
 information

Article

Smali+: An Operational Semantics for Low-Level
Code Generated from Reverse Engineering Android
Applications

Marwa Ziadia 1,∗, Jaouhar Fattahi 1 , Mohamed Mejri 1 and Emil Pricop 2

1 Department of Computer Science and Software Engineering, Laval University, Pavillon Adrien-Pouliot 1065,
avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; marwa.ziadia.1@ulaval.ca (M.Z.);
jaouhar.fattahi.1@ulaval.ca (J.F.); mohamed.mejri@ift.ulaval.ca (M.M.)

2 Automatic Control, Computers and Electronics Department. Petroleum-Gas University of Ploiesti,
100680 Ploiesti, Romania; emil.pricop@upg-ploiesti.ro

* Correspondence: marwa.ziadia.1@ulaval.ca

Received: 31 January 2020; Accepted: 26 February 2020; Published: 27 February 2020
����������
�������

Abstract: Today, Android accounts for more than 80% of the global market share. Such a high rate
makes Android applications an important topic that raises serious questions about its security, privacy,
misbehavior and correctness. Application code analysis is obviously the most appropriate and natural
means to address these issues. However, no analysis could be led with confidence in the absence
of a solid formal foundation. In this paper, we propose a full-fledged formal approach to build
the operational semantics of a given Android application by reverse-engineering its assembler-type
code, called Smali. We call the new formal language Smali+. Its semantics consist of two parts.
The first one models a single-threaded program, in which a set of main instructions is presented.
The second one presents the semantics of a multi-threaded program which is an important feature
in Android that has been glossed over in the-state-of-the-art works. All multi-threading essentials
such as scheduling, threads communication and synchronization are considered in these semantics.
The resulting semantics, forming Smali+, are intended to provide a formal basis for developing
security enforcement, analysis and misbehaving detection techniques for Android applications.

Keywords: Android applications; multi-threading; operational semantics; reverse engineering;
Smali+

1. Introduction

A few years ago, mobile phones were used to make calls or send messages. Today, they surpass
computers as the most commonly used digital device. They manage our agenda, emails, credit cards,
itineraries and business documents. Android is the most popular operating system for mobiles and
embedded devices, having the largest application market and 85% of all smartphones sold in 2019 were
equipped with an Android OS [1]. Android is an open nature platform, which means that applications
could be downloaded from sources other than the official Google play store. This is an important
feature that has contributed to its unquestionable success, given the breadth of the available application
that draws people to the platform, making it an ideal target for malicious application downloads.

Indeed, users are increasingly exposed to attacks targeting the Android environment via malicious
applications. They thus endanger privacy information, by disclosing sensitive data (FakeNetflix
malware [2]) or collecting sensitive banking information, especially with the increasing use of banking
applications (Anubis trojan [3]). Furthermore, the installation of apparently legitimate malicious
applications can lead to: clandestine eavesdropping on telephone conversations; tracking GPS position;
exploiting pay services to cause financial losses to the user for the benefit of the attacker by calling or

Information 2020, 11, 130; doi:10.3390/info11030130 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-3905-9099
https://orcid.org/0000-0002-4021-6549
http://dx.doi.org/10.3390/info11030130
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/3/130?type=check_update&version=2

Information 2020, 11, 130 2 of 23

sending SMS messages to premium-rate numbers without the user’s knowledge (SMS Trojan such as
FakePlayer, AsiaHitGroup and GGTracker [4–6].

To deal with this, automated tools for analyzing, verifying and enforcing the security of Android
applications are highly needed [7–10]. Nevertheless, they must be based on a formal specification of
the target platform to give solid results. In this paper, we propose formal operational semantics for a
subset of the low-level Android code, which we consider particularly relevant for modeling Android
applications and which we call Smali+. It includes the main bytecode instructions of Dalvik, and a
few important API methods related to Java concurrency. Smali+ is ultimately written from Smali with
some essential native methods that were replaced with macro-instructions for simplification. Smali+ is
intended to serve as a basis for further analysis of Android applications and security implementation
techniques. Android applications are mainly written in Java. The Java source code is first compiled
into a Java Virtual Machine (JVM) bytecode using a standard Java compiler called Javac. Following
this, the Java source files are converted into class files that store Java bytecode. The Java bytecode is
then translated to an optimized bytecode called Dalvik through a tool called dx. At this stage, all the
class files are converted and consolidated into a single DEX file called Dalvik EXecutable or simply a
DEX to save memory. An Android Package Kit (APK) is essentially a zip of the DEX file accompanied
by a Androidmanifest.xml file, a set of resources and potentially shared libraries. Figure 1 illustrates
these steps.

Figure 1. Compilation steps of an Android application.

In this work, we focus on the DEX format file, which contains the Dalvik binary code used even
by the successor of Dalvik (since Android 5.0) called Android Runtime (ART).

Formalizing a low-level code, rather than high-level Java source or intermediate level Java
bytecode, is our choice for many reasons. Firstly, Dalvik byte code is always available and it is
easily obtainable from any Android application. Secondly, Dalvik bytecode is the common executable
format for all Android applications and therefore the code is much closer to the code really executed.
Even though decompilation from Dalvik back to Java or to Java bytecode is possible using reverse
engineering tools (such as dex2jar and ded), there is no guarantee to recover the original source code
since there is not a 100% robust and correct Dalvik-to-Java reverse translation tool [11]. However, even
though that it is possible to retrieve source code or Java bytecode from Dalvik, editing or improving
code at this level requires the user to reconvert it back to Dalvik and running the application afterward
will often fail [9]. Focusing directly on Smali will avoid such problems. Hence, binary code obtained at
this level, in DEX file, is illegible and requires conversion into a more understandable format prior to
being analyzed, improved or edited. Reverse engineering in software makes it possible to convert a
machine-readable binary file into a human-readable file, which is the case with DEX files.

Apktool [12] is a reverse engineering tool that simplifies the entire process of assembling and
disassembling Android applications. It includes “Smali” and “bakSmali”, which are equivalent to
“assembler” and “disassembler”, respectively allowing the passage from and to the DEX format.
Apktool allows the user to disassemble applications to nearly original form. It uses BakSmali to
produce, from an APK, a human-readable format akin to assembly languages called Smali (Smali is

Information 2020, 11, 130 3 of 23

both the name of a mnemonic language for the Dalvik bytecode and its assembler version.). This code
is nothing but a translation of the machine code generated by the DVM. In other words, it is a readable
representation of Dalvik bytecode in an assembly-like code, with mnemonic instructions. BakSmali
creates a Smali file for each class in the application preserving the original signature. The structure of
such a file is presented in Figure 2. In addition to the code contained in the classes.dex file, Apktool
generates the application decoded resources, as well as the AndroidManifest.xml file (in a readable
version. These reverse engineering analysis techniques are still effective with the newly introduced
ART environment [13].

1 .class modifiers Lsome/package/Someclass;
2 .super Lsome/package/Someclass;
3 .implements Lsome/package/Someinterface;
4 .source "someclass.Java"
5
6 .field modifiers fieldname : type;
7
8 .method modifiers methodname (type,...)type
9 .locals ...
10 instruction ...
11 instruction ...
12 instruction ...
13 ...
14 .end method
15 ...

Figure 2. Structure of a Smali file.

In this paper, we put forward formal semantics for Smali. Smali is an assembly-like language that
runs on Android’s DVM. It is obtained by ’bakSmaling’ the Dalvik executable file (.dex). A syntax
and semantics have been adopted to specify this low-level code. The resulting formal language is a
sub-language of Smali and a simpler language, called Smali+. A set of the most used Dalvik instructions
have been generalized into 12 semantically different instructions (see [11] for generalization process),
compared to more than 200 Dalvik original instructions in Smali. In addition to this set, our semantics
includes instructions related to multi-threading. We plan to use Smali+ in the near future to specify
security properties for Android applications and this in order to protect the user from security threats
that target the Android environment through downloaded applications.

The paper is organized as follows. In Section 2, we present some related work with similar
ideas of bytecode formalization and we discuss their advantages as well as their drawbacks and
limitations. In Section 3, we give some essential preliminaries related to Smali (registers, some adopted
notations, types, etc.). In Section 4, we present the operational syntax and semantics of Smali+ for a
single-threaded application. In Section 5, we present the operational syntax and semantics of Smali+

for a multi-threaded application. In Section 8, we conclude and we introduce the future avenues of our
research.

2. Related Work

Mostly, the studies based on formal semantics of Android target a single well-defined goal.
This can be an analysis for certification, a detection of potential vulnerabilities or malicious behavior
of an application, or a verification of any aspect. It can also be a means to reveal security breaches of
Android applications [14]. We will see in the studies we are presenting hereafter that formalization
elements substantially differ from one objective to another. This being said, it is practically impossible
to evaluate the efficiency of analyzes that are not based on the formal specification of the targeted
platform.

In [15], Payet et al. define operational semantics for a subset of Dalvik opcodes that present
registers manipulation, arithmetic operations, object creation, access and method calls as well as

Information 2020, 11, 130 4 of 23

Android activities. Semantics rules were relatively complex. An Android program was modeled as a
graph of blocks where each block has one or more instructions among the selected instructions. Blocks
are linked in a way that they express control flow passing from one block to another. They require
that invoke and return instructions only occur at the beginning and the end of a block, respectively.
Blocks of semantics integrate instruction semantics for those that are different from a call or a return.
Call instruction semantics allow passing from the caller method block to the callee method block.
Activity semantics depend on the activity state, method callback, activity life cycle and external events.
These semantics are defined to be the basis of static analyses that take into account the life-cycle of the
activities. Despite the importance of thread-activity connection in Android semantics, threading was
detached from activities semantics and concurrency was ignored in this work.

In [16,17], the authors propose a formal operational semantics for the Dalvik bytecode.
The formalization was accompanied by a control flow analysis to detect potential malicious actions.
Although the results highlight threading as the most often used language features with a (90.18%),
this feature was omitted in both analyses and semantics to focus, instead, on reflection, exceptions
and dynamic dispatch with 73.00% and 19.53%, respectively, which we find somewhat awkward.
This motivates us to pay a special attention to the mutli-threading aspect modeling for Android.

In [11], the authors present SymDroid as a Dalvik bytecode interpreter for eventual security
vulnerabilities detection. It is a symbolic execution for a simplified intermediate language of a fraction
of Dalvik opcodes, named µ-Dalvik. SymDroid receives the Dalvik bytecode (the .dex file) as input.
The opcode is first translated to µ-Dalvik, which one is based on 16 instructions considered as the most
relevant ones to perform code analysis. Then, it is processed by a symbolic execution core using the
SMT solver to generate traces as an intermediate result. Finally, the post-analyzer inspects the output
traces and determines the final result. Entry points and all possible events affecting the application’s
behavior were developed according to a client-oriented specification (it is up to the user to model it)
to drive the application under test as desired. Although this work’s models, in addition to modeling
bytecode instructions, the system libraries including Bundle and Intent, Android components life
cycle, services and views; it ignores the system’s concurrent nature, either in the selected bytecode
instructions or at the program symbolic execution level, which is considered as being sequential.

In the same vein, Julia presented in [18] is a static analyzer for Java bytecode based on abstract
interpretation. It was extended in [19] and adapted to analyze Dalvik bytecode and handle specific
features of Android such as event-driven nature, potentially concurrent entry points and dynamic
inflation of graphical views. It applies several static analyses for Android applications’ classcast,
nullness, dead code and termination analysis, but does not track information flow. Multi-threaded
applications were not included in this work and event handlers are executed by a single thread.

Gunadi et al. [20,21] propose an operational semantics of DEX bytecode for certifying
non-interference properties through type system. This study includes a translating process from
Java bytecode semantics developed in [22] to Dalvik bytecode, concluding that if the first type system
guarantees non-interference then its translation into Dalvik bytecode is also typable. Therefore existing
bytecode verifiers for Java could certify non-interference properties of Dalvik bytecode.

Multi-threading programming semantics in applications have lately drawn increasing attention.
Some combine it with event handling [23–25], others consider the main API methods relating to
it [26]. In [24], Kanade proposes a semantic of a combined concurrency model of threads and events.
All the focus in this work goes to the event-driven nature of Android and its relationship with the
application’s threads. As a consequence, all other states that semantics could reach, such as those
resulting from basic instruction execution (method call, jump, return instruction, etc.), have not been
treated. The semantics proposed in [26] were the closest to ours. They cover the main important
Dalvik instructions and handle multi-threading. This paper could be seen an extension of [27], with the
obviously major change of the semantics needed for the concurrent setting and exception handling.
However, thread scheduling was not discussed and thread spawning is left to the virtual machine to
execute in an unpredictable point in time.

Information 2020, 11, 130 5 of 23

In the same stream of thought, in [28], Chaudhuri presents a formal security study on Android
using operational semantics and a system of types for specific Android constructs. However, semantics
ignore all Java constructs that may appear in Android applications (no class and method modeling), to
focus instead on Android components, intents and all Android-specific features related to it (binding
a service, sending an intent, etc.). This can be seen as a unified formal understanding of security for
users and developers of Android applications to deal with their security concerns.

Some works have focused on other issues of Android such as multi-tasking. For instance, ASM
presented in [29] is a formal model that formalizes all Android elements related to multi-tasking,
such as activities, back stacks and tasks. An Android application is somewhat seen as a collection of
activities with different types that interact with the user through a back stack. ASM has recently
been extended in [30] to capture all the core elements of the multi-tasking mechanism used in
inter-component communication.

Over time, formalization has included the permissions system as well [31–33]. For example,
Bagheri et al. propose in [31] a formal specification for Android application’s permission system
through an ad-hoc specification language called Alloy. It aims to formally specify the behavior
of Android applications, in particular, the mutual interaction between applications based on
permissions and security consequences caused by it or what authors call inter-app permission leakage
vulnerabilities. Almost all Android elements related to inter-app permissions were taken into account
in the formalism. Every application is modeled as a set of components, permissions, intent filters and
vulnerable paths. Similarly, in [33], a formal model of the Android’s permissions is specified in the
theorem prover Coq syntax.

Acteve++ [34] is an automated testing tool for Android Apps. It is based on Acteve [35] but
is improved to support input events and broadcast events in order to achieve higher coverage.
Authors use a non-standard operational semantics that describes the concolic execution of the program.
Semantics describe program execution in response to a sequence of events generated automatically
from an external environment. All other features and instructions that Android handles were neglected
to focus instead on the event-driven paradigm, which we found not expressive enough to model an
Android application. Our operational semantics consider, besides the concurrent feature, a variety
of instructions that models methods invocations, object creation and the whole tree structure of an
application (class, method and fields).

In [36], the authors focused on the low-level interactions with the operating system, by recording
the system calls (syscalls) invoked. To benefit from two levels, the analysis uses generic low-level
syscall traces to reconstruct the high-level semantics. While syscalls analysis offers more security
guarantees, it, in our opinion, complicates the task more. Especially, this information is extracted
from internal interfaces between the Android libraries and the kernel, which may change in the next
versions of Android without notice. In our work, we propose a rich semantics that covers all API calls
at a high level and we consider that it is sufficient to enforce security policies later.

Some studies like those conducted by Stowway [8] and Comdroid [37] for flow analysis directly
analyze the disassembled DEX file for a given application to identify potential component and/or
communication vulnerabilities. Despite the promising results of both tools in analyzing Dalvik
bytecode and Android’s API, proving its soundness and evaluating its efficiency or deficiency is
practically impossible in the absence of formal specification and proof.

Concurrent programming concepts and techniques are widely used in Android in order to
manage different tasks and threads. Our formalism Smali+ consider this important feature that was
neglected before given its complexity. Overall, none of the aforementioned studies, including those
considering multi-threading, offer complete semantics covering all the states that a thread can reach
nor representing all multi-threading essentials. Most of the studies formalizing Dalvik byte code and
handling multi-threading include only the two Dalvik instructions related to monitor use, monitor-enter
and monitor-exit, since Dalvik opcodes encompass only these two instructions with regard to threading.
However, a semantic for an Android program should not be limited to these instructions and must also

Information 2020, 11, 130 6 of 23

consider instructions related to threads communication, signaling and scheduling. In this paper, we fill
this gap by proposing semantics that incorporate, in addition to Dalvik instructions, a wide range
of API methods covering multi-threading essentials formulated in macro instructions for the sake of
simplicity. In comparison with all test-based approaches, Smali+ is based on formal methods with
their foundation in mathematical logic, allowing us to achieve rigorous and unambiguous reasoning in
the system specification and proofs, ensuring the system proprieties, while test-based approaches can
only ensure that systems satisfy the requirements for test cases. In sum, the proposed formal language
is expressive enough to enforce security proprieties and to detect security critical APIs (i.e., those
related to sensitive data access such as camera, SMS, telephony and contact list). Its syntax includes
the class fully qualified name for each invoked method facilitating to localize such APIs.

3. Preliminaries

In this section, we present the most essential information for Smali. First, we present the DVM
architecture and how it affects Smali syntax. Then, we present method invocation and how it affects
Smali registers. Finally, we present Smali special notations for types.

3.1. Registers

Being optimized to run on devices on which resources and processor speed are scarce and the
DVM architecture is register-based. Local variables are assigned to any of the 212 available registers.
A register is used to hold any data value, except for double and long values where each one requires
two registers (64 bits). The Dalvik opcodes operate on the register’s content instead of operating
directly on values and accesses elements on a program stack such as stack-based virtual machines.
Hence, registers allow the DVM to keep track of program evolution while it executes bytecode [38].
Each method in Smali has its own set of registers for each method’s arguments, local variables and
a special register for its return value. We will see later that most of the instructions include source
and destination registers. Smali language denotes each set of registers differently, which allows us to
visually distinguish between the method’s local and argument registers.

The alternate .locals directive specifies the number of local registers used by the method
(non-parameter registers) which is statically known. Local registers in Smali are denoted with
v0, v1, v2, ..., vn, where v0 is the first local register, v1 the second and so on until the last register.
This includes a special register for a method return value that allows passing return values from the
callee back to the caller, which one is denoted by ret.

LocalRegisters = N∪ {ret}

Parameter registers in Smali are denoted by p0, p1, p2, ..., pn. The first parameter for non-static
methods is always the object that the method is being invoked on, in this case p0 holds the object
reference and p1 the second parameter register. For a static method invocation p1 is the first parameter
register. For more details, please see the Method invocation subsection.

The .registers directive specifies the total number of registers in the method. This includes the
registers needed to hold the method parameters, which are stored in the last registers in the method.

Registers = LocalRegisters ∪ ParameterRegisters

3.2. Method Invocation

The DVM conforms to the ARM’s calling convention which is used for low-level code where
parameters, return values, return addresses and scope links are placed in registers. It dictates how
these elements are shared between the caller and the callee. In fact, these two share a part of their
register array so that the caller passes arguments to the callee by setting its parameter registers in the
right order. As for class methods, a lookup procedure starts by searching in the list of all static methods
that belong to the named class, where classes have distinct names and locating the invoked method

Information 2020, 11, 130 7 of 23

through its signature (i.e., name, argument types and number, and return type). Then, its parameter
registers array is set according to ARM’s calling convention, so that the first argument leads to the first
parameter register p1 and so on until the last argument which identifies the last register for arguments
(n arguments lead to n parameter registers).

In the dynamic invocation case, the class of the object whose method is being called (or recipient
object’s class) is statically unknown, so it is first retrieved from the heap through its reference (see
the semantics section for more details). Then, a lookup procedure searches among the class method
list upwards to its super-class chain, for a method matching the given method signature. Registers
comprise an additional register for the object reference called p0 in Smali code. Hence, the actual
number of parameter registers is p + 1.

Local register contents are initially undefined (registers are untyped in Dalvik), however, its
number is statically known.

3.3. Types in Smali

Smali code has two major classes of types, primitive types and reference types.
A primitive notation in Smali is particular where a single letter specifies each type, for example V

is used for a void type.
Reference types are objects (i.e., class type) and arrays. A class type takes the form

Lpackagename/ClassName; where the leading L indicates that it is a class type, packagename is the
package name path where class ClassName belongs to, whereas ClassName refers to the class name.
For example, a thread object in Smali has the following type: LJava/lang/Thread; which is equivalent to
Java.lang.Thread in Java. Arrays take the form [Type (Type which could obviously be a primitive or a
reference). Arrays with multiple dimensions are presented by corresponding number of "[" characters.
For example, a two-dimension arrays of int(s) is presented as follow [[I which is equivalent to int[][] in
Java. Table 1 summarizes different types in Smali.

Table 1. Types in Smali.

Primitive Types

B byte
C char
F float
I int
J long
S short
V void
Z boolean

Reference Types

Lpackagename/Classname; Object
[... Object or Primitives Array

4. Operational Semantics for a Single-Threaded Application

4.1. Notations

Throughout the paper, we use the following notations:

• A :: B :: C to designate a stack, where A is the top-most value of the stack, B is the underlying
element and C is the remaining portion of the stack. An empty stack is presented by ε.

• ⊥ to denote any undefined value.
• dom(f) is domain of a function f . The notation dom[f 7→ x] expresses the domain dom where the

value of a function f is updated to x.
• f [x 7→ y] expresses the function f where value x maps to y so f (x) = y.

Information 2020, 11, 130 8 of 23

4.2. Syntax

Table 2 provides basic syntactic categories as well as the selected instructions syntax.
A package of a disassembled DEX bytecode format is specified by a name pck and sequences of

classes. In our formal model, we consider that a package consists only of classes that correspond to
.Smali files (Androidmanifest file and the rest of XML files are not considered in our formalization).

Table 2. Smali+: sequential execution.

(Package) Pckg ::= .package pck {Cl∗}

(Class definition) Cl ::= .class (Acc-flg∗) C f n .super Sc .implements Int f ∗ {Fld∗, Mtd∗}

(Super class) Sc ::= C f n | >
(Interface definition) Int f ::= .interface (Acc-flg∗) In f .super Sin f ∗ {CstFld∗, MtdSign∗}

(Super interface) Sin f ::= In f

(Field definition) Fld ::= .field (Acc-flg)∗ f : τ

(Constant Field definition) CstFld ::= .field public final static f : τ

(Method definition) Mtd ::= .method (Acc-flg)∗ MtdSign .locals loc {Label Inst∗}

(Method signature) MtdSign ::= m (τ1, ...τn) retτ

(Access flags) Acc-flg ::= public | private | protected | final | ...
(Labeled Instruction) LabeI Inst ::= i Inst

(Label) i ::= int

(Instructions) Inst ::= goto i (unconditional jump)

| move Des Src (move from source to destination)

| binop⊕ v v1 v2 (binary operation)

| unop� v v1 (unary operation)

| if <© v1 v2 i (conditional jump)

| new-instance v C f n (object creation)

| invoke-static C f n MtdSig v∗ (static method invocation)

| invoke-instance vre f MtdSig v∗ (instance method invocation)

| return v (retrun from non-void method)

| return-void (retrun from a void method)
(Destination register) Des ::= v (register name)

| vre f . f (instance field)

| C f n. f (static field)

(Source register) Src ::= Des | Cst (des or constant)

(Operators) ⊕ ::= + | - |... (binary operator)

� ::= ¬ |++|... (unary operator)

<© ::= <|>|... (comparison operator)

(Program counter) i ::= int

(Num. of loc. registers)loc ::= int

(Local registers name) v ::= string

(Parameter registers name) p ::= string

(Constant) Cst ::= Single (constant)

(Type) τ ::= Prim | Re f

Prim ::= Single | Double

Re f ::= C f n | ArrayType

ArrayType ::= ArrayTSingle | ArrayTDouble

ArrayTSingle ::= array (Single | Re f)

ArrayTDouble ::= array Double

Single ::= boolean | char | byte | short | int | float

Double ::= long | double

(ReturnType) retτ ::= τ | V
(Names) Cfn ::= Lpackagename/c (class full name)

Inf ::= Lpackagename/it f (interface full name)

pck, c, it f , f , m ::= String (package, class, interface, field and method names)

Information 2020, 11, 130 9 of 23

A class Cl definition includes its access flags Acc-flg, which is a keyword defining the class
visibility, a fully qualified class name C f n that indicates the class package path name followed by
the class name c (we assume an unlimited supply of distinct names). This includes also its direct
super-class fully qualified name (a single inheritance). > is applied to classes without super-classes
such as the Object class and the Thread class, and finally a set of implemented interfaces Int f , fields
Fld and methods Mtd.

An interface is specified by its fully qualified name In f , access flags Acc-flg, a set of
super-interfaces Sin f , its abstract methods (which consist of their method signatures) and constant
fields. A field definition comprised its name f , its access flags and a type τ (which could be a primitive
for static fields or a class type for instance fields). A method definition includes a set of access
flags that determines its scope, the method signature, the number of local registers it operates on
denoted by loc and a sequence of labeled instructions Inst that present the method body. A method
signature consists of the method name m, argument(s) type τ and a return type retτ which might be a
void, primitive or a class type. In Smali+, we consider a subset of Dalvik instructions being selected
based on results of a study of 1700 Android applications, carried out to determine what instructions
and language features are most often used in typical applications [16,17]. In fact, Dalvik bytecode
comprises 218 instructions [39]. We bring some modification to the selected instructions that does
not affect the expressive power of Dalvik language. In contrast, it simplifies the representation of our
semantics. For example, in Dalvik we find 13 variants of the move instruction that are semantically
similar, we model this group of instructions by only one move instruction.

In our formal model, we consider instructions expressing the unconditional and conditional jump
with, respectively, goto and if <© instructions. A move instruction to move values from source Src to
destination Des. A destination may be a register name v, an instance field vre f . f or a static field C f n. f ,
whereas a source Src may be any of these elements beside constants cst. We consider also instructions
expressing the creation of a new object of a class C f n, a return from a void and non-void method with
new-instance, return-void and return instructions, respectively. Method invocation refers to the method
name, argument types and number, return type and registers. For methods class that are dynamically
dispatched, it includes in addition to that a register holding the recipient object reference.

4.3. Semantics

Table 3 defines the domains used by our operational semantics. In fact, each application has at
least one thread that defines the code path of execution and all of the code will be processed along the
same code path if there is no other created thread. Hereafter, we suppose a single-threaded execution,
a simple programming model with deterministic execution order, which means that an instruction has
to wait for all preceding instructions to finish prior to being processed. We model such execution with a
local configuration denoted by σ. It models the full state of a single-threaded program. It includes a call
stack Cs, a heap H and a static heap S. A call stack allows keeping track of all information concerning
methods invoked in the program. It is initially empty and presented as a sequence of method frames.
A method frame Fm is a triplet consisting of a method name m, a program counter i for execution
progress, both determine the program point in the invoked method and finally a register array R
mapping register names (parameters, locals and return) to values. We adopt the same notations for
registers used in Smali, as explained in the Registers subsection. Therefore, we have a set of registers
for the method parameters and a set for the method local variables. Local registers content are initially
undefined denoted by ⊥. The top of the call stack represents the currently executing method’s frame.
Values can be either primitives or heap locations. A heap H map locations (we suppose an arbitrary
number of unique locations) to objects Obj or arrays Arr. Objects record their class and a mapping
from (class) fields to values, whereas arrays record the array type and its values. Finally, the static heap
S is a mapping from static (class) field names to their values. Fields are annotated with their type used
for initialization, to determine the default values of each primitive type (see Table 4). This annotation
is omitted when it is unneeded.

Information 2020, 11, 130 10 of 23

The relation σ
m(i)−−→ σ′ models evolution of a starting configuration σ into a new σ′ as the result

of a computation step. m(i) represents the program point, which corresponds to the instruction at a
position i in a specified method m, always for the top-most method frame of the call stack in σ.

To illustrate the semantics, we present in Table 5 the semantic rules for instructions presented in
Table 2.

Table 3. Semantic domains.

(Local configuration) σ ::= < Cs, H, S >
(Call stack) Cs ::= ε | Fm | Cs :: Cs
(Method frame) Fm ::= < m, i, R >
(Registers array) R ::= (Rg→ Val)∗

(Registers names) Rg ::= v∗ ∨ p∗ ∨ ret
(Heap) H ::= ε | (l → (Obj | Arr))∗

(Object) Obj ::= {|C f n; (fτ → Val)∗|}
(Array) Arr ::= ArrayType [∗ Val
(Static Heap) S ::= ε | (C f n. fτ → Val)∗

(Values) Val ::= τ | l | ⊥
(Local register) v ::= string
(Parameter register) p ::= string
(Return register) ret ::= string
(location) l ::= heap locations | null

Table 4. Default values of primitive types.

int 0

long 0|
short 0
char ’\u0000’
byte (byte) 0
float 0.0f

double 0.0d
object null

boolean(int) false (0)

Information 2020, 11, 130 11 of 23

Table 5. Single-threaded semantics.

Rgoto
m(i) = goto i′

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i′ ,R>::Cs ,H,S>

Rmv-reg

m(i) = move v Src

[[Src]]=Val

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R[v 7→Val]>::Cs ,H,S>

Rmv-sttf

m(i) = move C f n. f v

R(v) = Val [[C f n. f]]=S(C f n. f)

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R>::Cs ,H,S[C f n. f 7→Val]>

Rmv-instf

m(i) = move vre f . f ′ v

R(v) = Val R(vre f) = l H(l) = o

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R>::Cs ,H[l 7→o[f ′ 7→Val]],S>

Rmv-cst

m(i) = move v Cst

[[Cst]]= Cst

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R[v 7→cst]>::Cs ,H,S>

Rnew-ins

m(i) =new-instance v C f n

o′ = {|C f n; (fτ 7→ 0τ)∗ |} l′ /∈ dom(H)

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R[v 7→l′]>::Cs ,H[l′ 7→o′],S>

Rb-op

m(i) = binop⊕ v v1 v2

(R(v1)⊕ R(v2)) = Val

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R[v 7→Val]>::Cs ,H,S>

Ru-op

m(i) = unop� v v1

�(R(v1)) = Val

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R[v 7→Val]>::Cs ,H,S>

Rif-true

m(i) =if <© v1 v2 i′

[[R(v1) <© R(v2)]] = true

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i′ ,R>::Cs ,H,S>

Rif-false

m(i) = if <© v1 v2 i′

[[R(v1) <© R(v2)]] = false

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m,i+1,R>::Cs ,H,S>

Rinv-st

m(i) =invoke-static C f n m′(τ1, ..., τn)retτ v1, ..., vn

lookup(m′(τ1, .., .τn)retτ, C f n) = m′(τ1, ..., τn)retτ loc

R′ = {(vj)
j<loc 7→ ⊥, p1 7→ R(v0), ..., pn 7→ R(vn)}

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m′ ,0,R′>::<m,i+1,R>::Cs ,H,S>

Rinv-inst

m(i) =invoke-instance vre f m′(τ1, ..., τn)retτ v1, ..., vn

R(vre f) = l H(l) = {|C f n; (fτ 7→ Val)∗ |}
lookup(m′(τ1, ..., τn)retτ, C f n) = m′(τ1, ..., τn)retτ loc

R′ = {(vj)
j<loc 7→ ⊥, p0 7→ l, p1 7→ R(v0), ..., pn 7→ R(vn)}

<<m,i,R>::Cs ,H,S>
m(i)−−→<<m′ ,0,R′>::<m,i+1,R>::Cs ,H,S>

Rret-nv
m(i) = return v

<<m,i,R>::<m′ ,i′ ,R′>::Cs ,H,S>
m(i)−−→<<m′ ,i′ ,R′ [ret 7→R(v)]>::Cs ,H,S>

Rret-v
m(i) =return-void

<<m,i,R>::<m′ ,i′ ,R′>::Cs ,H,S>
m(i)−−→<<m′ ,i′ ,R′ [ret 7→R(ret)]>::Cs ,H,S>

Information 2020, 11, 130 12 of 23

These rules are as follows. The rule Rgoto updates the program counter to the specified one
unconditionally. Rules related to a move instruction from source to destination use an evaluation
function [[-]] that evaluates a destination or a source under the current configuration σ, except for
registers. In this case, for the sake of being simple, we use directly R(v) always from the top-most
method frame of the call stack in σ since [[v]] is equivalent to R(v). Constants are evaluated to
themselves whereas static and instance fields are evaluated based on static S and dynamic H heaps,
respectively, obviously under the current configuration σ. The rule Rmv-reg evaluates the source
sub-expression and then updates the destination register content in the register array. Rules Rmv-insf and
Rmv-Sf update instance and static field, respectively, by the content of the source register. Rule Rmv-cst

is quite straightforward. That is, after evaluating the source to constant, it updates the destination
register content by the constant value.

Rule Rnew-ins creates a new object in the heap by reserving a memory with a new fresh location
l, loading the class that is instantiated from and initialing its static fields, each by its default value
according to Table 4. Once created, it returns the newly allocated object by pushing its heap location in
a destination register v.

Rules Rb-op and Ru-op compute a binary or unary expression, respectively, and store the results in
the destination register. Rules Rif-true and Rif-false models conditional jump. If the guard is evaluated to
true, it branches to the targeted program counter (Rif-true), otherwise the program counter is advanced
to the next instruction (Rif-false). In rules Rinv-st and Rinv-dy, a lookup function is called to look up for the
appropriate method. In the dynamic case, the method class is retrieved from the heap through object
location l which is passed to the register vre f . In both rules, a new method frame structure is pushed
on the top of the call stack. It includes the method name, a count program set to 0 and a register array
R′ set as explained in the subsection Method invocation. Notice that here we increment the program
counter of the caller by one to restart from the correct instruction once the callee returns.

A lookup method searches for a method matching the given method signature (m(τ1, ...τn)
loc−→ τ)

in the given class full name and upwards to its super-class chain. Once located, it returns the method
signature with the number of its local registers. We assume that the identified class and method exist
in the package and class ancestry, respectively, with an array of local registers. Moreover, we admit
that all verification checks are performed by the DVM. For instance it is verified that the method can
be legally accessed by the class. Thus, the invoke instructions Rinv-st and Rinv-dy are safe to execute.

lookup(MtdSign, C f n) =

{
m(τ1, ...τn)retτ loc i f m ∈ C f n

lookup(MtdSign, C f n.Sc) else

Rules Rret-nv and Rret-v pop the top frame from the call stack and pass on the return value from
the callee back to the caller through its return register ret. Notice that, in the case of a void method, the
return value must be moved to ret by the callee before the return-void instruction.

5. Operational Semantics for a Multi-Threaded Program

Results shown in [17] have highlighted multi-threading as a widely used feature in Android
applications with 90.18% including a reference to Java/lang/Thread and 88% using monitors.
An important rate that motivates us to take this feature into account in our formalization in order to
develop a complete semantic.

5.1. Syntax

Here, we consider multi-threaded programs. Multi-threading semantics include single-threaded
semantics for each running thread separately. Threads in the same DVM interact and synchronize
using shared objects and monitors associated with these objects. In order to give a full account of
Java concurrency, we consider instructions related to this aspect. We define macro-instructions that
cover methods of the Java Thread API [40] which are start for thread spawning and join for joining a

Information 2020, 11, 130 13 of 23

referenced thread. We also define macro-instructions that cover several methods of the Java Object
API [41] related to thread signaling such as notify, notifyAll and to synchronization such as wait. We
also give the semantics of Dalvik instructions related to threads synchronization and monitors with
the instructions monitor-enter and monitor-exit. All instructions syntax are illustrated in Table 6.

Table 6. Smali+: concurrent instructions.

Inst ::= start vre f (start the thread in vre f)
| monitor-enter vre f (acquire the monitor for object in v)
| monitor-exit vre f (release the monitor for object in v)

| join vre f (join the thread in vre f)
| wait vre f (release object’s monitor in vre f and suspend current thread)
| notify vre f (notify one thread from those waiting on object’s monitor in vre f)
| notifyAll vre f (notify all threads waiting on object’s monitor in vre f)

5.2. Semantics

An overall configuration Σ =< Cs, Srbl , H, S > models the full state of an Android application in
its low-level implementation. It presents a multi-threading program configuration including as first
attribute a running thread’s call stack Cs, a set of runnable threads Srbl , a heap H and a static heap S.

• Each thread in the program has a call stack Cs for methods being invoked, their arguments and
local variables, with the same syntax used in Table 3.

• Srbl is a set of pending threads. Each thread is presented by its call stack for method invoked
information, plus a special register p0 holding the thread reference. Threads in this set are in a
“runnable” state (i.e., waiting to be selected by the scheduler).

• H and S are dynamic and static heaps which are shared between all threads in the program and
have the same semantics domain used for the single-threaded program in Table 3.

A new semantic domain for multi-threaded program is provided in Table 7. Some changes are
applied to the object definition. It includes a new fields acq which indicates if the object’s monitor is
acquired by another thread. If this is the case, acq will contain this thread’s reference, otherwise it will
contain an undefined value ⊥ since an object cannot be reserved by more than one thread at once, at
a given time. Sblck is a set of blocked threads waiting for the object’s monitor to be released. Swait is
a set of threads pending notification (threads that executed the wait instruction). The initial state of
a new instance object, in a multi-threading context, will be initialized as seen in the single-threaded
environment (with default values). New attributes are initialized as follows:

- acq 7→ ⊥ initialized to an undefined value, which means that initially the object is in a free state
and could be acquired by a given thread.

- Sblck 7→ ∅, an empty set of blocked threads, which means that initially there is no thread waiting
for the monitor to be released.

- Swait 7→ ∅, an empty set of waiting to be notified threads.

A class Cl is a Thread class if and only if it is an instance of a Thread class (⊥=Thread), which
means that its super class Sc is either the Thread top class path (C f n = LJava/lang/Thread) or another
class that it is extended from this class. Each thread object has a Boolean finished field indicating
whether the thread has completed its execution or not, a mapping from a group of threads to a set
of threads call stacks, it contains a set of threads waiting to join this thread and an attribute called
state indicating the current state of the thread. Each thread has a run method. Thread attributes are
initialized as follows:

- f inished 7→ f alse.

Information 2020, 11, 130 14 of 23

- Sjoin 7→ ∅, an empty set of join threads, which means that initially there is no thread waiting to
join the current thread.

- state = ⊥.

Table 7. Semantic domains for a multi-threaded program.

(Global configuration) Σ ::= < Cs, Srbl , H, S >

(Set of runnable threads) Srbl ::= ∅ | Cs | {Srbl , Srbl}

(Object) Obj ::= {|C f n; (fτ → Val)∗; acq 7→ Val; Sblck 7→ Sb; Swait 7→ Sw|}
(A thread Object) th ::= {|C f n; (fτ → Val)∗; f inished 7→ booelan; Sjoin 7→ Sj|}
(Set of blocked threads) Sb ::= ∅ | Cs | {Sb, Sb}

(Set of waiting threads) Sw ::= ∅ | Cs | {Sw, Sw}

(Set of join threads) Sj ::= ∅ | Cs | {Sj, Sj}

(Acquiring field) acq :: f (field name)

(finished field) f inished :: f (field name)

(Groups names) Swait, Sblck, Sjoin ::= String

Table 8 provides the semantics of spawning and scheduling threads. Rule Rstart starts a new
thread, which reference is stored in the register vre f . It internally calls the referenced thread’s run()
method that will be executed in this thread separately, once selected. Therefore, a lookup() procedure
for its run method is performed and a separate call stack for a new thread is created with one frame
comprising all information about the thread’s run() method returned by the lookup() function. This
thread moves to a "runnable" state in Srbl . When it gets a chance to execute, its target run() method
will be executed. The actual execution of the launched thread will be managed with the rule Rselect.
Notice that, as expressed by the rule Rstart, the reference of the launched thread is always stored in the
register p0 and we assume that it will remain there for all semantics rules and for all method’s frames
in the thread’s call stack.

Table 8. Multi-threaded semantics: scheduling.

Rstart

m(i) = start vre f

R(vre f) = l H(l) = {|C f n; (fτ → Val)∗; f inished 7→ f alse; Sjoin 7→ Sj|}
lookup(run()V, C f n) = run()V loc

R′ = {(vj)
j<loc 7→ ⊥, p0 7→ l} Fm =< @run, 0, R′ >

<<<m,i,R>::Cs ,Srbl ,H,S>
m(i)−−→<<m,i+1,R>::Cs ,Srbl∪{Fm},H,S>

Rselect

selectFrom(Srbl) = [Fm :: Cs, ts] Fm =< m, i, R >

R(po) = l H(l) = {|C f n; (fτ → Val)∗; f inished 7→ f alse; state 7→ − Sjoin 7→ Sj|}
th′ = {|C f n; (fτ → Val)∗; f inished 7→ f alse; state 7→ Running(ts) Sjoin 7→ Sj|}

<ε,Srbl ,H,S>
τ−→<Fm ::Cs ,Srbl\{Fm ::Cs},H[l 7→th′],S>

Rstop

R(po) = l H(l) = {|C f n; (fτ → Val)∗; f inished 7→ f alse; state 7→ Running(ts) Sjoin 7→ Sj|}
clock() > ts

<<m,i,R>::Cs ,Srbl ,H S>M
τ−→<ε,Srbl∪{Cs},H,S>M

Rules Rselect and Rstop manage threads scheduling. Rule Rselect selects from Srbl one thread
to be executed for a time slice ts. The selected thread’s state will be updated to a “Running(ts)”
state. The thread’s call stack will be removed from the runnable set and placed at the first position
of configuration Σ to start execution. The select(Srbl) function will be based on a CFS scheduler’s
algorithm for scheduling threads in Srbl . It takes into account the thread’s nice values and returns the

Information 2020, 11, 130 15 of 23

selected thread’s local state presented in its current call stack as well as the time slice allocated to it
for execution.

Rule Rstop stops, in a monitoring mode (i.e., a mode that monitors the execution time given
to each thread), a thread whose allocated time slice to execute a task has expired. We model the
timing aspect in our formalism by the function clock() which represents the scheduler timer to control
running threads.

Synchronization in Dalvik is modeled by the use of monitors with instructions monitor-enter and
monitor-exit. That actually corresponds to the synchronized keyword in Java. A monitor is attached to
an object and could be acquired and released by threads.

The semantics of these two instructions must fulfill two conditions. The first is related to the
mutual exclusive access to shared objects in the heap by different threads. The second relates to the
cooperation between these threads. Cooperation is modeled by a set of threads waiting for notification
when the object is released by another thread. The sole thread running and owning the monitor is in a
critical section. Table 9 presents rules related to synchronization. Monitor-enter semantics represent
a thread trying to access the critical section by acquiring monitor for the object, whose reference is
stored in a register vre f . It first checks if the object is acquired by any other thread. If this is the case,
the current thread will be blocked (mutual exclusive access condition) and added to the object blocking
set Sblck to join other threads (if any) with the same situation (cooperation condition). This case is
modeled by the rule Rblock). Otherwise, the current thread can take ownership of the monitor. The acq
attribute is then updated with this thread’s reference. This thread could resume its execution in the
critical section. This case is modeled with the rule Racq−mnt.

Table 9. Multi-threaded semantics: synchronization.

RAcq−mntr

m(i) =monitor-enter vre f

R(vre f) = l H(l) = {|C f n; (fτ → Val)∗; acq 7→ ⊥; Sblck 7→ Sb; Swait 7→ Sw|}
o′ = {|C f n; (fτ → Val)∗; acq 7→ R(p0); Sblck 7→ Sb; Swait 7→ Sw|}

<<m,i,R>::Cs ,Srbl ,H,S>
m(i)−−→<<m,i+1,R>::Cs ,Srbl ,H[l 7→o′],S>

Rblock

m(i) =monitor-enter vre f

R(vre f) = l H(l) = {|C f n; (fτ → Val)∗; acq 7→ l′; Sblck 7→ Sb; Swait 7→ Sw|}
o′ = {|C f n; (fτ → Val)∗; acq 7→ l′; S′blck 7→ Sb ∪ {< m, i, R >:: Cs}; Swait 7→ Sw|}

<<m,i,R>::Cs ,Srbl ,H,S>
m(i)−−→<<m,i,R>::Cs ,Srbl ,H[l 7→o′],S>

RRls−mntr

m(i) =monitor-exit vre f

R(p0) = l′ R(vre f) = l H(l) = {|C f n; (fτ → Val)∗; acq 7→ l′; Sblck 7→ Sb; Swait 7→ Sw|}
o′ = {|C f n; (fτ → Val)∗; acq 7→ ⊥; S′blck 7→ ∅; Swait 7→ Sw|}

<<m,i,R>::Cs ,Srbl ,H,S>
m(i)−−→<<m,i+1,R>::Cs ,Srbl∪Sb ,H[l 7→o′],S>

Rwait

m(i) = wait vre f

R(p0) = l′ R(vre f) = l H(l) == {|C f n; (fτ → Val)∗; acq 7→ l′; Sblck 7→ Sb; Swait 7→ Sw|}
o′ = {|C f n; (fτ → Val)∗; acq 7→ ⊥; Sblck 7→ ∅; S′wait 7→ Sw ∪ {< m, i, R >:: Cs} |}

<m,i,R>::Cs ,Srbl ,H,S>
m(i)−−→<<m,i,R>::Cs ,Srbl∪Sb ,H[l 7→o′],S>

Monitor-exit semantics represents a thread that reaches the end of the critical section by releasing
the owned monitor for another thread to take ownership, which perfectly fulfills the cooperation
condition. Rule RRls−mntr provides this semantics, the current thread must first own this object’s
monitor, once this condition is satisfied, the acq attribute is updated to an undefined value (object is
free). Then, all waiting threads in Sblck are removed to the runnable set Srbl . It is up to the scheduler to
select which thread to execute (there is no ordering among the blocked threads).

A thread could voluntarily give up ownership of the monitor before reaching the end of the
critical section by calling the wait() method or by executing the wait instruction. This thread releases
ownership of this monitor and remains in a waiting state (i.e., suspended or inactive until be notified

Information 2020, 11, 130 16 of 23

by another thread). Rule Rwait provides the semantics of wait instruction. The calling thread must own
this object’s monitor (i.e., must executing wait from inside a synchronized block) then relinquish it.
Once the monitor associated with this object is released, the current thread is placed in the wait set for
this object.

Table 10 presents rules Rnoti f y and Rnoti f yAll expressing the signaling mechanism. Rule Rnoti f y
represents the semantics for waking up a single thread that is waiting for this object’s monitor in the
waiting set Swait. One thread among the set will be chosen randomly by the function random(). This
thread will be moved from the waiting set to the runnable set to be selected later on by the scheduler
and then processed. The rule Rnoti f yAll is similar to the rule Rnoti f y, with the exception that it wakes all
threads in the waiting set, which ones will be moved to the runnable set Srbl . Notice that, rules Rnoti f y
and Rnoti f yAll release in addition to waiting thread(s) set Swait all blocked threads in Sblck. The two sets
have the same privileges with regards to acquiring monitor. In other words, waiting threads have no
precedence over potentially blocked threads that also want to synchronize on this object.

Table 10. Multi-threaded semantics: signaling.

Rnotify

m(i) = notify vre f

R(p0) = l R(vre f) = l′ H(l′) = {|C f n; (fτ → Val)∗; acq 7→ l; Sblck 7→ Sb; Swait 7→ Sw|}
random(Sw) = C′s o′ = {|C f n; (fτ → Val)∗; acq 7→ ⊥; S′blck 7→ ∅; S′wait 7→ Sw \ {C′s}|}

<<m,i,R>::Cs ,Srbl ,H,S>
m(i)−−→<<m,i+1,R>::Cs ,Srbl∪{C′s}∪Sb ,H[l′ 7→o′],S>

RnotifyAll

m(i) = notifyAll vre f

R(p0) = l R(vre f) = l′ H(l′) = {|C f n; (fτ → Val)∗; acq 7→ l; Sblck 7→ Sb; Swait 7→ Sw|}
o′ = {|C f n; (fτ → Val)∗; acq 7→ ⊥; S′blck 7→ ∅; S′wait 7→ ∅|}}
<<m,i,R>:::Cs ,Srbl ,H,S>

m(i)−−→<<m,i+1,R>::Cs ,Srbl∪Sw∪Sb ,H[l′ 7→o′],S>

Table 11 presents semantics of finishing thread and joining instructions. Rules RJoin-exec and
RJoin-wait check if the joined thread has finished its execution, if so, the current thread resumes execution
(RJoin-exec). Otherwise, the rule RJoin-wait is applied. The current running thread is removed into Sjoin
for threads waiting for the same thread to complete its execution (no release by the monitor of the
object is acquired by the running thread here). The rule R f inish ensures that when a thread completes
its execution (i.e., its run() method returns) and releases all waiting threads in Sjoin by moving them to
the runnable set Srbl .

Table 11. Multi-threaded semantics: join.

RJoin-exec

m(i) = join vre f

R(vre f) = l H(l) = {|C f n; (fτ → Val)∗; f inished 7→ true; Sjoin 7→ Sj|}
<<m,i,R>::Cs ,Srbl ,H,S>

m(i)−−→<<m,i+1,R>::Cs ,Srbl ,H,S>

Rjoin-wait

m(i) = join vre f

R(vre f) = l H(l) = {|C f n; (fτ → Val)∗; f inished 7→ f alse; Sjoin 7→ Sj|}
o′ = {| C f n; (fτ → Val)∗; f inished 7→ f alse; S′join 7→ Sj ∪ {< m, i, R >:: Cs} |}

<<m,i,R>::Cs ,Srbl ,H,S>
m(i)−−→<<m,i,R>::Cs ,Srbl ,H[l 7→o′],S>

R f inish

@run(i) =return-void

R(p0) = l H(l) = {|C f n; (fτ → Val)∗; f inished 7→ f alse; Sjoin 7→ Sj|}
o′ = {|C f n; (fτ → Val)∗; f inished 7→ true; S′join 7→ ∅|}

<<@run,i,R>::ε,Srbl ,H,S>
@run(i)−−−−→<ε,Srbl∪Sj ,H[l 7→o′],S>

6. Practical Aspects

We give, hereafter, some practical aspects of Smali+ through an example. For the sake of simplicity
and due to the space limitation, we only present an illustration of a single-threaded program in Smali+

that includes various important instructions such as method call, return, static and instance field

Information 2020, 11, 130 17 of 23

update, etc. As shown in Table 12, the program is sequential and consists of two classes c1 and c2
belonging to the same package called p. Figure 3 shows the initial configuration. We show in detail,
through this example, how the rules are applied and how the configuration evolves in every step. Each
rule is followed by the resulting configuration.

Table 12. Smali+ program.

.class public Lp/c2 .super c1 { .class public Lp/c1 .super ⊥ {

.field public x: int .field public a: LJava/lang/String

.field public y: char .field public b: int

.method public static m1()V .locals 3 { .field private final c: char
... .method public static m2(int,char)char .locals

2 {

5 move v1 30
6 goto 10
... ...
10 invoke-static Lp/c1 m2(int, char)char v0, v1

11 move c2.x v0

12 new-instance v2 Lp/c1
13 move v2.b v1 18 return v1

... ... }
}

Cs

< m1, 5, R >

H S
Lp/c2 public x 0

public y ’\u0000’

Lp/c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 ⊥ ⊥ ⊥

R’ v0 v1 ret
⊥ ⊥ ⊥

Figure 3. Initial configuration.

The first table corresponds to the call stack Cs, which is the current method frame. The second
table corresponds to an empty heap H and the last two tables correspond to the register arrays for
methods m1 and m2, respectively.

The first Smali+ instruction to execute is the move instruction labeled with 5. It is a constant
displacement, so the rule Rmv-cst applies. Since constants are evaluated to themselves, the register v1

for m1 locals registers is updated by the constant value and the program counter is incremented.

Rmv-cst

m1(5) = move v1 30

[[30]]= 30

<<m1,5,R>::Cs ,H,S>
m1(5)−−−→<<m1,6,R[v1 7→30]>::Cs ,H,S>

Cs

< m1, 6, R >

H S
Lp/c2 public x 0

public y ’\u0000’

Lp/c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 ⊥ ⊥

R′ v0 v1 ret
⊥ ⊥ ⊥

The next instruction corresponds to the unconditional jump goto. The rule Rgoto so applies to
update the program counter by the instruction labeled with 10.

Rgoto

m1(6) = goto 10

<<m1,6,R>::Cs ,H,S>
m1(6)−−−→<<m1,10,R>::Cs ,H,S>

m1(10) is an invocation of a static method. Rule Rinv-st so applies. A new frame for the called method
is pushed on top of Cs and the counter program in the caller method frame is incremented.

Information 2020, 11, 130 18 of 23

Cs

< m1, 10, R >

H S
Lp/c2 public x 0

public y ’\u0000’

Lp/c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 ⊥ ⊥

R′ v0 v1 ret
⊥ ⊥ ⊥

Rinv-st

m1(10) =invoke-static Lp/c1 m2(int, char)char v0, v1

lookup(m2(int, char)char, Lp/c1) = m2(int, char)char 2

R′ = {v0 7→ ⊥, v1 7→ ⊥, p1 7→ R(v0), p2 7→ R(v1)}

<<m1,10,R1>::Cs ,H,S>
m1(10)−−−−→<<m2,0,R′>::<m1,11,R>::Cs ,H,S>

Cs

< m2, 0, R′ >
< m1, 11, R >

H S
Lp/c2 public x 0

public y ’\u0000’

Lp/c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 ⊥ ⊥

R′ v0 v1 p1 p2 ret
⊥ ⊥ 5 30 ⊥

After some execution steps, we suppose that the register v1 in m2 is updated by a new value "CA"
and the current instruction to execute is labeled with 18 in m2.

Cs

< m2, 18, R′ >
< m1, 11, R >

H S
Lp/c2 public x 0

public y ’\u0000’

Lp/c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 ⊥ ⊥

R′ v0 v1 p1 p2 ret
⊥ CA 5 30 ⊥

The instruction m2(18) is a return from a non-void method m2, so the rule Rret-nv applies. The
top frame of Cs is popped and the return value is passed from the callee back to the caller through its
return register ret.

Rret-nv

m2(18) = return v1

<<m2,18,R′>::<m1,11,R>::Cs ,H,S>
m2(18)−−−−→<<m1,11,R[ret 7→R′(v1)]>::Cs ,H,S>

Cs

< m1, 11, R >

H S
c2 public x 0

public y ’\u0000’

c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 ⊥ CA

R′ v0 v1 p1 p2 ret
⊥ CA 5 30 ⊥

The instruction m1(11) is a static field update. So the rule Rmv-sttf so applies to update the indicated
field in the static heap S by the register v0 content.

Rmv-sttf

m1(11) = move Lp/c2.x v0

R(v0) = 5 [[Lp/c2.x]]=S(Lp/c2.x)

<<m1,11,R>::Cs ,H,S>
m1(11)−−−−→<<m1,12,R>::Cs ,H,S[Lp/c2.x 7→5]>

Cs

< m1, 12, R >

H S
Lp/c2 public x 5

public y ’\u0000’

Lp/c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 ⊥ CA

R′ v0 v1 p1 p2 ret
⊥ ⊥ 5 30 ⊥

The instruction m1(12) corresponds to an object creation. The rule Rnew-instance so applies to create
a new instance from the class c1 in the heap H and all fields are initialized according to their types.

Rnew-ins

m1(12) =new-instance v2 Lp/c1

o′ = {|Lp/c1; (a 7→ null, b 7→ \u0000′ , c 7→ \u0000′)} l′ /∈ dom(H)

<<m1,12,R>::Cs ,H,S>
m1(12)−−−−→<<m1,13,R[v2 7→l′]>::Cs ,H[l′ 7→o′],S>

The instruction m1(13) is an instance field update. So the rule Rmv-instf applies. The register
v2 holds the instance location o′ in H. The instance field in o′ is updated with the source register
v1 content.

Information 2020, 11, 130 19 of 23

Cs

< m1, 13, R >

H
l′ o’

Lp/c1 a null
b 0
c ’\u0000’

S
Lp/c2 public x 5

public y ’\u0000’

Lp/c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 l’ ⊥

R′ v0 v1 p1 p2 ret
⊥ ⊥ 5 30 ⊥

Rmv-instf

m1(13) = move v2.b v1

R(v2) = l′ R(v1) = 30 H(l′) = o′

<<m1,13,i,R>::Cs ,H,S>
m1(13)−−−−→<<m,14,R>::Cs ,H[l′ 7→o′ [b 7→30],S>

Cs

< m1, 13, R >

H
l′ o’

Lp/c1 a null
b 30
c ’\u0000’

S
c2 public x 5

public y ’\u0000’

c1 public a null
private b 0
pv/final c ’\u0000’

R v0 v1 v2 ret
5 30 l’ ⊥

R′ v0 v1 p1 p2 ret
⊥ ⊥ 5 30 ⊥

7. Discussion

So far, we have proposed a formal language for Android programs called Smali+. Presented in a
BNF notation, Smali+ is a simple language that remains faithful to the original Smali notations and
the .Smali file structure. It contains 12 generalized instructions from 218 Dalvik instructions [39] and
some macros instructions modeling concurrency aspect. These 12 instructions were selected carefully
to highlight Dalvik’s characteristics, such as register-based architecture, assembly-like code for Smali,
methods invocations, monitors, etc. Macro instructions were used for the sake of simplification as well
as to model multi-threading in Android. All the important API methods that affect a thread life-cycle
were considered in Smali+ semantics.

Another important feature that lacks so far in Android application semantics is thread scheduling.
This important aspect, in general, consists in picking a thread for execution and allocating an execution
time to it, depending on its priority, before selecting a new thread to execute and switching the context.
Android applications including their threads adhere to the Linux execution environment. So, threads
are scheduled using the standard scheduler of the Linux kernel, known as a completely fair scheduler
(CFS). On Linux, the thread priority is called a “nice value”. A low nice value corresponds to a high
priority and vice versa. In Android, a Linux thread has niceness values in the range of −20 (most
prioritized) to 19 (least prioritized), with a default niceness of 0 [42]. We exhibited in this work two
rules related to scheduling feature in Android, Rselect and Rstop. In the first rule, we presented a
function select() that plays the same role as the CFS, meaning it selects from runnable threads the most
prioritized thread based on nice values comparison and allocates to it an amount of time for execution.
The second rule stops a thread when the allocated time expires, prior to picking a new one through
Rselect. We mean by “monitoring mode” mentioned in threads scheduling, a monitor that is based on
the CFS algorithm that monitors each thread for each task executed, and we suppose that each rule in
the concurrent context is executing under a monitoring mode. This mode was presented just for Rstop

and omitted in other rules for simplification reasons.
The operational semantics are mainly created to secure Android applications. In fact, we intend

to use these semantics in an upcoming work to check a number of security proprieties to protect
users from rogue applications. Our ultimate goal is to formally reinforce security policies on Android
applications. That is to say, starting from a Smali+ program and a formal specification of a security
policy, we automatically generate a new equivalent secure version of the original program that
respects the security policy. Formally, the approach takes, as input, a Smali+ program P and a formal
specification of a security policy φ and generates, as output, a new version P′ that respects φ. The new
version of the program preserves all the behavior of the original version, except in cases where the
security policy is on the verge of being violated. This is equivalent to saying that the traces of P′ are
the intersection of traces accepted by φ and traces of P. It is formally modeled by (1).

P′ = P ∩ φ (1)

Information 2020, 11, 130 20 of 23

Security policies will be enforced through a program-rewriting approach that combines static
and dynamic approaches. It rewrites the program statically, according to a given security property,
then generates a new executable version that satisfies this property. Security modifications or tests are
added at well-calculated points in the program to force the latter to conform to the security property
during execution. In other words, the untrusted code will be transformed into a self-monitoring code
that will be exploded at specific points in the program. The rewritten version should be equivalent
but more restrictive than the original so that it will be able to avoid potentially dangerous operations
before they occur.

Reinforced security properties will obviously be specific to malware and attacks threatening
Android applications, such as sensitive information leakage, which could be SMS contents, call logs,
contact information or geographical location or Android financial malware, which exploit the premium
services to incur financial loss to the user for the benefit of the attacker, for example, by calling or
texting to premium-rate numbers without the user’s consent and privilege escalation attacks [43].
Therefore, all mediums that could be exploited for this kind of malware, such as Internet access,
system services access including SMS, contact, telephony, Bluetooth, Global Positioning System (GPS)
as well as APIs resulted from inter-application communication, will be checked through security
policies. Such APIs will be easily located in Smali+, since it provides for each invocation the class fully
qualified name.

8. Conclusions

In this paper, we have proposed a formal operational semantics for Smali, an assembly-like
code generated form reverse engineering Android applications. We called the new formal language
Smali+. Smali+ covers the semantics of a large subset of the main Dalvik instructions as well as
many important aspects related to multi-threading programming which are rarely considered in the
state-of-the-art works of Android applications. This formal model is meant to be an environment to
run formal verification of applications. Broader work consisting in techniques to reinforce the security
of Android applications using this formalism is currently underway. We are deeply convinced that
this will be of great help in analyzing the security of Android applications and verifying their hidden
functions affecting users’ privacy as well as protecting users from malicious actions.

Author Contributions: Conceptualization, M.Z., J.F. and M.M.; methodology, M.Z., M.M. and J.F; validation,
J.F., M.M. and E.P.; formal analysis, M.Z., M.M. and J.F.; investigation, M.Z., J.F., M.M. and E.P.; resources, M.Z.,
J.F., M.M. and E.P.; writing–original draft preparation, M.Z. and J.F.; writing–review and editing, M.Z. and J.F.;
supervision, M.M., J.F. and E.P.; project administration, M.M.; funding acquisition, M.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IDC Corporation. Smartphone Market Share. Available online: https://www.idc.com/promo/smartphone-
market-share/os (accessed on 19 February 2020).

2. Zhou, Y.; Jiang, X. Dissecting Android Malware: Characterization and Evolution. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012. [CrossRef]

3. Sergiu Gatlan. Anubis Android Trojan Spotted with Almost Functional Ransomware Module. Available
online: https://www.bleepingcomputer.com/news/security/anubis-android-trojan-spotted-with-almost-
functional-ransomware-module/ (accessed on 20 February 2020).

4. Barrett, L. SMS-Sending Trojan Targets Android Smartphones. Available online: https:
//www.esecurityplanet.com/trends/article.php/3898041/SMSSending-Trojan-Targets-Android-
Smartphones.htm/ (accessed on 2 January 2020).

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
http://dx.doi.org/10.1109/SP.2012.16
https://www.bleepingcomputer.com/news/security/anubis-android-trojan-spotted-with-almost-functional-ransomware-module/
https://www.bleepingcomputer.com/news/security/anubis-android-trojan-spotted-with-almost-functional-ransomware-module/
https://www.esecurityplanet.com/trends/article.php/3898041/SMSSending-Trojan-Targets-Android-Smartphones.htm/
https://www.esecurityplanet.com/trends/article.php/3898041/SMSSending-Trojan-Targets-Android-Smartphones.htm/
https://www.esecurityplanet.com/trends/article.php/3898041/SMSSending-Trojan-Targets-Android-Smartphones.htm/

Information 2020, 11, 130 21 of 23

5. Collier, N. New Android Trojan Malware Discovered in Google Play. Available online: https://blog.
malwarebytes.com/cybercrime/2017/11/new-trojan-malware-discovered-google-play// (accessed on 2
January 2020).

6. F-Secure. Trojan:Android/GGTracker Available online: https://www.f-secure.com/v-descs/trojan_
android_ggtracker.shtml (accessed on 2 January 2020).

7. Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Le Traon, Y.; Octeau, D.; McDaniel, P.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps. SIGPLAN Not. 2014, 49, 259–269. [CrossRef]

8. Felt, A.P.; Chin, E.; Hanna, S.; Song, D.; Wagner, D. Android Permissions Demystified. In Proceedings of
the 18th ACM Conference on Computer and Communications Security, New York, NY, USA, October 2011;
doi:10.1145/2046707.2046779. [CrossRef]

9. Davis, B.; Sanders, B.; Khodaverdian, A.; Chen, H. I-arm-droid: A rewriting framework for in-app reference
monitors for android applications. In Proceedings of the Mobile Security Technologies 2012, San Francisco,
CA, USA, May 2012. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.
7191&rep=rep1&type=pdf (accessed on 2 January 2020).

10. Xu, R.; Saïdi, H.; Anderson, R.J. Aurasium: Practical Policy Enforcement for Android Applications.
In Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10 August 2012; pp. 539–552.

11. Jeon, J.; Micinski, K.K. SymDroid : Symbolic Execution for Dalvik; CS-TR-5022; University of Maryland: College
Park, MD, USA, July 2012. Available online: http://www.cs.tufts.edu/~jfoster/papers/symdroid.pdf
(accessed on 4 January 2020).

12. Apktool. A Tool for Reverse Engineering Android Apk Files. Available online: https://ibotpeaches.github.
io/Apktool/ (accessed on 19 February 2019).

13. Na, G.; Lim, J.; Kim, K.; Yi, J.H. Comparative Analysis of Mobile App Reverse Engineering Methods on
Dalvik and ART. J. Internet Serv. Inf. Secur. 2016, 6, 27–39.

14. El-Zawawy, M.A. An Operational Semantics for Android Applications. In Proceedings of the Computational
Science and Its Applications - ICCSA 2016 - 16th International Conference, Beijing, China, 4–7 July 2016;
pp. 100–114.

15. Payet, E.; Spoto, F. An Operational Semantics for Android Activities. Available online: https://doi.org/10.
1145/2543728.2543738 (accessed on 5 December 2019).

16. Wognsen, E.; Karlsen, S. Static Analysis of Dalvik Bytecode and Reflection in Android. Master’s Thesis,
Department of Computer Science, Aalborg University, Aalborg, Denmark, 6 June 2012. Available online:
https://projekter.aau.dk/projekter/files/63640573/rapport.pdf (accessed on 10 December 2019).

17. Wognsen, E.; Søndberg Karlsen, H.; Chr. Olesen, M.; Hansen, R. Formalisation and analysis of Dalvik
bytecode. Sci. Comput. Program. 2014, 92, 25–55. [CrossRef]

18. Cousot, P.; Cousot, R. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, New York, NY, USA, January 1977; pp. 238–252. [CrossRef]

19. Payet, E.; Spoto, F. Static Analysis of Android Programs. Inf. Softw. Technol. 2012, 54, 1192–1201. [CrossRef]
20. Gunadi, H. Formal Certification of Non-interferent Android Bytecode (DEX Bytecode). In proceedings of

the 2015 20th International Conference on Engineering of Complex Computer Systems ICECCS, Gold Coast,
Australia, 9–12 December 2015; pp. 202–205.

21. Gunadi, H.; Tiu, A.; Gore, R. Formal Certification of Android Bytecode. arXiv 2015, arXiv:1504.01842v5.
Available online: https://arxiv.org/abs/1504.01842 (accessed on 19 February 2020).

22. Barthe, G.; Pichardie, D.; Rezk, T. A certified lightweight non-interference Java bytecode verifier. Math. Struct.
Comput. Sci. 2013, 23, 1032–1081. [CrossRef]

23. Maiya, P.; Kanade, A.; Majumdar, R. Race detection for Android applications. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, UK,
9–11 June 2014; pp. 316–325.

https://blog.malwarebytes.com/cybercrime/2017/11/new-trojan-malware-discovered-google-play//
https://blog.malwarebytes.com/cybercrime/2017/11/new-trojan-malware-discovered-google-play//
https://www.f-secure.com/v-descs/trojan_android_ggtracker.shtml
https://www.f-secure.com/v-descs/trojan_android_ggtracker.shtml
http://dx.doi.org/10.1145/2666356.2594299
http://dx.doi.org/10.1145/2046707.2046779
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.7191&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.7191&rep=rep1&type=pdf
http://www.cs.tufts.edu/~jfoster/papers/symdroid.pdf
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1145/2543728.2543738
https://doi.org/10.1145/2543728.2543738
https://projekter.aau.dk/projekter/files/63640573/rapport.pdf
http://dx.doi.org/10.1016/j.scico.2013.11.037
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1016/j.infsof.2012.05.003
https://arxiv.org/abs/1504.01842
http://dx.doi.org/10.1017/S0960129512000850

Information 2020, 11, 130 22 of 23

24. Kanade, A. Chapter Seven - Event-Based Concurrency: Applications, Abstractions, and Analyses.
Adv. Comput. 2019, 112, 379–412.

25. Bouajjani, A.; Emmi, M.; Enea, C.; Ozkan, B.K.; Tasiran, S. Verifying Robustness of Event-Driven
Asynchronous Programs Against Concurrency. In Proceedings of the Programming Languages and Systems
26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, Uppsala, Sweden, 22–29 April 2017; pp. 170–200.

26. Calzavara, S.; Grishchenko, I.; Koutsos, A.; Maffei, M. A Sound Flow-Sensitive Heap Abstraction for
the Static Analysis of Android Applications. arXiv 2017, arXiv:1705.10482v2. Avaiable online: https:
//arxiv.org/pdf/1705.10482.pdf (accessed on 15 December 2019).

27. Calzavara, S.; Grishchenko, I.; Maffei, M. HornDroid: Practical and Sound Static Analysis of Android
Applications by SMT Solving. In Proceedings of the 2016 IEEE European Symposium on Security and
Privacy (EuroSP), aarbrucken, Germany, 21–24 March 2016. [CrossRef]

28. Chaudhuri, A. Language-based security on Android. In Proceedings of the 2009 Workshop on Programming
Languages and Analysis for Security, Dublin, Ireland, 15–21 June 2009. [CrossRef]

29. Chen, T.; He, J.; Song, F.; Wang, G.; Wu, Z.; Yan, J. Android Stack Machine. Computer Aided Verification.
In Proceedings of the 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, Oxford, UK, 14–17 July 2018; pp. 487–504. [CrossRef]

30. He, J.; Chen, T.; Wang, P.; Wu, Z.; Yan, J. Android Multitasking Mechanism: Formal Semantics and Static
Analysis of Apps. In Proceedings of the Programming Languages and Systems - 17th Asian Symposium,
Nusa Dua, Bali, Indonesia, 1–4 December 2019; pp. 291–312. [CrossRef]

31. Bagheri, H.; Kang, E.; Malek, S.; Jackson, D. Detection of Design Flaws in the Android Permission Protocol
Through Bounded Verification. In Proceedings of the FM 2015: Formal Methods - 20th International
Symposium, Oslo, Norway, 24–26 June 2015; pp. 73–89. [CrossRef]

32. Ren, L.; Chang, R.; Yin, Q.; Man, Y. A Formal Android Permission Model Based on the B Method. In
Proceedings of the Security, Privacy, and Anonymity in Computation, Communication, and Storage 10th
International Conference, Guangzhou, China, 12–15 December 2017; pp. 381–394. [CrossRef]

33. Khan, W.; Kamran, M.; Ahmad, A.; Khan, F.A.; Derhab, A. Formal Analysis of Language-Based Android
Security Using Theorem Proving Approach. IEEE Access 2019, 7, 16550–16560. [CrossRef]

34. Qin, J.; Zhang, H.; Wang, S.; Geng, Z.; Chen, T. Acteve++: An Improved Android Application Automatic
Tester Based on Acteve. IEEE Access 2019, 7, 31358–31363. [CrossRef]

35. Anand, S.; Naik, M.; Harrold, M.J.; Yang, H. Automated concolic testing of smartphone apps. In Proceedings
of the 20th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20), Cary, NC,
USA, 11–16 November 2012; p. 59. [CrossRef]

36. Nisi, D.; Bianchi, A.; Fratantonio, Y. Exploring Syscall-Based Semantics Reconstruction of Android
Applications. In Proceedings of the 22nd International Symposium on Research in Attacks, Intrusions and
Defenses, Beijing, China, 23–25 September 2019; pp. 517–531.

37. Chin, E.; Felt, A.P.; Greenwood, K.; Wagner, D. Analyzing Inter-application Communication in Android.
In Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, New York,
NY, USA, June 2011; pp. 239–252. [CrossRef]

38. Drake, J.J.; Lanier, Z.; Mulliner, C.; Fora, P.O.; Ridley, S.A.; Wicherski, G. Android Hacker’s Handbook; Wiley
Publishing: Hoboken, NJ, USA, 2014.

39. Android Open Source Project (AOSP). Dalvik Bytecode. Available online: https://source.android.com/
devices/tech/dalvik/dalvik-bytecode (accessed on 30 January 2020).

40. Oracle Corporation. Java Documentation on Thread. Available online: https://docs.oracle.com/javase/8/
docs/api/java/lang/Thread.html (accessed on 2 October 2019).

41. Oracle Corporation. Java Documentation on Object. Available online: https://docs.oracle.com/javase/8/
docs/api/java/lang/Object.html (accessed on 2 October 2019).

https://arxiv.org/pdf/1705.10482.pdf
https://arxiv.org/pdf/1705.10482.pdf
http://dx.doi.org/10.1109/EuroSP.2016.16
http://dx.doi.org/10.1145/1554339.1554341
http://dx.doi.org/10.1007/978-3-319-96142-2_29
http://dx.doi.org/10.1007/978-3-030-34175-6_15
http://dx.doi.org/10.1007/978-3-319-19249-9_6
http://dx.doi.org/10.1007/978-3-319-72389-1_31
http://dx.doi.org/10.1109/ACCESS.2019.2895261
http://dx.doi.org/10.1109/ACCESS.2019.2902608
http://dx.doi.org/10.1145/2393596.2393666
http://dx.doi.org/10.1145/1999995.2000018
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Information 2020, 11, 130 23 of 23

42. Göransson, A. Efficient Android Threading: Asynchronous Processing Techniques for Android Applications, 1st ed.;
O’Reilly Media: Sebastopol, CA, USA, 2014; ISBN 978-1449364137.

43. Davi, L.; Dmitrienko, A.; Sadeghi, A.; Winandy, M. Privilege Escalation Attacks on Android. In Proceedings
of the Information Security 13th International Conference, Boca Raton, FL, USA, 25–28 October 2010;
pp. 346–360.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	Registers
	Method Invocation
	Types in Smali

	Operational Semantics for a Single-Threaded Application
	Notations
	Syntax
	Semantics

	Operational Semantics for a Multi-Threaded Program
	Syntax
	Semantics

	Practical Aspects
	Discussion
	Conclusions
	References

