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Abstract: Accurate medical images analysis plays a vital role for several clinical applications.
Nevertheless, the immense and complex data volume to be processed make difficult the design
of effective algorithms. The first aim of this paper is to examine this area of research and to provide
some relevant reference sources related to the context of medical image analysis. Then, an effective
hybrid solution to further improve the expected results is proposed here. It allows to consider
the benefits of the cooperation of different complementary approaches such as statistical-based,
variational-based and atlas-based techniques and to reduce their drawbacks. In particular, a pipeline
framework that involves different steps such as a preprocessing step, a classification step and a
refinement step with variational-based method is developed to identify accurately pathological
regions in biomedical images. The preprocessing step has the role to remove noise and improve
the quality of the images. Then the classification is based on both symmetry axis detection step and
non linear learning with SVM algorithm. Finally, a level set-based model is performed to refine the
boundary detection of the region of interest. In this work we will show that an accurate initialization
step could enhance final performances. Some obtained results are exposed which are related to the
challenging application of brain tumor segmentation.

Keywords: medical image analysis; segmentation; atlas-based registration; variational models;
statistical approaches

1. Introduction: Medical Image Analysis Challenges

Precise analysis of medical images such as the segmentation, the detection and the quantification
of tumors and cancers are an important task for many clinical applications including medical
content-based image retrieval, 3D pathology modelling, normal and abnormal templates (atlases)
construction, diagnosis, and therapy evaluation [1-4]. However, there are several issues and challenges
that still present because of the immense and complex data volume to be processed. In addition, there
is difficulty for designing effective algorithms due to the sheer size of the datasets coupled with the
inter-class and intra-class variability of the anatomical shape and appearance. On the other hand,
delineating manually the boundaries of specific regions in medical imaging is impractical. Therefore,
an automated and robust process is extremely mandatory.

Several image processing-based techniques had been proposed in the literature and many of
them play a vital role in the medical imaging applications. However, many of these approaches are

Information 2020, 11, 155; d0i:10.3390/info11030155 www.mdpi.com/journal/information


http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-6638-7039
https://orcid.org/0000-0003-1585-2962
http://www.mdpi.com/2078-2489/11/3/155?type=check_update&version=1
http://dx.doi.org/10.3390/info11030155
http://www.mdpi.com/journal/information

Information 2020, 11, 155 20f 13

requiring more enhancement. To overcome some existing limitations, in this research, we focus
on the development of an effective hybrid framework for a specific task which is known as
image segmentation. Our key idea is based on the cooperation principle between different
complementary algorithms derived from variational models, statistical classification techniques,
and atlas guided methods which will achieve high performances. Our justification for choosing among
the aforementioned approaches as follows—(1) the classification techniques have been successfully
used to identify big anatomical structures, but in the presence of the noise, they have failed, (2) the
variational models have been successfully applied to the localization of particular anatomical structures,
but they often need an accurate initialization step and moreover they have failed to identify small
lesions, (3) the atlas-based registration techniques have been extensively used to identify anatomical
structures through nonlinear registration, but they cannot be directly used to segment (i.e., tumors
or lesions). In our research, combining the right approaches into a single powerful framework could
help in achieving good results. Therefore, our main contribution is to implement an affective hybrid
solution in order to obtain a further improvement in the expected results (i.e., a framework considers
the benefit of the incorporation between different complementary approaches).

The organization of this paper is as follows. In the next three sections, an overview of three
categories of approaches are discussed. Note that due to the impossibility of an exhaustive review
of all segmentation method in a single article, we restricted ourselves to present only some relevant
approaches related to medical image analysis. In Section 5, a hybrid framework and experiments for
the challenging application of brain tumor segmentation are given. Finally, in Section 7, we present
our conclusion and the future work of the research.

2. Atlas-Guided Methods

An atlas (or prior template) is defined as a reference work in which specific structures in the
image are placed in a specific coordinate system that is standardized. In the medical image analysis,
atlas-guided methods have raised much interest since they exploit prior knowledge to achieve a precise
objective (i.e., image segmentation and image registration). In fact, the required information about the
size, the shape and the location of different anatomical structures are gained directly from a constructed
digital anatomical atlas. This paradigm may be of great interest for many applications (i.e., surgical
planning, surgical navigation, image-guided surgery, automatic labelling, morphological and
morphometrical studies of brain anatomy, three-dimensional visualization, interactive segmentation,
multi-modality fusion, quantitative assessment of the diseases, functional mapping, etc.). Atlas-based
segmentation approaches are viewed as a registration problem. Registration component is defined as
the process of finding a geometric transformation between two respective images that maps pixels
from one input image to homologous pixels in the other input image. Therefore, labels in the atlas
will be transferred and the warping process allows simultaneous segmentation of several structures.
Therefore, it is significant that we can distinguish especially between pixel-based and model-based
techniques, rigid or non-rigid registration, and intra-subject and inter-subject registration.

Atlas-based segmentation depends mainly on two components as follows: (1) the choice of
the registration technique and (2) the used prior model. Registration of medical imaging has been
described in many publications (see Reference [5] for more details on this topic). The first stereotactic
atlas of brain function and anatomy was proposed in Reference [6]. Although this atlas was widely
used for anatomic localization, it cannot be easily evolved. For this reason, digitized brain atlas [7]
was developed to overcome the previous drawbacks and to provide a lot of details. The design of the
standard atlas-guided segmentation is given in Figure 1.

In Reference [7], brain segmentation technique was proposed. A non-linear spatial transformation
was identified that best fitted maps between the template and the given image. In Reference [8],
authors proposed a pipeline of steps that involve intensity normalization, non-rigid registration, atlas
alignment and EM-based classification of major structures in MRI. EM is used to simultaneously
estimates image artifacts and anatomical label maps.
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Figure 1. Atlas-based segmentation framework.

A case of medical analysis is the delineation of brain tumors which is still difficult problem.
In fact, small lesions are difficult to distinguish from noise and other structures. Moreover, tumor
structures have no equivalent in the atlas and vary greatly in size, shape, location, tissue composition
and homogeneity. Thus, the variability induced by the tumor shape leads to inappropriate registration
between the template and the input image.

The process of manually segmenting the tumor regions slice-by-slice is very hard. Even, it is
difficult to use atlas for pathology structure extraction, variety of methods suggest to use with different
ways atlas for this reason. A repeated algorithm of both nonlinear registration and classification steps
to identify normal and anomalous structures was proposed in Reference [9]. In this case a nonlinear
registration is performed to spatially adapt (align and register) the template to match the individual
image. All involved phases are repeated till the classification step and the matched anatomy agree.

Another work [10] is based on the combination of multi-parameter images (T1, T2 and PD MRI),
a classification algorithm and a prior knowledge system. In this case, the knowledge-based system
allows detecting and labelling the image. In Reference [11], authors introduce a tumor “seed” in the
atlas. An extension of this work was done in Reference [12]. In fact, the same idea was extended
by developing a radially symmetric model of tumor growth. A nonrigid registration between both
input images (the one to be treated and the atlas) has the role to generate an early deformation to
insert into the template (atlas) the so-called “pathology seed”. The seeding of a synthetic tumor into
the atlas generates a “template with lesion” that will be used for lesion detection. The last step is
the deformation of the seeded atlas by using optical flow principles and a model of lesion growth.
The main problem of this method is related to the realization of early registration, which is not obvious
in the case where the tumor is placed nearby the border of the brain.

3. Variational Deformable Models

The variational models are other common approaches broadly applied in several applications and
have been also explored in medical image analysis area [13]. The variational methods are more effective
than classical edge detection approaches since they offer an appropriate context for merging different
information and provide a coherent support for discrete contours and surfaces analysis. In particular,
the so-called “level-set” method [14] is one of the attractive approaches in shape modelling. In fact,
it allows the contour topology to be handled without intervention, and to calculate intrinsic properties
(i.e., curvature) in a very simple way. Moreover, no parameterization step is required. In the next
paragraph, a brief review about the variational techniques is discussed. The key idea behind the
level-set approach [15] is to project the evolving of a given 2D contour into a three dimensional surface.
Basically, the level-set 1 is determined by solving a PDE function as:

Y
5 = F.[Vy|, 1)
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where F is a speed function. It depends on several parameters such as the image gradient and the
geometric curvature. It should be noted that several speed (evolution) functions have been developed
for the level-set algorithm. We can roughly categorize them into edge-based, region-based and
prior-based information.

Edge-based information: the authors [16] are the first to define an edge-based term (local gradient
of the image) to be integrated into the level-set function. For object segmentation and tracking, this
edge term is used to know when the curve evolution can be stopped. The proposed level set equation
involves also a constant term (c) for convergence purpose and a mean curvature term (k) for smoothing
purpose. It must be pointed out that using only local gradient information is not enough notably in
the presence of noise and blur. The proposed level set function is expressed as follow:

d
L — g VI + %) Ty, @

Region-based information: in order to deal with the limitation of the edge-based term, another term
was defined for level set function which is termed by “region-based information”. It has the advantage
to offer more information and to be more robust against noise perturbation in the image. The famous
region-based used term in the literature is the one proposed in Reference [17]. It is defined as:

d
S bplak— (1 - c)? + (1 e2)?) )
where c; is the average image intensity inside the region of interest (ROI) and c; is the average intensity
outside the ROL. In Reference [18], an evolution equation was developed. In this method, the problem
is that it can only detects the enhanced parts of the ROL. Their level-set function is defined as:

d
W — [P(4) - P(B) + ikl | VY| + 97, @
where P(A) and P(B) represent respectively the a posteriori probability of the ROI “A” and the
background “B”. ¢1 and c; are two constants. In Reference [19], authors proposed another region term
(see Equation (5)). In this situation, the deformed contour can shrink if the boundary encompasses
portions of the background and grows in the case of the frontier is inside the ROI.

W aD(x)|Vy| + (1 - )k Ty, 6)
where D is a useful term helping in enlarging or contracting the model to required features; k is the
curvature of the surface; the parameter « € [0, 1] governs the smoothness in the model; T supervises
the brightness property.

Another evolution equation was proposed in Reference [20]. The design of the proposed evolution
function is based on the concept of a fuzzy decision (Equation (6)). The later concept has the advantage
to fuse both local (gradient) and global information into the same term.

)
a%lf) = ¢(s(Pr, VI))(pk — v)| V], ©

where Pr is a transition probability between the inside and the outside of the ROL The function g
makes it possible to stop the evolving of the model at the border of the ROL s is the output of a fuzzy
decision system.

Shape prior-based information: this third term for level-set approach is presented in different forms
in the literature [21-25]. One of the interesting work that investigates a priori knowledge has been
proposed under the name “Active Appearance Models” [26]. The key idea is to determine from a
training set, the average shape of the required object using the principal component analysis (PCA)
on specific points positioned on all learned shapes. Given that the points are selected manually, then
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the proposed algorithm become not practical and tedious. In Reference [21], shapes are represented
by a signed distance function and the PCA was applied on these set of training distance functions.
The proposed evolution equation is expressed as follows:

%‘f = g(I)(ak — )| V| + A(p* (£) — (1)), @

where * is the prior level set shape function. Other works are published in References [24,25] in order
to model the shape variation where a nonparametric techniques involving a Kernel Density Estimation
are used. In this manner, it will be possible to approximate arbitrary the distribution of the shape prior.

4. Statistical Classification and Segmentation of Medical Images

Classification techniques are successfully applied for the determination of major anatomical
structures in medical imaging such as MRI and CT-scan. For more details, the reader can refer to a
large class of pattern classification based methods [27-40]. Support Vector Machine (SVM) is one of
the most used techniques. In this research, we have investigated this method for segmenting tumor
regions in different medical imaging. In the following section we briefly review useful details for SVM
in order to show how it is possible to apply this method in our context.

Linear and Non-Linear Support Vector Machines(SVM)

Support Vector Machines (SVM) is one of the well-known machine learning algorithms for data
classification [41]. It was developed as an alternative solution based on a statistical learning technique
for both data regression and classification. It has been effectively employed for several related
applications [42-45]. SVM can be used for either supervised or unsupervised learning. We distinguish
especially for the linear and non-linear case for SVM.

Suppose that we have a set of pixels x;, i= 1---N with two possible classes y; € {—1, +1} for
both images with and without pathologies. The key idea behind SVM is to find a linear or non-linear
boundary (called also hyperplane) w'x; + b = 0which differentiates between the positive examples
from the negative examples. When w is a weight vector, x; is the input vector and b is the bias term.
This hyperplane separates the positive examples from the negative examples intended to correctly
classify training samples. Thus, the search for a solution yields to minimizing of the following
objective function:

2
minimizey), ¢ (w) = HV;H ®)
subjectto y, (Wixi+b) >1, fori=1---N

Sometimes, the calculated hyperplane may not be desirable if the data has noise in it. So, it is
better to smooth the boundary by introducing a vector of slack variables ¢;, i = 1---N that compute
the quantity of violation constraints while considering that certain input data can possibly misclassified.
The equation is now:

2
minimizey,, ¢ (w) = Huﬁ” +C YN G 9)
subject to y; (wlx;+b) >1— &, & >0

where the regularization parameter C has the role to control both the misclassification cost minimization
and the margin maximization. If C is too large, the algorithm will overfit the dataset. Each misclassified
example x; carries cost ;. The problem is then compactly expressed in Lagrangian form by introducing
a coefficient multipliers «;, ; and so minimizing the following equation:

k
L = H‘; _ Z?il a; (yi (wai—i-b) -1+ ;) C<Z%i1 ‘:i)

- Bid; | 10
subjectto a3 >0 and B; >0
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The weight vector w that we want to calculate can be estimated through the Karush-Kuhn-Tucker
(KTT) [46] as follow: w = YN | ai8;x; The decision function is obtained using the following equation:
f (x) = sign (wx — b).

In the case of linear SVM, a separating hyperplane may be used to divide the data, but in practice
the data is hardly to be divided linearly. Thus, other forms are developed as non-linear cases using the
so-named kernel trick (x,y) = ¢ (x) .¢ (y). In this case, kernels have an important role in mapping data
to a high-dimensional space. In the literature, the well known SVM kernels are: linear, polynomial,
radial basis, and sigmoid kernels. Therefore, the vector w will be changed as w = YN ; a; 8iK(x;) and

f (x) = sign (wK(x) — b).
5. A Unified Framework for Brain Tumor Segmentation

One of the important applications for biomedical image analysis is brain cancer segmentation
in magnetic resonance imaging (MRI). It is one of the critical steps for many clinical applications.
It is also a difficult task due to the complexity of MR images. Recently some promising works
related to this area of research have been published using various approaches [32,35,47-51]. It is
noted also that Deep learning based approaches has been used extensively for image classification,
segmentation, enhancement and image registration. Thus, it is possible to apply such approach for
image registration [52] or for segmentation [53] or for detection [54]. Deep learning-based approaches
have been proposed as an efficient alternative to learn a large scale of medical imaging. A summary of
several papers applying most successful deep learning algorithms for medical image analysis is given
in References [55-59]. In particular, anatomical brain structures and brain lesions and alzheimer’s
disease prediction detection using deep learning has gained interest [60,61]. An overview of current
deep learning-based segmentation approaches is given in Reference [62].

In order to reach more accurate results, in this research, we propose a hybrid framework which
is able to deal with all possible issues related to the complexity of MRI brain such as the effect of
noise and the intensity variations within and between soft tissues. The developed hybrid approach
(Figure 2) is considered as a pipeline framework that involves different steps such as a preprocessing
step, a classification step and a refinement step with new formulation for the level set-based evolution
equation that we have developed previously in Reference [48].

inputimages

l

Preprocessing
Denoisingand
registration

Post-processing:
Level-set based

Braintumor
segmentation

Brain symmetry axis
detection

Segmented brain
SVM-based tumor
classification step

Figure 2. Proposed hybrid framework for brain tumor segmentation.
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The preprocessing step has the role to improve the quality of the MRI images. In our work,
we consider both noise reduction, image registration and intensity normalization. Local noise is
reduced with an anisotropic diffusion filter as proposed in Reference [63]. Input images are also
aligned by calculating a transformation that allows us to exploit multiple MR modalities. In order to
detect the presence of any possible tumor in the input image, we proceed with the idea of extracting
the symmetry sagittal axis of the brain as developed in Reference [64], and then comparing the
two brain hemispheres. The output of the later step is useful to derive the next step of the image
classification via a supervised non-linear learning algorithm “SVM”. Finally, a variational-based model
is performed to extract the region of interest. In fact, we have investigated an adaptive speed function
for Level-set-based segmentation as proposed in Reference [48]. In this research, our key motivation
is to consider the advantage of the collaboration of different information (boundary and regional)
into the same designed evolution equation. The adaptive level-set function with the conjunction of
the previous steps provide more robust and appropriate segmentation results. The modified speed
function that we have implemented is given as follows:

oY c+k
5 [y Fregion (I) +“bm“v¢| 11)

where &, and «; are real coefficients. c is constant and k is a curvature term calculated from the level
set function as in Reference [15]. The region based term Fy,g;o, (I) is defined as:

, I— (mh —kob) if I <m}
Fl+1 I = ) T T T 12
regzon( ) { (m’T + k.a%) — 1 otherwise 12)

where k is a curvature term, ¢ is the variance value, m is the mean value, ' ! is a threshold value,
and T is the index associated to the region to be segmented.

Experiments were carried out on the dataset (Brain Tumor MRI Database https:/ /www.nitrc.org/
frs/?group_id=546) [65]. Input data consists of T1 and T1lw where the modality T1w is a modality
image obtained after injection of a contrast agent. The sheer size of the dataset is 25 x 181 = 4525
slices. This dataset contains already a ground truth (labelled images) for comparative study purpose.
The total number of used images in this work is 1280. We apply the 10-fold cross validation principle.
We divide the dataset into 10 different small subsets (1280/10 = 128 images in each subset). We start
by choosing the first subset as Test-subset and the 9 rest (9 x 128 = 1152 images) are used for training.
Then we change the selection mode and the second subset is used for testing and the 9 rest for training
and so one. After that we calculate the average result. Each image in the dataset is modelled and
represented with a feature vector. Then, the classification process is based on all these feature vectors
and not pixel values. In our work, nine visual features are calculated based on texture characteristics.
They are obtained from the GLCM matrix (Gray Level Co-occurrence Matrix): contrast, correlation,
cluster-shade, dissimilarity, energy, entropy, homogeneity, mean, and standard deviation.In this work
we use Radial Basis Function (RBF) based kernel SVM. The hyperparameters are gamma (radius of
RBF) and C. It is noted that C must keep the training error as small as possible, but it should generalize
well. The used parameters are gamma = 0.1 and C = 1.0. In this work, the computational complexity of
RBF SVM is it O(n?) where n is the number of input dimensions. The level set approach has also a
complexity of O(n?). Compared to the baseline methods, it should be noted that the proposed method
presents a comparable complexity. The validation process involves different measures such as true
positive (TP), false positive (FP), false negative (FN), true negative (TN), and the following:

e  Sensitivity = %
— TN

[ SpeCIfICIty = m

e  Similarity index (SI) = %,


https://www.nitrc.org/frs/?group_id=546
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where the similarity index (or Dice similarity coefficient) computes the normalized intersection in of
two different segmentations (ground truth and the proposed segmentation). Some of the obtained
results are given in Tables 1-3. Qualitative and quantitative evaluations are depicted in Table 4 and
in Figures 3 and 4. After performing our framework, the results shows that the detected tumor
boundaries are very close to the expert’s results and very satisfactory compared to the ground truth.
They prove the merit of the proposed method given that the average similarity index is more than
80% which indicates a strong agreement. Our results are also considered very competitive according
to the comparative study illustrated in the Table 5. Based on this comparative study;, it is clear that
our method is very competitive with respect to other methods. The value of accuracy is above 80% is
considered strongly acceptable compared to the ground truth given that any value of the similarity
index above 0.7 is considered as good result as stated in Reference [66]. These results explain very
well the advantage of the proposed method in offering high segmentation performance. Indeed,
the merging of different source of information (i.e., the combination of local and global information)
and different complementary approaches into the same hybrid framework allows to increase the
segmentation accuracy.

Table 1. Similarity index obtained on several different samples of brain tumor from the dataset in
Reference [65].

Slice index 1 2 3 4 5 6 7 8 9 10
SI 0.758 0.790 0.813 0.803 0.829 0.813 0.801 0.820 0.772 0.803

Slice index 11 12 13 14 15 16 17 18 19 20
SI 0.842 0.833 0.797 0.789 0.809 0.812 0.761 0.773 0.819 0.792

Slice index 21 22 23 24 25 26 27 28 29 30
SI 0.829 0.823 0.811 0.820 0.822 0.803 0.822 0.813 0.827 0.789

Table 2. Sensitivity measures obtained on several different samples of brain tumor from the dataset in
Reference [65].

Slice index 1 2 3 4 5 6 7 8 9 10
Sensitivity 0.861 0.877 0.889 0.884 0.897 0.889 0.882 0.893 0.868 0.884
Slice index 11 12 13 14 15 16 17 18 19 20
Sensitivity 0904 0.899 0.881 0.877 0.887 0.888 0.862 0.868 0.892 0.878
Slice index 21 22 23 24 25 26 27 28 29 30
Sensitivity 0.897 0.894 0.888 0.893 0.894 0.884 0.894 0.889 0.89 0.877

Table 3. Specificity measures obtained on several different samples of brain tumor from the dataset in
Reference [65].

Slice index 1 2 3 4 5 6 7 8 9 10
Specificity 0925 0934 0941 0938 0946 0941 0937 0.943 0929 0.938
Slice index 11 12 13 14 15 16 17 18 19 20
Specificity 0950 0.947 0936 0.934 0.9402 09410 0926 0.929 0943 0.935
Slice index 21 22 23 24 25 26 27 28 29 30

Specificity 0946 0944 0940 0943 0944 0938 0944 0941 0945 0.934
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Table 4. Average measures obtained on the dataset: “Brain Tumor in MRI” [65].

Similarity Index (%) Sensitivity (%) Specificity (%)
80.9 88.7 94.0

Table 5. Similarity index (%) for brain tumor detection using different approaches for the public
dataset [65].

Approach Similarity Index(%)
Anitha et al. [67] 85.0
Bourouis et al. [50] 78.5
Zikic et al. [68] 71
Bauer et al. [69] 62
Njeh et al. [70] 89
Our framework 80.9

Figure 3. Result of the tumor detection: (a) Tlw weighted magnetic resonance imaging (MRI) (T1w: is
the T1 before contrast injection) (b) T1 weighted MRI (c) Final segmented tumor region (red), and initial
detection classification with SVM (green).

(a) (b)

Figure 4. Illustration of some obtained results for brain tumor segmentation. (a) shows the step of

symmetry axis detection. (b—d) show the final segmented region of interest (brain tumor) in different
MR images.

6. Conclusions and Discussion

In this paper, we have reviewed specific relevant works related to the area of medical
image analysis. Then, we proposed an effective hybrid solution for medical image segmentation.
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The developed framework allows to consider the benefits of the cooperation of different complementary
approaches such as statistical-based, variational-based and atlas-based techniques. We demonstrated
the importance of each step in the pipeline by the fact that it can be used as an effective initialization
step for the next step and then a more stable and accurate process can be established. The obtained
results for both brain tumor segmentation show the merits of the cooperation of different algorithms.
Despite the good results that have been achieved, it is important to note that some improvements
need to be addressed in our future work. Indeed, the current work is not able to solve all possible
issues and it presents some weaknesses. For instance, the robustness of the initialization step depends
mainly of the registration preprocessing step. Thus, it is important to apply more efficient registration
algorithm to have more accurate initialization step and to avoid significant errors in the parameter
estimation. In particular, intensity-based FFD registration method could be an effective solution
for our case. The worst results are due to the low contrast between the tumor region and normal
tissues. On the other hand, in this study, only some types of tumor have been treated, consequently,
it will be interesting that the developed approach must be evaluated on large dataset in the future
for better decision. Actually, we plan to design more robust speed function which is able to take into
account three different source of information (or terms): regional (F;), boundary (F;) and shape (F;)
information. We think that a more general speed function could lead to better performances. On the
other hand, given the complexity of anatomical structures, the problem of segmenting a specific region
of interest with hybrid process can be faced with different manners: sequential or iterative strategy.
Therefore, instead of using a sequential strategy based on the design of a pipeline of algorithms, it will
be better to apply an iterative process which needed to define mutual constraints between all involved
algorithms. In this case, certain principles of information fusion can be exploited as well. Another
interesting future work is the selection of relevant visual features which may increase the capability of
our hybrid frameworks.

7. Data Availability

The data used to support the findings of this study are available from the corresponding
author [65] upon request.
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