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Abstract: With the rapid development of modern society, generated data has increased exponentially.
Finding required data from this huge data pool is an urgent problem that needs to be solved. Hashing
technology is widely used in similarity searches of large-scale data. Among them, the ranking-based
hashing algorithm has been widely studied due to its accuracy and speed regarding the search results.
At present, most ranking-based hashing algorithms construct loss functions by comparing the rank
consistency of data in Euclidean and Hamming spaces. However, most of them have high time
complexity and long training times, meaning they cannot meet requirements. In order to solve these
problems, this paper introduces a distributed Spark framework and implements the ranking-based
hashing algorithm in a parallel environment on multiple machines. The experimental results show
that the Spark-RLSH (Ranking Listwise Supervision Hashing) can greatly reduce the training time
and improve the training efficiency compared with other ranking-based hashing algorithms.
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1. Introduction

With the continuous development of computing technology and digital media technology in
recent years, data generation is increasing every day. This data exists in many forms, including text,
images, audio, video, and other forms. Obtaining the information that people need from these massive
and high-dimensional data quickly and accurately is an important technical problem [1,2].

At present, there are mainly two ways to solve such problems. One is a tree-based spatial
partitioning method, which mainly represents red-black trees, kd-tree, and R-trees [3,4]. However,
the disadvantages of this method is that it is only applicable to low-dimensional data. When the
dimension rises sharply, it will produce problems such as “dimension disaster”, and its search efficiency
is close to a linear search function. The other method is a hashing-based search method. This
method is also divided into two categories, with one being the data-independent method and the
other being locality-sensitive hashing (LSH) [5,6]. This second method employs data dependence. It
is also a popular machine learning-based approach that encodes the relevant characteristics of the
learning data, thereby improving the retrieval speed and reducing the storage cost [6]. However, some
hashing algorithms are currently taking too long to meet the search requirements of the current big
data environment.

On the other hand, as the data scale is ever-increasing, the storage and processing requirements
of data cannot be met in a stand-alone environment. Therefore, distributed processing systems have
emerged for big data, mainly including Hadoop, Storm, and Spark. These distributed systems can
process data quickly and in parallel by storing data on multiple computer nodes. By combining the
advantages of learning with hashing and distributed systems, this paper designs and implements a
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distributed learning and hashing method based on the Spark computing platform, which can reduce
training time greatly and improve training efficiency.

Section 2 of this paper introduces some of the main learning points for hashing and ranking-based
hashing methods. Section 3 introduces the ranking-based hashing algorithm and the resilient distributed
dataset model in Spark. Section 4 describes the distributed ranking-based hashing algorithm, along
with its design and implementation in the Spark platform. Section 5 analyzes the experimental results
of the distributed ranking-based hashing algorithm on several data sets and compares it with several
other algorithms. Section 6 is the conclusion.

2. Related Work

In recent years, the learning methods for hashing have been researched extensively due to the
faster retrieval speed and lower storage cost, and the core idea is to convert high-dimensional data into
compact binary codes by using various machine learning algorithms. By setting a reasonable learning
goal, the obtained Hamming codes can maintain the similarity of the original data. The convenient
calculation of the Hamming distance also improves the retrieval efficiency of large-scale data.

Currently, the hashing learning methods are mainly divided into two types based on the presence or
absence of tag information: unsupervised hashing and supervised hashing (including semi-supervised
hashing). Representative unsupervised hashing methods include locality-sensitive hashing (LSH) [7],
spectral hashing (SH) [8], self-taught hashing (STH) [9], iterative quantization (ITQ) [10], unsupervised
deep video hashing (UDVH) [11], and principal component analysis hashing (PCAH) [12]. The current
classical methods of supervised hashing are minimal loss hashing (MLH) [13], supervised hashing
with kernels (KSH) [14], supervised discrete hashing (SDH) [15], discrete semantic alignment hashing
(DSAH) [16], and linear discriminant analysis hashing (LDAH) [17].

Although the above hashing learning methods have achieved good results, they rarely consider
the ranking information in the actual search task. This is because, in general, in the process of searching
through the search engine, the returned query results are arranged from top to bottom according to the
degree of relevance to the query point.

Based on this, some ranking-based hashing methods have appeared in recent years [18–24], which
preserve information by retaining triples (such as learning hash functions using column generation
(CGH) [25], Hamming distance metric learning (HDML) [26], etc.) or listwise supervision information
(listwise supervision hashing (RSH) [27], ranking preserving hashing (RPH) [28], deep semantic
ranking-based hashing (DSRH) [29], discrete semantic ranking hashing (DSeRH) [30], etc.) to learn to
generate hashing codes. The triplet supervision method is used to establish a triple

(
xq, xi, x j

)
, where

xq represents the query point, xi represents data similar to the query point, and x j represents the data
that is not similar to the query point. The code is created by establishing the loss function to make xi
more similar to xq, and x j less similar to xq. The listwise supervision method is used to rank all the
points in the database in the Euclidean and Hamming spaces, according to the similarity between the
query points and data points, and so that the ranking of each point is as consistent as possible in the
two spaces.

3. Basic Knowledge

Ranking-Based Hashing Algorithm

The ranking hashing algorithm is one of the supervised learning methods used for hashing
algorithms, which better satisfies the search task requirements faced by people in real life. This paper
adopts a ranking-based hashing algorithm based on listwise supervision. The basic idea is shown in
Figure 1. Here, x1, x2, x3, and x4 represent four data points in the datasets, and q represents the query
point. By calculating the distance between q and four data points in the Euclidean space and then
ranking the four points according to the distance, the ranking list R1 = (r1, r3, r2, r4) is obtained, where
r1, r3, r2, r4 represent the relevance ranking of x1, x3, x2, x4 and query point q, respectively. At the same
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time, by encoding all the data points and calculating the distance between q and the four data points in
the Hamming space, the ranking list R2 = (r1, r2, r3, r4) is also obtained. Finally, we compare R1 and
R2, then construct the loss function L to keep R1 and R2 as consistent as possible.
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4. Distributed Ranking-Based Hashing Algorithm

4.1. Overall Description of the Algorithm

At present, the complexity of most of the ranking-based hashing algorithms is too high to meet
the existing training requirements, while the distributed Spark platform can execute the algorithm
flow in parallel and shorten the training time. Therefore, this paper proposes a ranking-based hashing
based on the distributed Spark platform. The algorithm is described as follows:

1. In the distributed Spark environment, all the data in the datasets are mapped to different averaged
working nodes. The Euclidean distances between the query points in the query set and all the
data points in the datasets in each working node are calculated, and then the distance is ranked.
The actual ranking of each point is obtained.

2. Similarly, the query points and all the data points are converted into binary codes on each working
node, and the Hamming distance is calculated to obtain the ranking in the Hamming space.

3. According to the loss function, minimize the inconsistency of the data points in the two spaces is
minimized. The data transformation matrix on each working node is calculated, and then all the
nodes are summed and the average values are calculated using the gradient descent method until
the algorithm converges or the number of iterations is reached.

4.2. The Details of the Algorithm

Suppose there are data points in the dataset that expressed as χ = {x1, x2, . . . , xN} ∈ Rd×N, where d
represents the characteristic dimension of the data and there is also a query set Q =

{
q1, q2, . . . , qM

}
∈

Rd×M. The number of nodes in the distributed Spark cluster is S. For any of the working nodes, the
dataset χs (χ1 ∪ χ2 ∪ . . .∪ χs = χ and χi ∩ χ j = 0 ) is assigned, along with the query set Q. For any
query point q j in the query set Q, we can calculate the distance from each of the datasets χs directly
based on the distance formula of the two points, then ranking the points according to the distance,
obtaining the relevance ranking list (we believe that the smaller the Euclidean distance from the query
point, the greater the correlation, thus the smaller the ranking), which is recorded as:

r
(
q j,χs

)
=

(
r j

1, r j
2, . . . , r j

N

)
(1)
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where r j
i ∈

[
1, N

S

]
, which represents the similarity ranking between the data sample x j

i and the query

point q j. If r j
m < r j

n, this means that xm is more similar to the query point q j than xn. Our goal is to
obtain the hashing function ƒ(·) to generate the binary codes h : R→ {−1, 1} and to define the hashing
function mapping as follows:

hi = f (xi) = sgn(Wxi) (2)

where W ∈ RB×d, B represents the length of the codes, and we define the following formula to calculate
the Hamming distance after the query points and the training data points are encoded:

Ham
(
hq, hi

)
=

B
σ−1∑
s=0

2s
·

1
4‖hqs − his‖

2

=

B
σ−1∑
s=0

2s
·

1
2

(
σ− hT

qshis

)
=

B
σ−1∑
s=0

2s−1
(
σ− hT

qs his

)
(3)

Based on the above formula, we divide the codes into several subspaces of the same length, where
the parameter σ represents the length of each subspace. Here, B

σ is the number of subspaces that are
divided, and then according to the above Hamming distance calculation formula, the ranking of each
point in the datasets is obtained. The ranking information of point R j

m is:

R j
m = 1 +

N∑
k=1

I
(
Ham

(
q j, x j

m

)
> Ham

(
q j, x j

k

))
= 1 +

N∑
k=1

I
(
Ham

(
q j, x j

m

)
−Ham

(
q j, x j

k

)
> 0

)
= 1 +

N∑
k=1

I

 B
σ−1∑
s=0

2s−1
(
σ− hT

q js
h

x j
ms

)
−

B
σ−1∑
s=0

2s−1
(
σ− hT

q js
h

x j
ks

)
> 0


= 1 +

N∑
k=1

I

 B
σ−1∑
s=0

2s−1
· hT

q js

(
h

x j
ks
− h

x j
ms

)
> 0


(4)

Finally, we compare the sizes of r j
m and R j

m to construct the loss function, so that the two are as
consistent as possible.

For any worker node in a spark cluster, we define the loss function as:

L(q, xi, s) =
Ns∑
i=1

1
2 log(1 + ri)

(ri −Ri)
2 (5)

where 1
2 log(1+ri)

represents the ranking weight of the data points; obviously, the greater the weight of
the real ranking in the Euclidean space, the smaller the value. Therefore, for all nodes, the total loss
function is defined as:

L(Q,χ, S) =
S∑

s=1

M∑
j=1

Ns∑
i=1

1

2 log
(
1 + r j

i

) (r j
i −R j

i

)2
+
λ
2
‖WWT

− I‖
2
F (6)

where λ represents the balance factor and λ
2 ‖WWT

− I‖
2
F represents a regularization term to prevent

overfitting during training. Finally, we derive the above loss function:

∂L(Q,χ, S)
∂W

=
S∑

s=1

M∑
j=1

Ns∑
i=1

1

log
(
1 + r j

i

) · (R j
i − r j

i

)
·
∂R j

i
∂W

+2λWT
(
WWT

− I
)

(7)
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The gradient on each working node can be obtained by the updated rule of the gradient
descent method:

Ws
t+1 = Ws

t − α
∂L(q, xi, s)
∂Ws

t
(8)

where α represents the learning factor, the total of which can be calculated as:

W =

S∑
s=1

Ws

S
(9)

The entire algorithm execution architecture is shown in Figure 2.Information 2020, 11, x FOR PEER REVIEW 16 of 10 
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Figure 2. The running framework of Spark-RLSH.

5. Experiments

5.1. Experimental Platform Construction

The cluster system of the experimental platform is mainly composed of ten hosts, one of which
has a master node (name node) and nine computer nodes (data nodes). The CPU for all hosts is an
Intel Core i5-3470, and the memory is 8GB DDR3. In addition, the software environment plays a vital
role as a prerequisite for building Hadoop and Spark distributed cluster environments. The specific
configuration of the software environment of each machine is shown in Table 1.

Table 1. Configuration of software environment for experimental clusters.

Software Environment Configuration

Operation System Ubuntu 14.04
Hadoop Hadoop 2.7.6

Spark Spark 2.3.0
Java jdk-8u172

Python Python 3.5.2

5.2. Experimental Datasets

This paper mainly experiments with two public datasets, which are the CIFAR-10 dataset and
MNIST dataset, and compares these with other ranking-based hashing algorithms (RSH [27], RPH [28]).
In the experiment, the data is subjected to pre-processing, such as zero-meanization, and then the
image dataset is converted into matrix form by feature extraction and transformation to facilitate
the operation.
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CIFAR-10 dataset: This contains 60,000 1024-dimensional image data points and includes a total
of 10 categories. In this experiment, 320-dimensional gist features were extracted from each photo in
the CIFAR-10 dataset, 2000 images were randomly selected as a test dataset, another 2000 images were
used as a training dataset, and 200 images were used as a query dataset.

MNIST dataset: This is a handwritten digital image dataset (0–9) containing 60,000 use cases. We
also extracted 520-dimensional GIST features for each photo, and randomly selected 2000 images as test
datasets. Here, 2000 images are used as a training dataset and 200 images are used as a query dataset.

5.3. Experimental Result

Experiments compare the time required for several hashing algorithms to iterate once when
encoding lengths are 16, 32, and 64 bits in two data sets. It can be seen from Figures 3 and 4 and Tables 2
and 3 that both Spark-RLSH datasets have the shortest training times and the fastest running speeds.
RSH and RPH have the longest training times due to their operation in the stand-alone environment.
At the same time, with the linear increase of the coding length, the training time for Spark-RLSH also
grows linearly, while for RSH and RPH, the two ranking-based hashing algorithms, the training time
has nothing to do with the length of the code basically remains unchanged.
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Table 2. Comparison of training times of different algorithms for CIFAR-10 datasets.

16 bit 32 bit 64 bit

RPH 5000.68 5420.92 5087.96

RSH 9803.62 9388.89 9162.93

RLSH 26478.66 51835.27 104892.85

Spark-RLSH 395.77 796.71 1602.98
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Table 3. Comparison of training times of different algorithms for MNIST datasets.

16 bit 32 bit 64 bit

RPH 10889.39 11542.78 11095.41

RSH 20577.43 20629.58 19171.19

RLSH 46302.18 93483.59 191638.21

Spark-RLSH 1073.69 2204.01 4495.96

At the same time, Figure 5a,b also compares the top 50 normalized discounted cumulative gain
(NDCG) values returned by the three ranking-based hashing algorithms for the two datasets. Although
the NDCG value for Spark-RLSH is slightly lower than for RSH and RPH, considering the training
time cost, this result is acceptable when the code length is short.

Information 2020, 11, x FOR PEER REVIEW 18 of 10 

 

Although the NDCG value for Spark-RLSH is slightly lower than for RSH and RPH, considering 91 
the training time cost, this result is acceptable when the code length is short. 92 

 
 

(a) CIFAR-10 dataset (b) MNIST dataset 

Figure 5. Top 50 normalized discounted cumulative gain (NDCG)  values from different datasets. 93 
(a) CIFAR-10 dataset, (b) MNIST dataset. 94 

It can be seen from this result that the ranking-based hashing algorithm implemented on the 95 
Spark distributed platform can greatly shorten the training time of the algorithm and improve the 96 
training efficiency. 97 

6. Conclusion 98 
This paper introduces the running architecture and working principle of Spark in detail, and 99 

proposes the basic principle and algorithm-specific flow of the ranking-based hashing algorithm 100 
implemented on the distributed Spark platform. Here, we divide large datasets into small datasets 101 
with the same number of working nodes, and compare the ranking of the query set and the small 102 
dataset in the Euclidean space and the Hamming space for each working node. Finally, we 103 
construct the loss function and run the gradient descent method until the function converges or 104 
reaches the number of iterations that minimizes total loss. 105 

Experiments show that the Spark distributed platform can effectively reduce the training time 106 
of the model and greatly improve the training efficiency. In the future, we can consider the 107 
following points to improve the existing ranking-based hashing algorithm: 108 
1. Improvements in the ranking formula. After converting the data points into binary codes, all 109 

the data needs to be ranked according to Hamming distance, and then the ranking list can be 110 
constructed. This requires comparison between every two points, so that the time complexity of 111 
the designed ranking algorithm is too high, which can seriously affect the training efficiency. 112 
Later, we can consider redesigning the ranking formula to run the algorithm model with the 113 
lowest cost. 114 

2. The gradient descent method is implemented as a whole on the distributed platform. This 115 
paper considers the complexity of the algorithm in the ranking process. Each working node 116 
runs the algorithm model and implements the gradient descent method independently. 117 
Although this method can reduce the training time of the model effectively, there is no overall 118 
calculation gradient, and there is a certain training error. In the future, the overall comparison 119 
of the Hamming distance between the query set and the dataset can be considered, which can 120 
improve the accuracy of the search and reduce the training time simultaneously. 121 

Figure 5. Top 50 normalized discounted cumulative gain (NDCG) values from different datasets. (a)
CIFAR-10 dataset, (b) MNIST dataset.

It can be seen from this result that the ranking-based hashing algorithm implemented on the
Spark distributed platform can greatly shorten the training time of the algorithm and improve the
training efficiency.

6. Conclusion

This paper introduces the running architecture and working principle of Spark in detail, and
proposes the basic principle and algorithm-specific flow of the ranking-based hashing algorithm
implemented on the distributed Spark platform. Here, we divide large datasets into small datasets
with the same number of working nodes, and compare the ranking of the query set and the small
dataset in the Euclidean space and the Hamming space for each working node. Finally, we construct
the loss function and run the gradient descent method until the function converges or reaches the
number of iterations that minimizes total loss.

Experiments show that the Spark distributed platform can effectively reduce the training time of
the model and greatly improve the training efficiency. In the future, we can consider the following
points to improve the existing ranking-based hashing algorithm:

1. Improvements in the ranking formula. After converting the data points into binary codes, all
the data needs to be ranked according to Hamming distance, and then the ranking list can be
constructed. This requires comparison between every two points, so that the time complexity
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of the designed ranking algorithm is too high, which can seriously affect the training efficiency.
Later, we can consider redesigning the ranking formula to run the algorithm model with the
lowest cost.

2. The gradient descent method is implemented as a whole on the distributed platform. This paper
considers the complexity of the algorithm in the ranking process. Each working node runs the
algorithm model and implements the gradient descent method independently. Although this
method can reduce the training time of the model effectively, there is no overall calculation
gradient, and there is a certain training error. In the future, the overall comparison of the
Hamming distance between the query set and the dataset can be considered, which can improve
the accuracy of the search and reduce the training time simultaneously.
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