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Abstract: The paper deals with learning objects for introductory modeling of simple dynamical
systems and design of controllers with disturbance observer-based integral action. They can be used
to illustrate the design process of state controllers, state and disturbance observers, as well as to get
in touch with a popular approach called active disturbance rejection control (ADRC). In both cases,
external disturbances along with errors resulting from model inaccuracies are reconstructed using
the extended state observer (ESO). In addition to simulation and design of regulators and observers
in Matlab/Simulink, the learning objects focus on the development of relevant terminology and
competencies in the field of simulation, modeling and experimentation in traditional laboratories,
with the support of LMS Moodle and remote control. The main innovativeness of the paper is to
clarify the relationship of ADRC to the traditional state space controllers design and modeling by
using two types of linear models approximating controlled nonlinear systems.

Keywords: learning object; modeling; identification; extended state observer; Matlab/Simulink;
laboratory experiment; remote control

1. Introduction

The state-space approach to the analysis and design of control systems has been developed in the
1960s. As a part of the “Modern Control Theory (MCT)”, it was supposed to eliminate all deficiencies
of the traditional proportional–integral–derivative control, as, for example, the windup effect of the
integral action appearing under constrained control. Under known plant input, the system’s state
should be enough to predict future system behavior, which might be used for dealing with time
delays in next steps. Effects of unknown disturbance could be taken into account by using appropriate
disturbance models [1,2]. Its states then enlarged the state vector corresponding to the plant dynamics.

1.1. Model-Based versus Model-Free Approaches

Various results of the state space approach can now be found as part of an alternative known as
active rejection control (ADRC). Based on the school by H.S. Tsien, the ADRC has been proposed by
J. Han [3] and further developed by Z. Gao [4,5] and many co-workers. It is often applied in applications
using complex nonlinear mechatronic systems (see, e.g., [6–9]). Some latest ADRC experimental results
in energy systems are in [10,11], while other approaches can be found, e.g., in [12–14]. They see the
PID control as a result of an empirical design made without a mathematical model. They find the root
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of theory vs. practical hassle in the established MCT and primal practices antagonism. Nevertheless,
MCT does not have to rely on precise mathematical models. Its application to the solved problems
can be impractical and inflexible, so that its internal abilities to deal with uncertainties are ignored.
Some current papers are not precise when interpreting ADRC as a model-free approach, which is in
contrast to the traditional model-based analysis and designs. Namely ADRC is also model-based, but
uses simpler models, like integrating models. Some models are derived from complex and nonlinear
systems, approximated by the zeroth therm of their Taylor series expansion around some (possibly
variable) working point [15]. The locally “frozen” internal feedback of integrating models can then
be combined with possible internal and external errors to produce equivalent disturbance in order to
create an “ultra-local” plant model [16]. Such a simplification can be justified not only by engineering
intuition, but also by mathematical tools. Simply, in Taylor’s expansion, only the zeroth term will be
used instead of zeroth and the first term.

1.2. History Started Long Time Ago

ADRC and other postmodern “model-free” approaches based on integrating models (such as
Model-Free Control—MFC, developed by M. Fliess and co-workers [16]) are often seen as “paradigm
shifts”. Simplifications that can be easily explained by using two types of linear models can be traced
back to the origins of control theory. Let us, for example, mention the famous controller tuning
method by Ziegler and Nichols [17]. Their identification of step responses by a tangent drawn through
the inflection point can also be interpreted as an approximation of plants by an integrating model
of the device with a linearly increasing step response that is shifted by time delay. Feldbaum [18]
in his book on optimal control, discusses the early patent of Russian engineers from 1935 using
quadratic velocity feedback—a feature typical for minimum time control of double integrator systems.
The implementation was much easier than the implementation of a minimal time control based on
“usual” linear plant model. A similar approach was later developed by J. Han [3] in the ADRC.

1.3. Problem Statement and Contribution of the Paper

The goal of the learning objects designed for ADRC is:

• to present the reconstruction and compensation of the disturbances provided by this method
as the simplest case of a more general approach to the reconstruction of an extended state vector
including equivalent disturbance, which is then compensated for by an opposite signal, the state
controller design and the delay compensation,

• to discuss several approaches in approximating nonlinear systems by linear models of
different complexity,

• to explain relations between ADRC and MCT.

Next, it will be shown how these learning objects can be developed and used within the
experiment-based learning framework. In order to highlight the differences between the conventional
design in the state space and the ADRC, the coefficients a, which are usually used in linear first order
plant models, are highlighted by red. Substitution a = 0 in the equations corresponds to ADRC.

2. Compensation of Input Disturbances

2.1. Controller Derivation

For a piecewise constant setpoint value w = const yielding the control error e = w− y, by using
the plant model expressed in differential equation form:

dy
dt

= ẏ = Ks[ur + di]−ay = −de
dt

(1)
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while the required model for the control error dynamics equals

ė = λe, (2)

where for λ < 0 the error decreases exponentially in time. The control signal ur is as follows:

ur = KP(w− y)+aw/Ks − di; KP = −(λ+a)/Ks (3)

Obviously, when based on a reconstructed di = d + dm, the merging effect of an external
disturbance d and of a modeling disturbance dm due to model uncertainty, should be counteracted at
the P-controller output (Figure 1). It should be noted that for a = 0 the modeling disturbance includes
also the internal feedback which equals to −ay.

Figure 1. Controller design with compensation of an input disturbance di = d + dm merging effect of
an external disturbance d and of a modeling disturbance dm due to model uncertainty.

2.2. Reconstruction of an Input Disturbances by ESO

The model of equivalent disturbance di represents a new state variable. A piece-wise constant
di, e.g., step function, can correspond to a sequence of Dirac pulses at an integrator input (Figure 2),
because each step function can be described by integral of Dirac delta function. The corresponding
state-space plant model is therefore

ẋ =

[
−a Ks

0 0

]
x +

[
Ks

0

]
u +

[
0
1

]
δ

y =
[

1 0
]

x
(4)

where x =

[
y
di

]
.

Figure 2. Input disturbance di may be interpreted as a new plant state of an integrator with a
non-controlled and non-measurable input δ.

The extended state observer (ESO) contains correction of the state variables proportional to the
difference between the plant and the model output y - y (weighted by p1 and p2): The unknown signal
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δ acting on plant in Figure 2 can not be directly measured. Therefore, it should be reconstructed by
input and output tracking (see Figure 3):

ẋ =

[
−a Ks

0 0

]
x +

[
Ks

0

]
u +

[
p1

p2

]
(y− y)

x =

[
y
di

]
; y =

[
1 0

]
x

(5)

The piecewise constant disturbance di may also be used for slowly varying input disturbances
approximation. In more general cases, e.g., for linearly increasing or decreasing disturbances, or for
periodic disturbances, the higher order disturbance models have to be used.

Figure 3. Extended state observer design.

2.3. Observer Tuning

After substituting y = [1 0]x into the state equation in (5), we get extended state-observer as a
system with inputs consisting of the plant output (y) and input (u) signals:

ẋ =

[
−p1−a Ks

−p2 0

]
x +

[
Ks

0

]
u +

[
p1

p2

]
y

x =

[
y
di

]
; y =

[
1 0

]
x

(6)

Observer’s state matrix

As = sI−A =

[
s + p1+a −Ks

p2 s

]
; (7)

has the following characteristic polynomial:

As(s) = s2 + (p1+a)s + p2Ks = (s− λ)2 = s2 − 2λs + λ2 (8)

By choosing a double pole λ < 0, which may represent the only tuning parameter, we get the
observer gains

p1 = −2λ−a; p2 = λ2/Ks (9)

Frequently, the time constant Tc = −1/λ is used instead of pole λ.
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3. Real Experiments

In paper [19], we have demonstrated two experiments by a fan speed (RPM) control. In this paper
we expand the experiments section by presenting the results on a DC motor. The laboratory DC motor
plant model is shown in Figure 4.

Figure 4. DC motor laboratory plant.

The plant is based on Arduino UNO micro controller, the angular velocity (system output) of
the DC motor is measured by optical encoder. The adjustment screw on the left side of the plant
can provide additional load. In this paper it is controlled via Matlab Simulink environment using
Serial communication at 115,200 baud. The sampling frequency is 100 Hz. The control signal from
Matlab/Simulink is an integer in the range of 0–255, which is used by arduino controller to make pulse
width modulated (PWM) signal with duty cycle in range of 0–100% proportionally. The PWM signal
frequency is 980 Hz.

3.1. Step Response-Based Plant Approximation

The process model parameters are calculated from step response. The DC motor input range
is 0 to 6 V. The chosen working point is 3 V, since the plant static input-output characteristics is the
most linear there, as can be seen from Figure 5. All the experiments were performed without any
additional load.

In Figure 6 there are two step responses. The first corresponds to input step from 0 to 3 V, to bring
the plant to the desired working point. The second response corresponds to input step change from
3 V to 4 V. The process parameters are calculated from the second step-response.
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Figure 5. Static input-output characteristics.
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Figure 6. Process step-response.

The plant dynamics, approximated by static first-order transfer function:

Gs(s) =
Ks

s + a
=

2371.1
s + 1.031

(10)

is in Figure 7.
This model ensures good match between the model and the controlled system in chosen

working point.
Simpler, the single integrator model approximation at the steepest part of the step response in

Figure 8 yields

Gs(s) =
Ks

s
=

4237.5
s

(11)

Such a model appears to be less accurate, but has better local fitting after step-change. As we
shown later, the model (11) may be more suitable for controller design. When compared with the
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results from paper [19], obtained by a different laboratory model, Ks of integrating model is now
higher than the static model gain.

Remark 1. As obvious from Figure 2, a more realistic plant approximation could be based on the first-order
models with a dead-time Td. After approximating its value by nth order time constant T = Td/n, n ≥ 2
range of appropriate controller gains may be estimated by the root-locus method. Range of applicable closed loop
poles/time constants Tc may then be determined according to (3).
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s
=2371.1, a=1.031
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model

Figure 7. First order model approximation.
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Figure 8. Simple integrator model approximation.

The control loop in Figure 9 employs P controller with static feed-forward and extended state
observer. Several combinations of closed-loop poles and models have been used for controller tuning.
The controller gain Kp from (3) can be tuned, e.g., by root locus method. The experiments performed
on DC motor plant start from a steady-state at setpoint 3000 RPM, then a setpoint step change is made
from 3000 RPM to 4000 RPM. After the process output is stabilized at 60 s, the input disturbance
is applied by subtracting 0.5 V from the control signal. In Figures 10–13 it can be seen, that the
control signal does not reach the same steady-state value because of the heating produced by the
previous experiments.



Information 2020, 11, 151 8 of 15

Figure 9. Closed control loop: P controller with static feed forward (orange), extended state observer
(yellow), controlled plant (blue).
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Figure 10. Comparison—setpoint step—process variable.
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3.2. Qualitative and Quantitative Evaluation

When evaluating the control quality, the performance of the closed-loop response should be
quantified. The speed of transients is usually quantified by Integrated Absolute Error (IAE) [20]. The
shapes of optimal transients will be quantified by the deviation from a piece-wise monotonicity of
the manipulated variable and process input variable in terms of a modified total variation TV (see,
e.g., [21]). The results corresponding to all performed experiments are summarized in Tables 1 and 2.
Lower values correspond to better performance in all cases. Obviously, both models give comparable
results (better in some cases, worse in others). Therefore, using a more complex model with a 6= 0
does not bring any significant improvements. However it can improve performance if suitable poles
are chosen.
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Table 1. Performance measures—Setpoint step (SM: static model (10), IM: integrating model (11),
λ1: P controller closed loop pole, λ2: observer pole).

Model λ1 λ2 yIAE uTV1 yTV0

SM −2.5 −1 533.73 5.894491825 9428
IM −2.5 −1 1833.07 6.043284497 9330
SM −2.5 −2.5 562.56 6.432918939 9832
IM −2.5 −2.5 1096.26 6.371039265 9840
SM −2.5 −5 536.6 6.168313879 8808
IM −2.5 −5 817.45 6.402538277 9968
SM −4 −1 353.29 11.10806451 8852
IM −4 −1 1284.97 9.749876336 9690
SM −4 −4 581.09 13.99768388 10342
IM −4 −4 635.88 9.301805688 9248
SM −4 −5 481.41 9.220900011 6424
IM −4 −5 565.48 5.201099543 4656
SM −5 −3 405.22 11.52032935 6684
IM −5 −3 576.62 6.499809124 4900
SM −5 −5 564.62 19.41022646 10788
IM −5 −5 483.33 12.97349199 10470
SM −5 −7 558.19 27.23828 14294
IM −5 −7 439.34 12.70464701 10124
SM −1.5 −1.5 813.45 2.19723531 10444
IM −1.5 −1.5 2331.15 3.8604877 9710
SM −0.9 −1 1367.53 0.656394532 9516
IM −0.9 −1 5150.8 1.888246085 8310

Table 2. Performance measures—Disturbance step (SM: static model (10), IM: integrating model (11),
λ1: P controller closed loop pole, λ2: observer pole).

Model λ1 λ2 yIAE uTV1 yTV0

SM −2.5 −1 1069 6.084217084 10264
IM −2.5 −1 1684.36 6.001085686 10638
SM −2.5 −2.5 528.65 6.046843664 10086
IM −2.5 −2.5 765.64 6.30994367 10390
SM −2.5 −5 308.09 5.555957642 9238
IM −2.5 −5 482.41 6.428117495 11284
SM −4 −1 661.9 10.74076305 8286
IM −4 −1 1105.84 9.660718058 10492
SM −4 −4 331.16 12.84074021 9874
IM −4 −4 421.18 9.542247448 9682
SM −4 −5 281.49 7.017225253 5284
IM −4 −5 357.57 5.178514655 4922
SM −5 −3 281.01 10.68852441 6496
IM −5 −3 408.24 6.238420898 4870
SM −5 −5 310.79 17.52628653 10348
IM −5 −5 302.5 12.46486024 10322
SM −5 −7 340.16 22.66275 12826
IM −5 −7 253.18 10.90469989 8944
SM −1.5 −1.5 1172.04 1.969434562 9856
IM −1.5 −1.5 1940.44 3.283381832 10056
SM −0.9 −1 2848.39 0.530924662 8474
IM −0.9 −1 4608.22 1.920761782 10130

The transients corresponding to highlighted experiments in Tables 1 and 2 are in Figures 10–13.



Information 2020, 11, 151 11 of 15

4. Analysis of the Results

The evaluation of the first experiments opens the way to perform more complex experiments.
In these experiments the students are supposed to relate the achieved performance with the plant
step responses and their approximation, and to propose hypotheses regarding further performance
improvements (see Remark 1).

4.1. Impact of the Tuning Parameter

Evaluation of the closed-loop pole selection (or its negative inverse—the time constant Tc) on
the qualitative and quantitative properties of both control loops should give students enough data
for making hypothesis regarding usefulness in practice and possible further modifications. When
comparing the results from Tables 1 and 2, the “static” model gives considerably better yIAE values in
cases where the closed-loop poles λ1 > −5 (Tc > 1/5) for setpoint step change and disturbance step
change, while keeping better total variances uTV and yTV.

“Integrating” model gives better yIAE performance in the majority of cases where the closed-loop
poles λ1 < −5 (Tc < 1/5), including better total variances uTV and yTV. This corresponds to the
highlighted section in Tables 1 and 2.

The best value for each performance measure is highlighted by bold letters in Tables 1 and 2.
It is worth mentioning, that the experiment yielding the best yIAE for disturbance step is obtained

by using “integrating” model. On the other hand the closed-loop response with the same tuning,
but employing the “static” model, yield the worst by far uTV and yTV performance (highlighted by
italics letters).

Therefore, it seems right time to ask when to use the “static” model (which is mostly better and
the difference is not so negligible as it seems) and when it may be more appropriate to use simpler
integrating models. Students, along with identifying the boundaries of the proper use of both models,
should design and discuss possible more complex modifications that should expand these boundaries
and improve the control transients.

4.2. More Complex Controllers

As an obstacle to faster closed-loop dynamics by choosing lower Tc values, students should find
different delays of both models relative to the actual system. The discussion about delays can then
lead to questions of an improved system approximations and to simple ways to balance the real plant
and model dynamics (whereby the phase shift of the real plant reaction and the model is particularly
clear in Figure 8). Several options can be identified:

• application of an additional time constant, or several shorter time constants [15] (see Remark 1), or
• application of a dead time.

These two alternatives can bring a number of solutions for further development including
proportional–derivative (PD) and proportional–derivative–second derivative (PDD2) controller,
straightforward plant dead time compensation by adding an equivalent delay to the ESO input
from u, etc.

5. Alternative Disturbance Observer Design

While the state-space approach has advantages in its transparency, we quickly realized that
the obtained results can be translated into polynomial form [22]. It is only necessary to derive the
corresponding disturbance-to-output, or disturbance-to-input transfer functions.
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5.1. ESO Expressed by Transfer Functions

The resulting ESO may be expressed by the transfer functions derived from

bu =

[
Ks

0

]
; by =

[
p1

p2

]
; ct

d =
[

0 1
]

Sdy =
Di(s)
Y(s)

= cdA−1
s by =

p2(s+a)
s2 + (p1+a)s + p2Ks

Sdu =
Di(s)
U(s)

= cdA−1
s bu =

−Ks p2

s2 + (p1+a)s + p2Ks

(12)

After substitution for p2 it can be seen, that the transfer function Sdy contains inversion of the
plant dynamics and chosen characteristic polynomial and the transfer function Sdu has a negative sign.
The order of the characteristic polynomial is fixed by the sum of the plant model and the disturbance
model orders to n = 2 (see [19]).

5.2. ESO as a special case of Disturbance Observer (DOB)

The transfer-function-based Disturbance Observer (DOB) design has been firstly published by
Ohishi and Ohnishi in 1987 [23,24]. The proposed solution considered the first order filters (n = 1) in

Sdy =
Di(s)
Y(s)

=
s+a

Ks(1 + Tf s)n

Sdu =
Di(s)
U(s)

=
−1

(1 + Tf s)n

(13)

Transfer function Sdy includes inverse plant transfer function and a low-pass filter of the order
n ≥ 1. Sdu has a negative sign—the disturbance is reconstructed as difference of filtered actual plant
input and filtered controller output. When choosing n = 2 and Tf = −1/λ1, we get results identical
to (12). The use of higher-order filters can be advantageous in terms of improved noise attenuation [25].
As already mentioned, the design can be simplified by selecting a = 0, as is common, for example,
when designing speed controllers.

6. Discussion

In the comparisons above it was shown that there are no significant differences between transients
corresponding to the controller based on the more detailed first-order (static) model (10) and the
simple “ultra-local” integrating model (11). Although both solutions can be interpreted sufficiently
well by the conventional state-space design, the second solution is now usually referred to as ADRC.
While the differences between them appear to be negligible, they become larger when controlling
second-order systems with constraints. So, for example, the ADRC solution for constrained systems
presented in [3] offers significant simplifications, shorter execution times and significant increase of
performance. Similar results in constrained, adaptive and possibly non-linear control, which are of
particular importance in the automotive industry, have been presented few decades ago [26].

Today, similar design simplifications are not only used in ADRC and MFC [16], but also in
other areas of control design, including, e.g., Generalized PID control with possibly higher-order
derivatives [27] or solutions inspired by Smith’s predictor [28]. It seems that the “paradigm shift”
in control design, based on two types of linear models, remains not only limited to these two
isolated areas.

Together with the relevant textbooks and documents, this approach requires an extensive
campaign supported by a wide range of experiments available.
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7. Experimentation and Learning Aspects

The main goal of introducing extensive experiments into our control teaching is to increase
the motivation of the students to deal with all the mathematical and theoretical tools required for a
successful controller design of automotive systems. In this regard, our efforts seem to be well received
by the students.

The approaches for reconstruction and compensation of disturbances can be combined with other
alternatives, for example one or two degrees of freedom PI and IMC-PI controllers.

The students had to perform the following tasks from modeling:

(a) measuring static input-output characteristic,
(b) choosing working point in linear part of the static input to output characteristics,
(c) measuring step response at the chosen working point,
(d) calculating static first-order model parameters using measured step-response,
(e) calculating integrating model parameters using measured step-response.

After obtaining both models, the control design and observer design tasks are as follows:

• implementing controllers,
• performing hands on real-time experiments using various combinations of closed-loop poles and

disturbance observer gains,
• evaluating control quality using integral criteria, taking account the deviations from ideal shapes

quantified by modified total variance criteria (see, e.g., [21]).

All of these tasks are performed by using real plant model described in Section 3. In this way,
many other important related goals can be fulfilled as well, for example:

• manage, archive and save, process, visualize and present data that result from the
extensive experiments,

• balance the individual development of required programs with pre-programmed tools,
• develop programming skills by the help of a control course,
• define certain program and data structures, etc.

One of the most serious problems we were facing significant differences in the speed of solving
problems different students. A group of about 40 students was divided into two sub-groups working
in pairs. One sub-group performs plant experiments, while the other develops simulations compared
to the actual experiments. Sub-groups exchange tasks at a specific time. This work-flow requires strict
synchronization. The problem can be partially alleviated by using remote experiments to finish the
assignments. Nevertheless, with regard to security restrictions, this approach cannot be a generally
acceptable solution. For teachers, the most difficult task (besides advising programming and control
tasks) is to download, discuss, review and assess student assignments. We have already tested several
approaches based on computer support [29], but a serious load still remains.

8. Conclusions

The paper presented core of the learning object, which compares the postmodern approach known
as ADRC with the previous approach named “modern control”, which is based on an extended state
observer. They differ in the ability to define two types of linear models—traditional “local” linear
models based on the approximation of nonlinear feedback of the plant by the zeroth and the first terms
of its Taylor expansion, while the new “model-free” approaches cover the “ultra-local” integrating
linear models using only zeroth Taylor’s term. Although appearing in some papers and books from
the early history of the control theory, e.g., in [17], the “model-free” approaches have not been given
much attention for many decades. Increased opportunities for making experiments on real plants
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seem to change the “revolutionary paradigm” from the relatively isolated areas of ADRC and MFC to
broader areas of control design.
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