)

j are derived as shown in Section 2.2, obtaining

f (O)
j = p(O)

j−1 − p(O)
j , then p(O)

j =
∞

∑
i=j+1

f (O)
i . (22)

The pair (p(O), f (O)) constitutes our proposed model, called cubic-cut-off. To get a better insight into
the behavior of the model, it would be desirable to have an analytic expression for p(O)

j . Unfortunately,

functions p(O)
j and f (O)

j which satisfy the recurrence (4) exactly, as in the case of the functions f j and pj
defined in (13), are not easy to be given in a closed-form.
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Hence, we settle for an approximation πj of p(O)
j . According to (22), πj−1−πj should approximate

f (O)
j . This suggests to express πj in the log-log scale with a basis similar to that used for f̂ (O)(z). So,

we assume for π̂(z) an expression of the form

π̂(z) = ĥ(z) + η exp(z), (23)

where ĥ(z) is a function of order lower than exp(z), and η < 0 is a coefficient to be determined; then,

πj = exp
(
ĥ(log j)

)
exp(η j). (24)

Now, we impose that the dominant terms of f (O)
j and πj−1−πj in the asymptotic setting coincide. Since

πj−1 − πj =
[

exp
(
ĥ(log(j− 1))

)
exp(−η)− exp

(
ĥ(log j)

)]
exp(η j),

it follows that η = ae. We postpone the choice of a suitable function ĥ(z) to the next section,
where a fitting technique is suggested. The validation of this procedure will be effectively checked by
the experimentation.

The same technique allows finding also the probabilities corresponding to the log-normal and the
cut-off functions.

3. Treatment of the Data

When data from real life phenomena are sampled and analyzed, intrinsic problems of various
kind arise, namely:

• The crawling process through which data are acquired can produce complete or partial datasets.
English Wikipedia-2018 is an example of a complete crawling, whereas English Web must
inevitably be partially crawled.

• For the visualization of multi-scale data, a log-log plot is required, in order to better evidence
the properties of the data and the possible correspondence with the chosen model. For example,
if the chosen model is the power law, the log-log data should have a straight line representation.

• In the previous sections, we looked for approximations of a function f j verifying q(t)j = t f j for
t large enough. Actually, when real-world phenomena (such as the web or the whole English
language) are considered, t is so large that it can be assumed infinite. In practice, we deal with J

samples Qj, and, typically, the quantity
J

∑
j=1

j Qj is much smaller than t. So, we assume

qj = E
[
Qj] = d f j, with j = 1, . . . , J,

where d is a suitable scaling factor. Note that Qj, being the number of items having degree j,
is a nonnegative integer, while d f j is a real number which can be very small. The quantization
phenomenon cannot be considered statistical noise (as done by some authors) but is an intrinsic
characteristic of the sampled data. For example, if qj = 10−3, the corresponding values Qj are
mostly 0 but sometimes 1 or 2. Obviously, the zeros become more and more probable until the
last data are reached.

In the log-log scale, the values Qj = 1, 2, . . . are gathered in plateaus on the tail of the dataset.
Figure 3 shows the base 10 log-log representation of the frequencies of two datasets described
in the next section: a set of English words and a set of MovieLens ratings. The quantization
phenomenon is evident.



Information 2020, 11, 580 10 of 20

Figure 3. Frequencies of English words (on the left) and of MovieLens ratings (on the right).

• A dequantization process can be accomplished by binning the data: the data values belonging to a
given small interval (called a bin) are replaced by a value representative of that interval. When the
binning is performed in the log-log scale, negative values might be generated. This procedure
is essential to recover the asymptotic properties of the phenomenon and allows to reduce the
size of data while performing some sort of smoothing. In Figure 4, the same data of Figure 3 are
presented, together with the result of binning. It is clear that the binning reveals the different
asymptotic behavior of the two data sets.

Figure 4. Binned frequencies of English words (on the left) and of MovieLens ratings (on the right).

3.1. The Binning

We suggest the following logarithmic binning, which produces bins of equal width in the
log-log scale.

Given τ > 1, we consider the sequence hi = τi−1, i = 1, . . . , n + 1, where n is such that hn ≤ J <
hn+1. The ith bin is Ji = [hi, hi+1) for i = 1, . . . , n. The set Y of the binned data is formed by the pairs
(xi, yi), where

xi = log bi, yi = log
( 1

si
∑

j∈Ji

Qj

)
, with bi =

hi + hi+1

2
, si = hi+1 − hi.

If no point (j, Qj) exists with j ∈ Ji, the pair (xi, yi) is discarded (this may happen for large i). Note that,
because of the discarded pairs, the set Y might have size lower than n, but, for simplicity, we still
denote by n the size of Y. In the experimentation, τ has been tuned through a preliminary processing.

3.2. The Fitting

The fitting procedure is performed in the log-log plane on the binned data

Y = {(xi, yi)}, i = 1, . . . , n.
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Let ĝ(z) be the cubic-cut-off function defined in (20):

ĝ(z) = a0 + a1 z + a2 z2 + a3 z3 + ae exp(z), where ae < 0.

We compute

{b0, . . . , be} = argmin
a0,...,ae

n
∑

i=1

(
yi − ĝ(xi)

)2, (25)

imposing the constraint ae ≤ 0. For the other functions of Section 2.5, we compute the fit (25) setting to
zero some coefficients of ĝ(z).

If be < 0, the solution is

gj = exp(b0) jb1 exp(b2 log2 j) exp(b3 log3 j) exp(be j).

In some cases, the coefficient be might be zero. The series
∞
∑

j=1
j gj is convergent for be < 0, or, for b3 < 0,

when be = 0. The corresponding model (p, f ) is derived according to (5):

θ =
∞

∑
j=1

j gj, f j = gj/θ, pj =
∞

∑
i=j+1

fi. (26)

We can give a closed-form approximation of the sequence pj through the function πj defined in (24).
We have already suggested that η coincides with the coefficient of the exponential term of f j, in the
present case η = be, but we still need to compute the function ĥ(z) defined in (23).

In analogy with what has been done for f̂ (z), we try for ĥ(z) a polynomial regression with
degree 3. So, we consider a subset of m ≤ n integers ji, i = 1, . . . , m, in [1, J], equispaced in the
logarithmic scale, such that j1 = 1 and jm = J. Then, setting x̂i = log ji, and ŷi = log pji , we solve the
minimum problem

{c0, . . . , c3} = argmin
h0,...,h3

m
∑

i=1

(
ŷi − ĥ(x̂i)− be exp(x̂i)

)2, with ĥ(x) =
3
∑

r=0
hr xr.

Replacing in (23), we get

π̂(z) = c0 + c1 z + c2 z2 + c3 z3 + be exp(z),

πj = exp(c0) jc1 exp
(
c2 log2 j

)
exp

(
c3 log3 j

)
exp

(
be j
)
.

(27)

A specific performance index εp (31) controls the effectiveness of the similarity of πj to pj. A too large
εp would raise doubts on the approximation, possibly due to numerical instability in the computation
of f j.

3.3. The Attachment Rule

Instead of computing directly δj as the ratio between the sequences pj and f j for 1 ≤ j ≤ J,
the sequence δj can be approximated by a function ξ j obtained exploiting the closed-form
approximation πj of pj:

ξ j = exp(ξ̂(log j)), where ξ̂(z) = d0 + d1 z + d2 z2 + d3 z3, di = ci − bi. (28)

The error of this approximation is measured by a specific performance index εδ (32). If εδ is sufficiently
small, the investigation of ξ j for 1 ≤ j ≤ J gives useful hints on δj. The quantity

ν = min{k such that max
j∈[2,J]

ξ j/jk ≤ 1
}

(29)
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satisfies
ξ j = sj jν, where sj = ξ j/jν, with 0 < sj ≤ 1. (30)

Then, we can assume sj as the probability for an attachment rule δj on the whole interval [2, J].
The value j = 1 has been excluded from definition (29) because the maximum of ξ j/jk does not change
when ξ j assumes its maximum in j = 1. Of course, if the function ξ j/jν is decreasing in [2, J], the value
ν obtained from (29) coincides with ν̂ = log2 ξ2. The function sj takes the place of the coefficient s in
(10). We call sublinear the attachment if ν < 1, superlinear if ν > 1, and pseudo-linear if ν = 1.

The attachment exponent ν, as defined in (29), holds for the whole interval, but it depends
excessively on the head of the dataset in which behavior, even though in agreement with our model,
could generate a uselessly overestimated attachment rule. An attachment exponent less affected by the
first points could be more indicative. To this aim, we restrict our computation of (29) to a subinterval
which leaves out the first jmin points (in our experimentation, we took jmin = 20).

The quantity ν can be used as a possible numerical measure to discriminate different types
of datasets.

3.4. Performance Indices

In the experimentation, the function ĝ(z) used for the fitting has been chosen among all the
functions taken into consideration in the previous sections. Let ĝ(H)(z), with H ∈ {B, P, L, C, O},
denote one of the functions. The corresponding normalized f̂ (H)(z) are

the Beta function f̂ (B)(z) = f̂ (z) defined in (16),
the power law function f̂ (P)(z) defined in (17),
the log-normal function f̂ (L)(z) defined in (18),
the cut-off function f̂ (C)(z) defined in (19),
the cubic-cut-off function f̂ (O)(z) defined in (21).

Least squares procedures solve the minimization problem (25), except for the Beta function which
requires a procedure of non linear minimization (we used a Nelder-Mead procedure). The quality of
the fitting is measured by the NRMSE (normalized root-mean-square error)

ε(H) =
1

ymax − ymin

√
1
n

n
∑

i=1

(
yi − ĝ(H)(xi)

)2,

where ymin and ymax are the minimum and the maximum of the values yj for j = 1, . . . , n. Besides the
error ε(H), the suitability of the model to the dataset can be measured by the scaling factor θ of (26).
In the case of be = 0, if d3 > 0, the series ∑∞

j=1 j gj does not converge, and, in practice, θ is given a very
large value. The same thing can also occur when the series is convergent, but numerical instability
prevents a correct computation. When θ is too large, we judge the model to be inadequate for that
dataset. The symbol ∞ in the tables of the next section identifies this case.

Two more performance indices have emerged in the presentation of the whole fitting procedure.

(1) The quality of the approximation of pj by πj is measured by the NRMSE

εp =
1

pmax − pmin

√
1
m

m
∑

i=1

(
pji − πji

)2, (31)

where pmin and pmax are the minimum and the maximum of the values pji for i = 1, . . . , m.
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(2) A too large discrepancy between δj and ξ j suggests that the similarity of the bases used for π̂(z),
and f̂ (z) cannot be assumed. This is measured by the NRMSE

εδ =
1

δmax − δmin

√
1
m

m
∑

i=1

(
δji − ξ ji

)2, (32)

where δmin and δmax are the minimum and the maximum of the values δji for i = 1, . . . , m.

These two indices εp and εδ have been evaluated for all the functions, but only the values obtained
for the cubic-cut-off are reported in the next section.

4. Experiments

The experimentation has been performed with a 3.2 GHz 8-core Intel Xeon W processor
machine using MathematicaTM version 12 and carried out on 21 datasets divided in three groups:
scalar phenomena, directed graphs, and bipartite graphs. The code, together with the datasets not
available elsewhere, can be downloaded from Reference [13]. For each dataset, the citation, a brief
description, the number N of items, and the size S, equal to the total number of degrees, are given below.

Following the description, a first table summarizes the results of the experimentation.
Columns 1–5 of the table show the errors of the solutions computed by the different procedures.
The error is replaced by ∞ if the series ∑∞

j=1 jgj does not converge. For the power law, this means that
ρ < 2, i.e., a well-defined mean does not exist. The error is replaced by an ∗ if it exceeds by three times
the best error for the same dataset. Columns 6, 7 list the indices εp and εδ of cubic-cut-off. Column 8
lists the exponent ν of the attachment rule defined in (29), where j ∈ [jmin, J], with jmin = 20.

A second table gives the log-log representation of ĝ(O)(z) for some selected datasets. For these
datasets, the base 10 log-log plots of the cubic-cut-off functions (solid line) are given, superimposed to
the original data (gray points) and the binned data (black points). An integer i on the axis corresponds
to 10i in the linear scale.

4.1. Scalar Phenomena

The scalar phenomena are characterized by a single distribution of values. For each dataset,
the file of the pairs (j, Qj), where Qj is the frequency function defined in (1), is generated. The name of
the file corresponds to the name of the dataset.

• cities population [14]. The population of N cities obtained by Mathematica CityData feature on
February 2020. N = 156 K, and S = 4.15 G.

• english [15]. A large collection of English words obtained by joining a collection of Project
Gutenberg texts and a collection of public USENET postings collected between October 2005 and
January 2011. N = 14.1 M, and S = 30.7 G.

• hollywood-2011 [16]. One of the most popular social dataset: the graph of movie actors. Nodes are
actors, and two actors are joined by a link whenever they appeared in a movie together.
Since outdegree and indegree coincide, from the point of view of the frequency analysis, this is
considered a scalar phenomenon. N = 2.18 M, and S = 231 M.

The errors of the computed solutions are given in Table 1.

Table 1. Errors and attachment exponents for scalar phenomena.

File ε(B) ε(P) ε(L) ε(C) ε(O) εp εδ ν

citiesPopulation 0.015 ∞ 0.017 ∗ 0.010 0.081 0.026 2.71
english ∗ ∞ 0.010 0.012 0.005 0.016 0.004 1.17
hollywood2011 ∗ ∞ ∗ ∗ 0.007 0.043 0.037 1.28

* The symbol is used to indicate that there is not element in this category.
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Two files have been selected: their log-log solutions ĝ(O)(z) are given in Table 2, and the log-log
plots of the cubic-cut-off functions are given in Figure 5.

Table 2. Solutions of two selected scalar phenomena.

citiesPopulation −1.05 + 2.690z− 0.358z2 + 0.009z3 − 5.9× 10−8ez

english 16.08− 1.840z + 0.041z2 − 0.002z3

2 3 4 5 6 7

-4

-2

2

citiesPopulation

Figure 5. Log-log solutions of citiesPopulation (on the left) and of english (on the right).

4.2. Directed Graphs

In directed graphs, the edges have an orientation, so there exist inlinks (pointing to a node) and
outlinks (originating from a node). In this case, the degree of the node becomes, more specifically,
the indegree, which counts the inlinks, and the outdegree, which counts outlinks. For each graph,
two files are generated with the frequency function (2): the one containing the indegrees and the one
containing the outdegrees. Their names correspond to the name of the graph with the suffix .i and .o,
respectively.

These datasets, except steemit, can be downloaded from Reference [16], where they have been
stored compressed using LLP + WebGraph [17,18].

• clueweb12 [19]. The web graph underlying the ClueWeb12, a dataset created to support research
on information retrieval and related human language technologies. N = 978 M, and S = 43.6 G.

• eu-2015 [20] The web graph of a large snapshot of the EU countries taken in 2015 by BUbiNG
starting from the site http://europa.eu/. The maximum number of nodes per host was set to
10M (and never reached). N = 1.07 G, and S = 92.9 G.

• Wikipedia graphs [21]. The node connections for the following versions of Wikipedia:
English (enwiki-2018) N = 5.62 M and S = 134. M, German (dewiki-2013) N = 1.53 M and
S = 38.3 M, French (frwiki-2013) N = 1.35 M and S = 35.7 M, Spanish (eswiki-2013) N = 973 K
and S = 24 M, and Italian (itwiki-2013) N = 1.02 M, and S = 26.6 M.

• hu-tel-2006 [16]. The social graph built from the detailed call record of Hungarian Telekom for an
eight-month time frame in 2006. Measurements were performed by the Hungarian Academy of
Sciences. N = 2.32 M, and S = 48.4 M.

• steemit [22]. The relations graph of Steemit, a blockchain-based blogging and social media website.
N = 1.15 M, and S = 98.1 M.

• twitter-2010 [23]. The website, owned and operated by Twitter, Inc., which offers a social
networking and microblogging service. Nodes are users, and there is an arc from x to y if y
is a follower of x, i.e., the arcs follow the direction of the tweet transmission. N = 41.6 M,
and S = 1.51 G.

The errors of the computed solutions are given in Table 3.

http://europa.eu/
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Table 3. Errors and attachment exponents for directed graphs.

File ε(B) ε(P) ε(L) ε(C) ε(O) εp εδ ν

clueweb12.i 0.024 0.026 0.026 ∞ 0.018 0.011 0.058 1.09
clueweb12.o 0.065 0.098 0.048 0.039 0.033 0.047 0.051 1.12
eu2015.i 0.033 0.044 0.018 0.041 0.018 0.001 0.019 1.18
eu2015.o 0.065 ∗ 0.043 0.051 0.034 0.019 0.011 1.34
enwiki2018.i 0.013 ∗ 0.008 ∗ 0.006 0.009 0.016 1.03
enwiki2018.o 0.020 ∗ 0.022 ∗ 0.009 0.060 0.026 0.96
dewiki2013.i 0.014 ∗ 0.012 0.025 0.011 0.004 0.011 1.04
dewiki2013.o 0.027 ∗ 0.026 ∗ 0.018 0.063 0.037 0.96
frwiki2013.i 0.012 ∗ 0.011 0.020 0.009 0.010 0.016 1.03
frwiki2013.o 0.023 ∗ 0.028 ∗ 0.012 0.071 0.031 1.01
eswiki2013.i 0.012 0.019 0.012 0.014 0.009 0.019 0.019 1.00
eswiki2013.o 0.073 0.115 0.060 0.087 0.050 0.108 0.061 0.90
itwiki2013.i 0.016 0.026 0.014 0.017 0.011 0.014 0.015 1.01
itwiki2013.o 0.044 ∗ 0.023 ∗ 0.017 0.056 0.030 0.98
hutel2006.i 0.060 ∗ ∗ ∞ 0.022 0.092 0.055 1.06
hutel2006.o 0.028 ∗ 0.033 ∗ 0.019 0.072 0.046 0.91
steemit.i 0.026 ∞ 0.014 ∗ 0.013 0.001 0.001 1.24
steemit.o 0.022 ∞ 0.017 0.023 0.015 0.013 0.019 1.19
twitter2010.i 0.025 0.043 0.018 0.037 ∞ – – –
twitter2010.o 0.019 0.025 0.023 0.025 0.017 0.016 0.042 1.04

* The symbol is used to indicate that there is not element in this category.

Four files have been selected: their log-log solutions ĝ(O)(z) are given in Table 4. Note that
eu2015.i lacks the exponential term, and b3 is so small that the cubic-cut-off solution is nearly equal
to the log-normal solution, as confirmed by the same error in Table 3.

The log-log plots of the cubic-cut-off functions are given in Figures 6 and 7.

Table 4. Solutions of four selected directed graphs.

eu2015.i 19.50− 0.987z− 0.064z2 − 0.00057z3

eu2015.o 15.59 + 1.025z− 0.317z2 + 0.008z3 − 2.3× 10−3ez

hutel2006.i 6.77 + 5.404z− 1.710z2 + 0.111z3 − 3.0× 10−4ez

hutel2006.o 7.93 + 3.928z− 1.220z2 + 0.067z3 − 4.2× 10−4ez

Figure 6. Log-log solutions of eu2015.i (on the left) and of eu2015.o (on the right).

4.3. Bipartite Graphs

Bipartite graphs contain two types of nodes, active and passive. The edges connect an active node
with a passive one. As in the previous case, for each graph, two files are generated with the frequency
function (2): the one with the suffix .i contains the indegrees (i.e., the degrees of the passive nodes),
and the one with the suffix .o contains the outdegrees (i.e., the degrees of the active nodes).
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Figure 7. Log-log solutions of hutel2006.i (on the left) and of hutel2006.o (on the right).

Most of the considered graphs are rating networks between persons and items they have rated.
The ratings values are ignored, and only the information whether a person has rated an item is retained.

• book crossing [24]. Collected by Ziegler in a 4-week crawl (August/September 2004) from
the Book-Crossing community. It contains the ratings about 271,379 books. N = 105 K,
and S = 1.15 M.

• fine foods [25]. The dataset of the reviews of fine foods from Amazon. The data span a period of
more than 10 years, up to October 2012. N = 74.2 K, and S = 568 K.

• last.fm. A large database of listening data crawled by [26] using the last.fm API. There were
considered both relations user-song (N = 211 K and S = 1.29 G) and relations user-song weighted
with the number of plays (N = 211 K, and S = 4.96 G).

• movielens [27]. The dataset describes 5-star rating and free-text tagging activity from MovieLens,
a movie recommendation service. It contains 25 M ratings. These data were created between
9 January 1995 and 21 November 2019. N = 162 K, and S = 25 M.

• supermarket. A small database of supermarket purchases collected by [28]. There were considered
both relations user-product (N = 60.4 K and S = 24.6 M) and the relations user-product weighted
with the number of purchases (N = 60.4 K, and S = 107 M).

• Yahoo! artists [29]. The artists ratings collected from the Yahoo! Webscope dataset R1. This dataset
represents a (anonymized) snapshot of the Yahoo! Music community’s preferences for various
musical artists, collected in one month sometime prior to March 2004. N = 1.95 M, and S = 116 M.

The errors of the computed solutions are given in Table 5.

Table 5. Errors and attachment exponents for bipartite graphs.

File ε(B) ε(P) ε(L) ε(C) ε(O) εp εδ ν

bookCrossing.i 0.030 0.038 0.028 0.035 0.028 0.001 0.001 0.90
bookCrossing.o 0.026 0.035 0.021 0.027 0.020 0.006 0.003 1.06
fineFoods.i 0.039 0.043 0.040 0.041 0.038 0.013 0.016 0.87
fineFoods.o 0.040 ∗ 0.034 0.023 0.014 0.028 0.057 0.99
last.fm.i ∗ ∞ ∗ 0.006 0.005 0.029 0.020 1.15
last.fm.o ∗ ∞ 0.105 0.070 0.035 0.260 0.168 3.33
last.fm W.i ∗ ∞ ∗ ∗ 0.002 0.025 0.026 1.22
last.fm W.o 0.136 ∞ 0.086 0.141 0.063 0.183 0.064 3.34
movieLens.i ∗ ∞ ∗ 0.006 0.004 0.012 0.007 1.33
movieLens.o 0.029 0.065 0.034 0.056 ∞ – – –
supermarket.i ∗ ∞ 0.030 0.027 0.013 0.009 0.012 1.99
supermarket.o ∗ ∞ ∗ ∗ 0.017 0.134 0.147 2.03
supermarketW.i ∗ ∞ 0.022 ∗ 0.011 0.011 0.010 2.02
supermarketW.o ∗ ∞ ∗ 0.012 0.004 0.038 0.048 2.06
yahooArtists.i 0.036 ∞ 0.032 0.021 0.018 0.018 0.016 1.34
yahooArtists.o 0.081 0.097 0.084 0.092 0.077 0.074 0.024 1.09

* The symbol is used to indicate that there is not element in this category.
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Four files have been selected: their log-log solutions ĝ(O)(z) are given in Table 6, and the log-log
plots of the cubic-cut-off functions are given in Figures 8 and 9.

Table 6. Solutions of four selected bipartite graphs.

last.fm.i 14.76− 1.418z− 0.027z2 + 0.001z3 − 2.3 10−6ez

last.fm.o 4.83− 2.481z + 0.622z2 − 0.043z3 − 5.3 10−6ez

supermarketW.i 3.04− 0.026z− 0.077z2 + 0.001z3 − 1.9 10−6ez

supermarketW.o 5.38 + 0.257z− 0.194z2 + 0.016z3 − 5.2 10−4ez

Figure 8. Log-log solutions of last.fm.i (on the left) and of last.fm.o (on the right).

1 2 3 4 5 6

-5

-4

-3

-2

-1

1

supermarketW.i

1 2 3 4

-3

-2

-1

1

2

supermarketW.o

Figure 9. log-log solutions of supermarketW.i (on the left) and of supermarketW.o (on the right).

4.4. Comments

The first thing we note from Tables 1, 3, and 5 is that cubic-cut-off mainly outperforms the
other procedures, which could be so ranked: log-normal, Beta, cut-off, power law. The winning
point of cubic-cut-off and log-normal is their better ability in adapting to the bending of the head,
but log-normal behaves worse than cubic-cut-off in the tail because of the lack of the exponential
term. The relevance of logarithmic terms is confirmed by the fact that, only in a small number of cases,
cut-off reaches the performance of cubic-cut-off. The small values of εp e εδ provide an indirect proof
of the validity of the cubic-cut-off model.

From Table 3, we note a characteristic behavior of function ξ j of the cubic-cut-off for most directed
graphs, in particular for Wikipedia graphs: typically, the indegree files have a larger attachment
exponent than outdegree files. This agrees with the reasonable idea that the outlink processes are
independent from the degree of the node, while the inlink process rely more on the degree of the node.

On the contrary, the difference between indegree and outdegree files in bipartite graphs appears
reversed, pointing out the active role of a person in choosing a particular item. This is evident,
for example, in the case of the supermarket datasets. We could try an explanation for these outcomes:
it could be the result of some aggressive commercial policy which directs the purchases toward
more advertised products. It is worth noting that cubic-cut-off succeeds in coping, even with the
particularly difficult datasets last.fm.o and last.fmW.o, which exhibit a very messy head. In these
cases, since the resulting attachment rule is conditioned by dozens of head points, it seems appropriate
to let jmin = 100, thus reducing the exponent at values near 2.
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A large attachment exponent appears for the citiesPopulation dataset, as well, pointing out the
recognized great attractiveness of the most important cities of the world.

Finally, for many considered datasets, sj results decreasing in the tail, suggesting that the
attachment rule might get weaker progressively when the items have a very large degree. If we
associate the degree of an item to its age (as it is often made), in the sense that an item with a larger
degree is assumed to be older, this weakening behavior could be considered as a possible indicator of
a phenomenon of obsolescence.

5. Conclusions and Future Work

In this paper, a model for frequency analysis of systems representing multi-scale real-world
phenomena has been proposed. At its basis, a discrete-time stochastic process leads to a steady state
solution ruling the attachment policy. The attachment rule, which in the original mixed model is linear,
has been enriched for including elements of the exponential cut-off model and of the log-normal model.

The proposed model, called cubic-cut-off, has been applied to a large number of datasets and
results to be more effective than other models, like the widely applied log-normal and cut-off, which,
in some cases, are unable to give acceptable approximations, as clearly appears from the inspection
of Tables 1, 3 and 5, where the cubic-cut-off is compared with the Beta function, the power law,
the log-normal, and the cut-off.

In a few cases, its behavior is only a little better than the log-normal, showing that the cubic and
exponential terms added to log-normal have a small influence, but, in most cases, the presence of these
terms is essential to obtain good results.

The frequency analysis we performed in this paper applies to a network modeling based on
graph representations as a discrete structure. The model we proposed belongs to the class of
parametric models, where some finite set of parameters is assumed. Alternatively, the class of
non-parametric models, where an infinite set of parameters is assumed, can be taken into consideration;
see, for example, Reference [30], where a Bayesian non-parametric model for random graphs is proved
to exhibit a power-law behavior, and a general framework for bipartite graphs, directed multigraphs,
and undirected graphs is described. In future research, we are interested in studying non-parametric
models applied to networks exhibiting peculiar behaviors, like the ones we considered in this paper.
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