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Abstract: The topic of this article is inspired by the problem faced by many people around the
world: investment portfolio selection. Apart from the standardly used methods and approaches,
non-traditional multiple objective programming methods can also be significant, providing even
more efficient support for making a satisfactory investment decision. A more suitable method for
this purpose seems to be a concept working with an interactive procedure through the portfolio
that may gradually be adapted to the investor’s preferences. Such a method is clearly the Step
Method (STEM) or the more suitable improved version KSU-STEM. This method is still burdened by
partial algorithmic weaknesses or methodical aspects to think about, but not as much as the other
methods. The potentially stronger application power of the KSU-STEM concept motivates its revision.
Firstly, an unnecessarily negative principle to determine the basal value of the objectives is revised.
Further, the fuzzy goals are specified, which leads to a reformulation of the revealed defuzzified
multi-objective model. Finally, the imperfect re-setting of the weights (importance) of unsatisfactory
objectives is revealed. Thus, the alternative approaches are proposed. The interventions to the
algorithm are empirically verified through a real-life selection of a portfolio of the open unit trusts
offered by CONSEQ Investment Management traded on the Czech capital market. This application
confirms a significant supporting power of the revised multiple objective programming approach
KSU-STEM in a portfolio-making process.
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1. Introduction

Real-life decision making can be a very difficult process. Therefore, we should have some
supporting tools to make this process easier and more effective. An example of usually a complex
decision-making process is investment portfolio selection, which an increasing number of people over
the world are facing as they try to valorize their free funds.

To make a portfolio, the intuitive approach, sometimes supported by knowledge of basic
quantitative characteristics of the investment (return, risk, etc.), is often applied. Then, the portfolio is
especially made on the basis of human intuition, personal mood, or the mood of the crown on the
capital market. Such a decision can be supported by a well-known psychological analysis developed
by Le Bon [1]. Such an approach is predominantly qualitative. Portfolios can be also made based on
fundamental [2] or technical [3] analyses. Then, we receive the value of some quantitative indicator
or “graphical” information based on a historical development of the asset prices. Portfolio selection
reflecting only some qualitative/quantitative information or one-criterion perspective is too simplifying.
Moreover, no mentioned approach enables selecting a portfolio, or exact determination of the assets’
shares in the portfolio. They provide only some information on selected investment instruments that
support the following steps leading to a portfolio composition making.

To make a more complex and satisfactory investment decision, I propose using a decision-making
theory that is often wrongly neglected on the capital market. Of course, a well-known Markowitz
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optimization model [4] is sometimes applied. However, this model takes into account only one or two
characteristics (return and risk). Multiple objective programming methods can reflect many qualitative
and quantitative input information on the investment instruments or investor’s preferences. Therefore,
these multi-criteria approaches are able to provide more complex and representative results. Moreover,
they can also work with the outputs of the aforementioned analyses.

In my opinion, the most suitable multiple objective programming methods are interactive
approaches reflecting a continuous information from a decision maker (DM). These methods allow
a subsequent modification of the actual solution (portfolio) according to the DM’s (investor’s)
preferences. Such an approach helps create a portfolio to the investor’s satisfaction. Interactive
multiple objective programming methods were developed from the 1970s. The first methods were the
Step Method (STEM) designed by Benayoun et al. [5] and the Geoffrion–Dayer–Feinberg’s method
(GDF) [6]. In the 1980s, a stochastic form of the interactive multi-objective methods was introduced,
e.g., [7]. At the same time, a fuzzy form was also proposed, e.g., [8]. Many fuzzy interactive methods
work with α-cut, e.g., [9]. To complete a brief overview of the interactive procedure, interactive goal
programming methods have been also designed, e.g., [10]. Interactive multiple objective programming
methods have been evolving for the last few decades; below, we provide a more detailed overview.

Selecting a suitable method is affected by a particular decision-making situation or the DM’s
abilities. In our case study, a portfolio from open unit trusts offered by CONSEQ Investment
Management traded on the Czech capital market is being made. To make a satisfactory investment
decision, the following requirements should, in my view, be fulfilled. The algorithm should not require
any additional information difficult to determine by the investor (goal, threshold, α-cut, distribution of
return, explicit relaxation substitution among objective values, etc.). The importance of the objectives
must be adjustable by the investor. The strictly determined relaxation of some objectives should be
acceptable. The algorithm should be user-friendly for its wider and easy applicability. A method
fulfilling all these assumptions can solve the investment problem satisfactorily.

An improved form of extremely popular STEM, KSU-STEM, seems to be a good candidate.
Although its algorithm is also not perfect, it has fewer shortcomings compared to other methods.
Therefore, this approach deserves further research. In other words, I see current aspects of the
algorithm for reflection or improvement. The first partial question is about a determination of the basal
(worst) possible value of the objectives. An unnecessary pessimistic approach is modified. Second,
the revealed original multi-objective mathematical model is transformed to the one-objective form by
introducing a fuzzy goal principle. Such a concept is an efficient alternative to the current formulation.
The fuzzy approach can very effectively take into account information about the preferred values of all
objective functions (portfolio characteristics) simultaneously. Finally, a recalculation of weights of the
unsatisfactory objectives within the interactive procedure is evaluated as redundant. This process can
be replaced by simpler ways. The approaches with preserved original weights or with an integration
of the weights to the newly determined fuzzy goals are proposed.

The primary aim of this article is to determine a suitable method, more effective than commonly
used concepts, as a support for a portfolio selection problem. Based on the algorithmic application
abilities, the KSU-STEM approach is chosen as a perfect candidate for further interesting research
deepening the ability to solve an investment problem. Therefore, the main aim is to improve its
algorithm to solve the problem as satisfactorily as possible. The suitability of these revisions and
improvements is tested on a real-life scenario making a portfolio of open unit trusts offered by CONSEQ
Investment Management. The more general mission of this paper is to demonstrate a significant
application power of (interactive) multiple objective programming methods in the portfolio selection
problems in order to use them more in this area.

The structure of the article has the following form. After the introduction, the investment
decision-making situation is outlined. The next section discusses the interactive multiple objective
programming methods. Then, the algorithm of the STEM and KSU-STEM methods is described.
Subsequently, the algorithm is revised using demonstrative investment examples. Finally, a portfolio
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from the open unit trusts is made by the improved KSU-STEM method. In conclusion, the article is
summarized and some ideas for future research are outlined.

2. Investment Decision-Making Situation

Recently, investing in open unit trusts has become more and more popular in the Czech
Republic. The CONSEQ Investment Management is increasingly gaining ground on the Czech
market. This company offers a wide range of open unit trusts, which can be divided into four basic
categories: mixed, bond, equity, and real estate funds.

There is no doubt that the essential characteristics of the investment are return and risk. The
investment in open unit trusts is also burdened by several fees. In our analysis, the cost is represented
by only the initial charge, which reduces the invested amount. All other fees (management, license,
etc.) are projected to the fund property or to the fund‘s return. Other criteria can be a locality of the
fund investments, traded currency, style of the fund management, or mood on the capital market.
All these aspects can be rather taken into account in a ‘preselection’ phase when potentially suitable
funds for a portfolio are chosen. If the specified client is rather risk-averse (see more below), the risk
may be strictly limited. To eliminate the currency risk, funds traded in CZK are chosen. Another
important aspect for a fund selection is data availability over the specified time period. For possible
type diversification, the funds from all mentioned categories are chosen. Thus, six mixed, four equity,
eight bond, and two real estate funds are included, which can be seen in that order with their all
characteristics in the following table (Table 1).

Table 1. Open unit trusts and their characteristics.

Fund Return [%] Risk [Point] Cost
[%]

Active Invest Dynamic 0.2083 5 5
Active Invest Conservative 0.0697 3 2.5

Active Invest Balanced 0.1310 4 4
Conseq Private Invest Dynamic Portfolio 0.2809 5 3

Conseq Private Invest Conservative Portfolio 0.1112 3 3
Conseq Private Invest Balanced Portfolio 0.2032 4 4

Conseq Invest New Europe Equity A 0.5914 5 5
Conseq Invest New Europe Equity B 0.6236 5 5
Conseq Invest New Europe Equity D −0.1009 5 5

Conseq Opportunity OPFKI 0.8215 7 5

Conseq Invest Bond A 0.0970 2 2.5
Conseq Invest New Europe Bond A 0.1042 4 2.5

Conseq Corporate Bond A 0.1319 2 2.5
Conseq Invest Bond B 0.1211 2 5
Conseq Invest Bond D −0.0206 2 5

Conseq Invest New Europe Bond D −0.2577 4 5
Conseq Invest Conservative A 0.0931 2 5
Conseq Invest Conservative D −0.0084 2 5

Conseq Real Estate 0.3137 2 5
Conseq Real Estate Fund 0.2699 6 3.5

Czech clients are rather conservative, saving over a longer time horizon. Then, the return (in
percentage) is calculated as the monthly average from the period from January 2015 to January 2020,
which can reflect an actual longer time price development. The risk is measured by a usual indicator,
Synthetic Risk and Reward Indicator (SRRI), which is calculated through a standard deviation(s) of
returns over the last five years; for more, see the Fund Glossary [11]. Its integer evaluation comes from
the interval 〈1, 7〉. The cost is represented by the initial charge as a percentage of the invested amount.
Prices and SRRI are taken through the CONSEQ Funds´ List [12]. Returns are calculated in MS Excel.
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As mentioned above, an investment strategy that is determined over a longer period of time is the
most typical strategy on the Czech capital market with open unit trusts. It usually represents saving
money for retirement age or generally for consumption in the more distant future. The purpose of the
investment stimulates a conservative approach. Such an investor is more afraid of the investment loss.
S/he is willing to lose some part of the return to maintain a lower level of risk. Cost is also considered.
However, the initial charge is not as important as the other two characteristics. To weaken a potential
loss, the share of equity funds will be limited. For easier portfolio management, the portfolio should
contain a reasonable number of assets (three to five funds).

3. Decision-Making Theory Approaches for a Portfolio Selection

The potential of the principles of decision-making theory in a portfolio selection is considerable.
Therefore, this section focuses on the interactive multiple objective programming methods.

3.1. Review of Interactive Multiple Objective Programming Methods

Interactive multiple objective methods have been developing since the 1970s. According to
Fiala [13], one of the classification aspects can be a character of the expressed trade-offs: explicit or
implicit. One of the oldest methods using explicitly expressed trade-off is called GDF [6]. Explicit
trade-off requires an exact quantification of the acceptable relaxation for a couple of the objectives.
Some methods (unlike GDF) require this information from the DM or offer these substitution rates
to assess by the DM, as in (e.g.,) the Zionts–Wallenius method [14]. Such an active role can be too
demanding for the DM. Other methods based on this principle are processed by Miettinen [15].
A more friendly approach in this aspect is represented by the methods using implicit trade-offs.
Then, an exact substitution of the objective values is not required. A representative could be the
older STEP method (STEM) [5], or younger modification KSU-STEM [16], both using the principle of
a minimization of the distance from the ideal solution. Methods based on the reference point have
also undergone developments [17]. The aspiration and reservation levels for all objectives must be
determined by the DM. This often difficult task tries to be simplified with a “starter” neutral solution.
Another method can be Nondifferentiable Interactive Multiobjective Bundle-based Optimization
System (NIMBUS), which is based on the ‘soft’ classification of the objectives into up to five classes;
for more, see [18]. Some approaches even use a regression within the interactive procedure, e.g., [19].
Interactive multiple objective methods can also reflect the stochastic elements. Recent development
is reflected in modern interactive stochastic approaches [20–22]. A more complex overview of the
interactive stochastic multi-objective programming methods can be seen in [23]. To reflect imprecise
or uncertain information, the interactive methods with fuzzy elements have been developed [9].
Newer fuzzy methods using mainly α-cut principle are designed (e.g.,) in [24]. Finally, a development
of goal programming-based methods with an interactive revision of the goals has started in [10].
Recent interactive goal programming methods were proposed (e.g.,) in [25,26].

The selection of a suitable method is namely predetermined by a solved decision-making problem:
investment portfolio selecting. This process should be manageable for a wider range of users (investors).
Most of them are laics. Making or interactive revision of the portfolio should be instructional. Many
methods are burdened by the requirement for additional information from the DM, as mentioned above.
It can mean the determination of objective goals (goal programming), thresholds (fuzzy approach), the
distribution of stochastic elements (stochastic programming), explicit trade-offs, etc. Such methods
are not suitable for our decision-making problem. The method should accept the weights of objective
functions because this way of expression of their importance is very friendly thanks to a few easily
applicable supporting tools. Finally, the input data or relaxation of the objectives should be possible to
set in the easiest way, i.e., in the strict form.

Under these assumptions, many methods are useless (methods working with explicit trade-offs,
goals, reference points, fuzzy or stochastic elements, etc.). Some methods are based on a very difficult
algorithm (e.g., the Zionts–Wallenius method). Some of them are not even able to work with the
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weights determined by the DM (e.g., STEM). After such a reduction, the KSU-STEM method seems to
be a relevant candidate. Its algorithm is comprehensible. The strict weights determined by the DM are
accepted. Only implicit trade-offs are required. On the other side, this algorithm is not fully perfect.
In other words, some fragments of the algorithm stimulate subjective thinking.

3.2. STEM and KSU-STEM

At first, the STEM and KSU-STEM algorithms are described. Then, both algorithms are compared.
Their drawbacks or shortcomings are reflected.

3.2.1. STEM Algorithm

The STEM algorithm can be described, as by Benayoun et al. [5], in the following several steps.
Step 1: Define k objective functions (objectives) f1(x), f2(x), . . . , fk(x), where x = (x1, x2, . . . , xn)

T

is a vector of n variables. Distinguish the set of indices of the minimizing or maximizing objective
functions denoted as Jmin or Jmax. Further, the set including all conditions of the solved problem is
denoted as X1. Then, the ideal value of each objective function can be found on this set. Let us denote
the optimal value of the j-th minimizing or maximizing objective function as f I

j = f j(x∗j), when the
following holds

x∗j = argmin f j(x)

x ∈ X1 j ∈ Jmin ,
x∗j = argmax f j(x)

x ∈ X1 j ∈ Jmax . (1)

Let Z = (zi j) be the matrix with the generic elements

zi j = f j(x∗i) i, j = 1, 2, . . . , k, or
zi j = f I

i = f I
j i = j, (2)

where x∗i is consistent with (1) when i = j. Let w = (w1, w2, . . . , wk)
T be a vector of the weights of

objectives. The weight of the j-th objective is calculated as follows

w j =

maxzi j
1≤i≤k

− f I
j

maxzi j
1≤i≤k

α


√

n∑
p=1

c2
jp

−1

j ∈ Jmin

w j =

f I
j−minzi j

1≤i≤k

f I
j

α


√

n∑
p=1

c2
jp

−1

j ∈ Jmax

, (3)

where c jp, j = 1, 2, . . . , k, p = 1, 2, . . . , n, is a coefficient by the p-th variable in the j-th objective function.
The value α is set so that the sum of the weights is one. A weight calculation was variously modified
by Eschenauer et al. [27] or Vanderpooten and Vincke [28].

Step 2: In the next step, the weighted Chebyshev problem should be solved

minmax
1≤ j≤k

(
w j

∣∣∣∣ f I
j − f j(x)

∣∣∣∣)
x ∈ X1

. (4)

This model can be easily linearized through the minmax optimization approach as follows

min D

w j

(
f j(x) − f I

j

)
≤ D j ∈ Jmin

w j

(
f I
j − f j(x)

)
≤ D j ∈ Jmax

x ∈ X1

. (5)
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Let x1 be a vector representing an optimal solution of the Model (5) with the objective values
f j(x1), j = 1, 2, . . . , k. If the values of all the objectives are acceptable for a decision maker (investor),
the compromise solution, or satisfactory portfolio composition, is found. The process is terminated.
On the other side, if the values of all objectives are not acceptable, the algorithm is also finished. It is
not possible to improve simultaneously the values of all objectives. Thus, solution x1 is non-dominated.
The improvement of one objective value is conditioned by a relaxation of at least one other objective
value. If it is acceptable for a decision maker, the interactive procedure finding a compromise solution
can begin.

Step 3: Let us denote the set JR
min or JR

max including the indices of the minimizing or maximizing
objective functions with a satisfactory value. Then, a decision maker provides ∆ f j(x1), j ∈ JR

min ∪ JR
max,

as the amount of acceptable relaxation for the j-th minimizing or maximizing objective function. Then,
the set X2 including the following conditions is specified

f j(x) ≤ f j(x1) j ∈ Jmin − JR
min

f j(x) ≥ f j(x1) j ∈ Jmax − JR
max

f j(x) ≤ f j(x1) + ∆ f j(x1) j ∈ JR
min

f j(x) ≥ f j(x1) − ∆ f j(x1) j ∈ JR
max

, (6)

where ∆ f j(x1) ≥ 0, j ∈ JR
min ∪ JR

max. Now, a new distance Chebyshev problem, or its linearized form can
be formulated to find another (better) solution

minmax
1≤ j≤k

(
w′j

∣∣∣∣ f I
j − f j(x)

∣∣∣∣)
x ∈ X1

∪X2
, or

min D

w′j

(
f j(x) − f I

j

)
≤ D j ∈ Jmin

w′j

(
f I
j − f j(x)

)
≤ D j ∈ Jmax

x ∈ X1
∪X2

, (7)

where
w′j = 0 j ∈ JR

min ∪ JR
max

w′j = w j j ∈ Jmin − JR
min, j ∈ Jmax − JR

max
. (8)

The optimal solution x2 of Model (7) is found. If the solution is acceptable, the compromise solution
(satisfactory portfolio composition) is found. The process is terminated. If not, the interactive procedure
continues until a decision maker accepts the solution.

Models (1), (5), or (7) are solvable because of the limited (non-empty) set of feasible solutions.
A selection of the method solving these problems is based on the (non)linearity of the functions and
integer conditions. After that, a global or local optimum is found.

3.2.2. KSU-STEM Algorithm

The algorithm is described step by step according to Lai and Hwang [16]. Of course, some parts
of the KSU-STEM algorithm are the same as the STEM algorithm. A notation in the description of both
algorithms is consistent.

Step 1: Define k objective functions (objectives) f1(x), f2(x), . . . , fk(x), where x = (x1, x2, . . . , xn)
T

is a vector of n variables. Distinguish the set of indices of the minimizing or maximizing objective
functions denoted as Jmin or Jmax. The importance of the criteria is expressed by the vector of weights
w = (w1, w2, . . . , wk)

T, where w j, j = 1, 2, . . . , k, is the weight of the j-th objective function. Many
methods for weight estimation are known, such as the scoring metod, Saaty’s or Fuller’s approach;
for more, see [29,30]. For simple user-friendly implementation, a scoring method is recommended.
Then, let us specify a scoring interval 〈1, 10〉 from which a decision maker assigns the score for each
objective according to his/her preferences. The lowest or highest score represents the weakest, strongest
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preference, or objective importance. The weight of the j-th objective function can be calculated
as follows

w j =
s j

k∑
j=1

s j

j = 1, 2, . . . , k, (9)

where s j, j = 1, 2, . . . , k, is a score assigned to the j-th objective function. It is obvious that the weights

are traditionally in a standardized form, which is more suitable for practical use. Thus,
k∑

j=1
w j = 1

holds.
Step 2: The minimum and maximum of each j-th objective function are determined on the set

of feasible solutions X1 (containing all conditions of the solved problem) by finding a solution of the
following models

min f j(x)
x ∈ X1 ,

max f j(x)
x ∈ X1 . (10)

The solutions of these models represent ideal f I
j (the lowest or highest value for minimizing or

maximizing the objective function) and basal value f B
j (the highest or lowest value for minimizing or

maximizing the objective function) of each j-th objective function.
Step 3: The mathematical model minimizing a maximal weighted relative (standardized) deviation

from the ideal solution (value) is formulated as follows

min α

w j
f j(x)− f I

j

f B
j − f I

j
≤ α j ∈ Jmin

w j
f I
j− f j(x)

f I
j− f B

j
≤ α j ∈ Jmax

x ∈ X1

0 ≤ α ≤ 1

. (11)

The optimal solution is denoted as x1 with the values of all k objective functions f j(x1), j = 1, 2, . . . , k.
If the values of all objective functions are acceptable by a decision maker, the compromise solution is
found. If the values of all objective function are unacceptable, the algorithm is also terminated. It is
not possible to simultaneously improve all objective values because the solution x1 is non-dominated.
If the values of some objectives are acceptable and some are not, then the interactive procedure can be
started to reveal the compromise solution.

Step 4: To improve the values of unsatisfactory objectives, a decision maker must relax at least
one satisfactory objective. Similar to the STEM algorithm, let JR

min or JR
max be the set containing the

indices of the minimizing or maximizing objective functions with a satisfactory value. Then, a decision
maker provides ∆ f j(x1), j ∈ JR

min, or ∆ f j(x1) , j ∈ JR
max, as the amount of acceptable relaxation for the j-th

minimizing or maximizing objective. Then, the set X2 including the following conditions is specified
in this form

f j(x) ≤ f j(x1) j ∈ Jmin − JR
min

f j(x) ≥ f j(x1) j ∈ Jmax − JR
max

f j(x) ≤ f j(x1) + ∆ f j(x1) j ∈ JR
min

f j(x) ≥ f j(x1) − ∆ f j(x1) j ∈ JR
max

. (12)
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Finally, the weights are reformulated as

w′j = 0 j ∈ JR
min ∪ JR

max

w′j =
w j

k∑
j = 1

j < JR
min ∪ JR

max

w j

j ∈ Jmin − JR
min, j ∈ Jmax − JR

max
. (13)

The following modified Model (11) is solved

min α

w′j
f j(x)− f I

j

f B
j − f I

j
≤ α j ∈ Jmin − JR

min

w′j
f I
j− f j(x)

f I
j− f B

j
≤ α j ∈ Jmax − JR

max

x ∈ X1
∪X2

0 ≤ α ≤ 1

. (14)

The optimal solution x2 of Model (14) is another compromise solution. If this solution is still not
acceptable, the improvement procedure is repeated. Otherwise, the compromise solution is found, and
the algorithm is over.

The solvability of all models is the same in terms of the STEM approach. They can be solved using
a standard system to support modeling such as LINGO, MPL for Windows, etc.

3.2.3. STEM vs. KSU-STEM

After a proper introduction to the algorithms, their effective comparison can be made.

1. The first KSU-STEM positive is a possibility of determination of the weights of objectives by
the DM. On the other side, this fact can also be a disadvantage for the DMs who are not able to
determine the weights. As there are many supportive tools for weight estimation, this will reflect
a minority of cases.

2. Moreover, a calculation of STEM weights may not potentially work properly if the objective
values are negative.

3. In the original form of the STEM approach, the distances are not standardized, which can distort
the result. On the contrary, KSU-STEM applies a relative standardized distance, which makes the
result more reliable.

4. KSU-STEM works better with a combination of minimizing and maximizing objective functions.
Any transformation of the objective character is not required.

5. The ideal value is determined via the same approach. However, KSU-STEM determines the basal
value at an unnecessarily pessimistic level. This aspect can be considered as a minor drawback of
KSU-STEM. This shortcoming is eliminated in the revised KSU-STEM described below.

6. On the other side, these two extreme values of the objectives are artificially used to represent the
normalization of their values. STEM uses only the ideal value in this process.

7. Both methods zero the weights of satisfactory objectives. KSU-STEM, compared to STEM,
recalculates the weights of other objectives, which is actually necessary action. This fact must
also be duly examined (see more below).

The revised KSU-STEM algorithm below reflects the positive aspects of the original KSU-STEM
algorithm and corrects its above-mentioned partial shortcomings.
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4. Improvements of the KSU-STEM Algorithm

The main part of the article introduces the possible improvements, or modifications, of the
KSU-STEM algorithm that further enhance the already great application (and theoretical) power. Let
us proceed step by step through the algorithm.

4.1. Step 2: Basal and Ideal Value of the Objectives

The way for a determination of the objective ideal value is meaningful. It is a minimum
f j(x∗j) = f I

j , j ∈ Jmin, or maximum f j(x∗j) = f I
j , j ∈ Jmax, of the j-th minimizing or maximizing objective

function on the set of feasible solutions. Thus, the following holds for the j-th minimizing or maximizing
objective function:

x∗j = argmin f j(x)

x ∈ X1 , or
x∗j = argmax f j(x)

x ∈ X1 . (15)

Models are solvable because the set X1 is bounded in the portfolio-making problem (at least) due
to the ‘portfolio’ condition (unit sum of the assets’ shares). Of course, some objective function(s) can be
nonlinear. Then, only a local optimum can be found.

The opposite extremes for all objectives are used for a determination of the basal (worst) value.
This concept is unnecessarily pessimistic. A more reasonable concept determines the basal value of the
objective function with respect to the optimal solution for other objective functions. This concept is
actually integrated in the STEM algorithm. So, the basal value of the j-th minimizing or maximizing
objective function is computed via the following formula

f B
j = max

x∗j

[
f j(x∗j)

]
j ∈ Jmin, or

f B
j = min

x∗j

[
f j(x∗j)

]
j ∈ Jmax.

(16)

The different approach can be practically illustrated on our investment portfolio-selecting problem.
The basal values via KSU-STEM and the improved approach are presented in Table 2.

Table 2. Basal values of the objectives via both approaches.

Approach Return Risk Cost

KSU-STEM −0.136 5.9 5
Improved approach 0.029 4.3 4.3

It confirms that the result of the KSU-STEM procedure provides an unnecessarily negative result
compared with the improved approach. Such bad values have never been gained by the objectives.

4.2. Step 3: Fuzzy Goal Construction

In the third step, a one-objective model (11) is solved. This model is based on a minimization of
the maximal weighted relative deviation from the ideal solution. Although the authors of KSU-STEM
do not explicitly mention it, this model may be a transformation of the following multi-objective model

min f j(x) j ∈ Jmin
max f j(x) j ∈ Jmax

x ∈ X1
. (17)

The used principle is derived from the STEM approach, which minimizes a deviation from the
ideal solution measured by the Chebyshev metric. Then, a linearized one-objective model leads to
a minmax optimization problem.
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In my opinion, another (alternative) concept for finding a solution of Model (17) should be
developed. This principle is actually the opposite of the original form. It represents a positive view:
the maximization of ‘something’. Specifically, the approach of a minimization of a maximum weighted
relative distance from the ideal solution is transformed to the approach of a maximization of the
minimum weighted relative distance from the basal value. This transformation is clearly performed
using fuzzy programming principles. Fuzzy sets, respectively triangular fuzzy numbers, make it
possible to express quantitatively the preference of acquiring a specific value of the objective function
through the linear relation between the basal and ideal value. Then, a fuzzy multiple objective
programming model can reflect the “value” preferences of all objective functions simultaneously.
To understand this part properly, the basics of fuzzy set theory and fuzzy optimization principles
should be introduced (for more, see the Appendix A). In the first step, the fuzzy goals must be specified.
Then, the j-th minimizing objective function, f j(x), j ∈ Jmin, is actually transformed to the fuzzy goal
represented by the fuzzy set F̃ f j(x), j ∈ Jmin, with the following membership function

µF̃ f j(x)
[ f j(x)] =


1

f B
j − f j(x)

f B
j − f I

j

0

f j(x) ≤ f I
j

f I
j ≤ f j(x) ≤ f B

j

f j(x) ≥ f B
j

. (18)

The j-th maximizing objective function is also transformed to the fuzzy goal as the fuzzy set
F̃ f j(x), j ∈ Jmax, with the membership function

µF̃ f j(x)
[ f j(x)] =


1

f j(x)− f B
j

f I
j− f B

j

0

f j(x) ≥ f I
j

f B
j ≤ f j(x) ≤ f I

j

f j(x) ≤ f B
j

. (19)

The membership functions (18) and (19) can be graphically displayed as follows (Figure 1).
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Figure 1. Membership functions of minimizing (left) and maximizing (right) fuzzy goals.

These are actually right and left-hand triangular fuzzy numbers. This type of fuzzy number
is selected because its membership function is piecewise linear. Therefore, working with them is
easier. In addition, the shape of the membership function enables reflecting the relationship between
the objective value and the membership grade well. Thanks to Bellman’s fuzzy goal optimization
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principle [31], the multiple objective model shown in (17) can be transformed to a one-objective form
as follows

max α

(1−w j)
f B
j − f j(x)

f B
j − f I

j
≥ α j ∈ Jmin

(1−w j)
f j(x)− f B

j

f I
j− f B

j
≥ α j ∈ Jmax

x ∈ X1

0 ≤ α ≤ 1

. (20)

where α is an intersection of all the fuzzy sets in Model (20) representing the (weighted) membership
grade of a solution. Therefore, α is maximized. A real (not weighted) membership grade of solution is
as follows:

min
1≤ j≤k

 f B
j − f j(x)

f B
j − f I

j

,
f j(x) − f B

j

f I
j − f B

j

. (21)

Let us get back to the weights in Model (20). As we can see, the position of the weights is different
compared to Model (11) to reflect the importance of the objectives correctly. Of course, the same
principle of a weight position is used in Model (24) within an interactive procedure. Another way
of calculating an importance expression is to divide the left side of the conditions (related to the
fuzzy goal) by the weight. However, it is an alternative approach that requires an elimination of the
condition for the α value, because α could then be greater than 1. Then, Model (20) is transformed to
the following form

max α
f B
j − f j(x)

w j( f B
j − f I

j )
≥ α j ∈ Jmin

f j(x)− f B
j

w j( f I
j− f B

j )
≥ α j ∈ Jmax

x ∈ X1

α ≥ 0

. (22)

The elimination of the condition reflecting the upper bound for α seems to be a sensible idea in
our portfolio selection case. Of course, the original interpretation of the α values is not maintained.
However, its “technical” function in the model is the same. In the following table, we can see the
significant difference in portfolio characteristics. It is obvious from Table 3 that Model (22) revised by
the condition α ≤ 1 would not provide the results in accordance with the expressed preferences of
risk-averse investor specified above. Of course, a composition of the portfolio is significantly different.

Table 3. Characteristics of the portfolio selected via Model (22) and its revised form.

Model (22) Return Risk Cost

Original 0.252 2.45 3.977
With α ≤ 1 0.17 3.083 3.744

The conditions 0 ≤ α ≤ 1 in Model (20) are actually necessary because the α value is always in
this interval.

4.3. Step 4: Weight Recalculation

Another revision of the KSU-STEM algorithm deals with a recalculation of the weights within
the interactive procedure. Within the KSU-STEM and STEM algorithms, the weights of satisfactory
objectives become zero. The process of recalculation of the weights of unsatisfactory objectives is
different. The STEM algorithm leaves the weights in the original form. In KSU-STEM, the weights are
recalculated to the standardized form. In other words, the sum of the weights is 1.
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4.3.1. Special Case of Single Unsatisfactory Objective

At first, a special case of one unsatisfactory objective should be introduced. In the original
KSU-STEM algorithm, a unit weight of the unsatisfactory objective works well in Model (11).
The problem occurs in the proposed modified Model (20) because zero is on the left side of the
condition, and it is related to the fuzzy goal. The fuzzy goal is virtually eliminated, which potentially
distort the results. The DM’s preferences are not correctly taken into account. In such a situation, the
following modification is proposed. The weight is transformed to the form of ‘almost one’. Then, one
is reduced by the infinitesimal constant as follows

w j = 1− 10−8 j ∈ JS, (23)

where JS =
{
Jmin − JR

min

}
∪

{
Jmax − JR

max

}
is the single element set containing the index of one unsatisfactory

objective.

4.3.2. Necessity of the Weight Recalculation?

The main question is about the need to recalculate the weights. Of course, the recalculation does
not change the relative relations among the weights. On the other side, the absolute differences are
naturally modified. Given again our investment portfolio selecting problem, after all conditions (see
below in more detail), the initial portfolio has the following form: 40% Conseq Corporate Bond A, 25.03%
Conseq Real Estate, 17.87% Conseq Invest Bond A, and 17.1% Conseq Invest Europe Equity B. The portfolio
return is 0.255%, the risk is 2.513, and the cost is 3.553%.

Under the risk-averse strategy and knowledge of the extreme values of the objectives, the investor
is not satisfied with the level of portfolio risk. To reduce this value, the investor is able to accept a
cost increase under the same portfolio return if possible. Thus, the cost can be increased by 0.147
percentage points (up to 3.7%). Via the revised KSU-STEM, the weight of risk is determined by Model
(23). The weights of the other two objectives are zero. The portfolio composition is: 37.32% Conseq
Corporate Bond A, 32.68% Conseq Real Estate, 15% Conseq Invest Bond A, and 15% Conseq Invest Europe
Equity B. The return of the portfolio is the same (0.255%), the risk is 2.45, and the cost is 3.692%.

If the STEM concept for a weight ‘recalculation’ is used (original weight of risk, zero weights
of return and cost), the result is the same. Other combinations of the objectives for their value
improvement were selected (e.g., return and cost, risk and cost). Then, a composition of the portfolios
is also the same by means of both approaches. The main reason is that the relative relations among the
weights of unsatisfactory objectives remain the same.

After all previous revisions, the model for a solution improvement in terms of the interactive
procedure is formulated as

max α

(1−w j)
f B
j − f j(x)

f B
j − f I

j
≥ α j ∈ Jmin − JR

min

(1−w j)
f j(x)− f B

j

f I
j− f B

j
≥ α j ∈ Jmax − JR

max

x ∈ X1
∪X2

0 ≤ α ≤ 1

. (24)

The set of conditions X2 formulated within the interactive procedure should be also discussed.
The original formulation (12) is not perfect because it also enables a non-improvement unsatisfactory
objective thanks to the following expression

f j(x) ≤ f j(x1) j ∈ Jmin − JR
min

f j(x) ≥ f j(x1) j ∈ Jmax − JR
max

. (25)



Information 2020, 11, 262 13 of 21

Mainly in the case of a higher number of unsatisfactory objectives, the conditions should be
transformed to the sharp inequalities

f j(x) < f j(x∗) j ∈ Jmin − JR
min

f j(x) > f j(x∗) j ∈ Jmax − JR
max

. (26)

Sharp inequalities (26) may be problematic when searching for a solution of the models. Then, the
conditions can be transformed via the infinitesimal constant as follows

f j(x) ≤ f j(x∗) − 10−8 j ∈ Jmin − JR
min

f j(x) ≥ f j(x∗) + 10−8 j ∈ Jmax − JR
max

. (27)

This formulation holds only under the assumption that the sets JR
min and JR

max contain the indices
of all satisfactory objectives, including cases with a zero relaxation value. Although the authors do not
explicitly declare this fact, I consider it reasonable. If not, the weights of the satisfactory objective would
be also taken into account in the non-zero form. Then, the conditions/fuzzy goals with these weights
would not be eliminated. The result could be distorted. A similar situation could arise by maintaining
the non-zero weights of the satisfactory objectives with a particular acceptable relaxation level. An
explicitly expressed preference (by means of the weights or relevant conditions) about a possible
relaxation can inadequately ‘muffle’ this allowed relaxation against the unsatisfactory objectives. Then,
α can be improperly reduced. Our investment situation confirms this declaration. After a formulation
of the additional preferences of a portfolio improvement mentioned above, a new portfolio, obtained
as described, has the return at the level of 0.262%, a risk of 2.462, and a cost of 3.7%. As we can see, the
most important risk is a little worse (compared to 2.45). The cost is also at a worse level (compared to
3.692%). The return is slightly better (compared to 0.255%). Under the additional preferences, this
solution is unnecessarily bad.

Thus, the sets JR
min and JR

max must contain all satisfactory objectives. Then, the revised Model (24)
with the set X2 modified by Model (27) reflects the DM’s requirements for a solution improvement. The
weights of unsatisfactory objectives are explicitly included. The weights (importance) of satisfactory
objectives are presented implicitly through the minimum or maximum restrictive value in the revised
set X2.

4.3.3. Fuzzy Goal Modification

In terms of the (revised) KSU-STEM interactive procedure, the additional preferences, or the
modified importance (weight) of the objectives can be reflected by another way (besides the two
approaches described above). I propose a modification of the established fuzzy goals for the
unsatisfactory objectives. A stronger preference can be reflected by the improvement of the basal value.
It means its decrease or increase for a minimizing or maximizing objective. A modification of the fuzzy
goals can be graphically displayed as follows (Figure 2).
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Figure 2. Modification of minimizing (left) and maximizing (right) fuzzy goals.
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It is obvious that a modified basal value pushes to improve the value of the j-th objective function
f j(x). The main question is how to get a new basal value f B′

j . I propose an approach based on the
integration of the weight to the fuzzy goal or (triangular) fuzzy number. Then, the following formula
holds for the j-th minimizing or maximizing fuzzy goal

f B′
j = f B

j −w j

(
f B
j − f I

j

)
j ∈ Jmin − JR

min, or

f B′
j = f B

j + w j

(
f I
j − f B

j

)
j ∈ Jmax − JR

max.
(28)

Then, the modified fuzzy goals are in the following form

f B′
j − f j(x)

f B′
j − f I

j
≥ α j ∈ Jmin − JR

min

f j(x)− f B′
j

f I
j− f B′

j
≥ α j ∈ Jmax − JR

max

. (29)

Another part of Model (24) used in the interactive procedure remains unchanged. In terms of the
interactive procedure of selecting the investment portfolio, the modified basal value of the risk f B′

l is
computed as follows

f B′
2 = 4.3− 0.529(4.3− 2) = 3.083. (30)

Then, the fuzzy goal of the portfolio risk is modified to the following form

3.083−
20∑

i=1
lixi

3.083− 2
≥ α. (31)

Model (24) with the modified fuzzy goal for a risk shown in Equation (31) is solved to select
the revised portfolio. The result (portfolio composition) is the same. The same situation also occurs
for other combinations of improved objectives (return and cost or risk and cost). So, this approach
can be comprehended as an alternative to the approach with the explicitly expressed weights of
unsatisfactory objectives.

Now, we have actually three alternative approaches to take into account the preferences of
an unsatisfactory objective value(s): the original KSU-STEM with a weight recalculation, a revised
approach with the original weight of an unsatisfactory objective, and a revised approach of modified
fuzzy goals via the integrated weights. The second approach has one advantage compared to two
others. It is easier to apply thanks to actually having no need to recalculate the weights or basal values.
It may be that a formulation of the fuzzy goal is simpler because of the integrated weights. However,
the revised approach with the original weight is clearly the most user-friendly.

5. Selecting a Portfolio of CONSEQ Funds via Improved KSU-STEM

Finally, a revised version of KSU-STEM is applied to make a portfolio of the open unit trusts
offered by CONSEQ Investment Management. As mentioned above, it is a longer-time risk-averse
investment. The weights of three determined criteria (objectives) are calculated via a scoring method.
The scores are assigned according to the preference of the risk-averse investment strategy specified in
Section 2. The scores and weights are in the following table (Table 4).

Table 4. Scores and weights of the objectives.

Objective Score Weight

Return 6 0.353
Risk 9 0.529
Cost 2 0.118
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For easier portfolio management, the number of open unit trusts is limited by minimum (15%) and
maximum (40%) share in the portfolio. Further, the risk-averse investor limits a share of equity funds to
25% because these funds potentially generate the highest loss. All strategy aspects can be determined
by a “more advanced” investor or with the assistance of an experienced investment counsel. The same
applies to the application of the method itself.

The objective functions representing three portfolio characteristics are formulated in the weighted
average form as follows

f1(x) =
20∑

i=1
rixi − portfolio return,

f2(x) =
20∑

i=1
lixi − portfolio risk,

f3(x) =
20∑

i=1
cixi − portfolio cos t,

(32)

where ri, li, ci, i = 1, 2, . . . , 20, represent the return, risk, and cost of the i-th open unit trust (indexed in
order from Table 1) and xi, i = 1, 2, . . . , 20, represents a share of the i-th fund in the portfolio generating
the n-component vector of variables x. The ideal (optimal) value of each objective is determined
through Model (10) in the following form

max
20∑

i=1
rixi

xi ∈ X1 i = 1, 2, . . . , 20
,

min
20∑

, i=1
lixi

xi ∈ X1 i = 1, 2, . . . , 20
,

min
20∑

, i=1
cixi

xi ∈ X1 i = 1, 2, . . . , 20
, (33)

where the feasible solution set X1 includes the following conditions

0.15yi ≤ xi ≤ 0.4yi i = 1, 2, . . . , 20 (34)

10∑
i=7

xi ≤ 0.25 (35)

20∑
i=1

xi = 1 (36)

xi ≥ 0 i = 1, 2, . . . , 20 (37)

yi ∈ {0, 1} i = 1, 2, . . . , 20 (38)

where the binary variable yi, i = 1, 2, . . . , 20, helps to ensure, within a set of constraints (34), a fixed
possible interval for the share of each i-th open unit trust in the portfolio. The second condition (35)
represents the limit of equity fund share in the portfolio. Further, there is a standard condition for
making a portfolio (36). Non-negativity and binarity conditions (37), (38) for the relevant variables
must not be missed.

The basal values of the objectives are determined via the revised concept in Model (16).
Then, both extremes of the objectives can be displayed in the following table (Table 5).

Table 5. Extremes of the objectives.

Objective Basal Ideal

Return 0.029 0.429
Risk 4.3 2
Cost 4.3 2.5
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Now, the initial investment portfolio is made via the multi-objective model (17)

min
20∑

i=1
lixi

min
20∑

i=1
cixi

max
20∑

i=1
rixi

xi ∈ X1 i = 1, 2, . . . , 20

, (39)

which can be transformed to the maxmin form (20) in the particular shape

max α

(1− 0.529)
4.3−

20∑
i=1

lixi

2.3 ≥ α

(1− 0.118)
4.3−

20∑
i=1

cixi

1.8 ≥ α

(1− 0.353)

20∑
i=1

rixi−0.029

0.4 ≥ α
xi ∈ X i = 1, 2, . . . , 20
0 ≤ α ≤ 1

. (40)

Mathematical models (33) and (40) are solved in the LINGO optimization software. The portfolio
(as the optimal solution of (40)) has the following form (as already mentioned above): 40% Conseq
Corporate Bond A, 25.03% Conseq Real Estate, 17.87% Conseq Invest Bond A, and 17.1% Conseq Invest
Europe Equity B. The portfolio return (average monthly return) is 0.255%, the risk (measured as SRRI)
is 2.513, and the cost (entry fee) is 3.553%. It is not surprising that the fund with the lowest level of
risk dominates in the portfolio. The presence of a higher-risky equity fund is caused by its higher
return, which is also quite an important portfolio characteristic for the investor. A weighted grade of
membership (α) is 0.366. However, a real grade of membership for this solution is 0.415. The highest
grade of membership is, of course, for a risk, (0.777). On the other side, the less important objective
cost provides the lowest level of membership grade (0.415). This fact is understandable because higher
cost does not matter much to the investor.

The risk-averse investor tries further to reduce any risk connected with the investment. The
question is how to do it. At first, as the extreme objective values confirm, a risk reduction is possible.
Second, it is interesting to find out whether it is possible to do a risk reduction without reducing the
return. In many cases on the capital market, such an operation is not possible. However, this is not
always the case, especially in a situation of not so value-flexible risk measure. When the portfolio cost
is not too important a characteristic, some part of its value can be sacrificed in favor of the other criteria.
So, let us try to do this change of the current portfolio. Under the condition of a not deteriorating
return, the cost can be relaxed by 0.147 percentage point to reduce a portfolio risk. Then, Model (24) in
the following particular form is solved

max α

(1− 0.529)
4.3−

20∑
i=1

lixi

2.3 ≥ α
xi ∈ X1

∪X2 i = 1, 2, . . . , 20
0 ≤ α ≤ 1

, (41)
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where the set X2 is specified in the patterns in Models (12) and (27) as

X2 =



20∑
i=1

rixi ≥ 0.255

20∑
i=1

lixi ≤ 2.513− 10−8

20∑
i=1

cixi ≤ 3.553 + 0.147


. (42)

The solution of Model (41) represents a revised portfolio consisting of the same mutual funds
as the previous one. However, the shares are different. The portfolio composition is 37.32% Conseq
Corporate Bond A, 32.68% Conseq Real Estate, 15% Conseq Invest Bond A, and 15% Conseq Invest Europe
Equity B. The return of the portfolio is the same (0.255%), the risk is 2.45, and the cost is 3.692%. The
weighted grade of the membership of this solution is slightly higher; in contrast, the real grade of
membership is lower due to an increased cost. As the input data suggest, it is really possible to reduce
the risk while maintaining (or increasing) return. The preference for a return increase would mean a
lower risk reduction than a stable level of portfolio return. As expected, the share in the real estate
fund increased due to its higher return at the expense of the shares of all other funds in the portfolio. If
further cost increases would be acceptable, the process of improving the risk and return values could
continue. However, the area for this change is significantly limited due to a maximum possible level
of cost (4.3%). Another way to reduce risk is a reduction at the expanse of return under the same or
better level of cost. This path leads through the replacement of the equity fund by a lower-risk fund
with significantly lower return. In other way, while the risk is cannot be reduced much, the return
can still decrease more significantly, as the extreme objective values show. Thus, such a change is not
acceptable by the investor. In these circumstances, s/he decides to accept the last known fund portfolio.

Discussion

The introduced method accepts any investment strategy, e.g., ‘risk-seeking’ for potentially higher
return. Then, the equity funds (generally with the highest risk, allowing a possible higher return)
would be in a maximum feasible share in the portfolio. This approach could be applied to making a
portfolio from another financial investment instruments (stocks, bonds, investment certificates, etc.).
However, it can also be used in another field of practice: project management, production systems,
service providing, etc. A partial evidence of the revised KSU-STEM applicability on other data can
be found in [32], which confirms the significant support of this method in selecting a portfolio of the
funds offered by Česká spořitelna.

A non-traditional multi-objective approach of decision-making theory seems to be a very effective
tool for a portfolio making. Compared to the one-criterion (fundamental, technical analysis, etc.), or
‘human intuition’ concepts, it provides a far more complex view to a portfolio selection. Moreover, the
investor knows exactly what part of his budget is invested in what investment instrument. Unlike
a well-known mean-variance, or more generally mean-risk, optimization approach, the proposed
concept enables considering a wide range of quantitative, or qualitative investment criteria as well
as all investor’s preferences. It is evident that an application power of the proposed concept grows
with an increasing number of the criteria where the solution is very difficult to predict. This fact
is eventually confirmed by the presented investment case. Finally, a significant applicability of the
improved approach is also supported by an implementation of the selected concepts of fuzzy set theory.

Thus, a real-life case study selecting a portfolio of open unit trusts proves the application power of
the proposed revised KSU-STEM method in the field of the capital market. The interactive procedure
is very helpful to obtain a satisfactory portfolio composition. The approach is user-friendly. The
interactive procedure is simplified by an easier re-setting of the weights. The revised determination
of basal objective values avoids finding an unnecessarily pessimistic solution. Sharp conditions (26)
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or modified form (27) also contribute to more effectively finding a compromise solution. Then, the
process is faster, which is also an important aspect today.

6. Conclusions

The article deals with a revision of the multiple objective programming method KSU-STEM.
An inappropriate technique for the determination of the basal objective value is replaced by a ‘less
negative’ approach. More effective ways for expressing the importance of the objectives throughout
a decision-making process are proposed. All algorithmic modifications, or recommendations, lead
to more satisfactory applicability, which is demonstrated on a real-life case study selecting portfolio
from the CONSEQ open unit trusts traded on the Czech capital market. In general, the article shows a
significant usability of the methods of decision-making (and fuzzy set) theory in a portfolio selection
problem where other concepts are applied more often. I think it is a shame, which is finally proved in
the aforementioned article [32].

In the future research, the proposed revisions may be reviewed on other real or simulated datasets
preferably outside the world of investing. The revised KSU-STEM can be also extended by the
possibility of expressing often only vague (uncertain) preferences within the interactive procedure by
the implementation of other instruments of fuzzy set theory (fuzzy relations).

Funding: This research was funded by the Internal Grant Agency of University of Economics, Prague, grant
number F4/66/2019.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The father of the fuzzy set theory is Professor L. A. Zadeh, who laid the foundations for this theory
through his article [33]. The following basic definitions are taken over from Talašová [34].

Definition 1. Let U denote the so-called universe. Then, fuzzy set Ã on the universe U is defined by the
projection

µÃ : U→ 〈0, 1〉. (A1)

The function µÃ is called a membership function of the fuzzy set Ã. For each x ∈ U, the value of µÃ(x) represents

a grade of membership of the element x to the fuzzy set Ã. The closer the value of the membership functionµÃ(x)

1, the more the element x belongs to the set Ã.

Definition 2. Let Ã be the fuzzy set given on the universe U and α ∈ 〈0, 1〉. Then, the α-cut of the fuzzy set Ã
is the strict set

Aα =
{
x ∈ U

∣∣∣µÃ(x) ≥ α
}
. (A2)

Definition 3. The fuzzy set Ã defined on the linear space U is called convex, if for each α ∈ (0, 1〉 the α-cut Aα
is a convex set, i.e., if for the strict set Aα, the following holds:

∀x, y ∈ Aα ∀λ ∈ 〈0, 1〉 : λx + (1− λ)y ∈ Aα. (A3)

Definition 4. A fuzzy number is such a convex fuzzy set F̃ that it holds
∃ x0 ∈ R, µF̃(x0) = 1,
µF̃(x) is a piecewise continuous function.
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Definition 5. A triangular fuzzy number is a fuzzy number F̃ whose membership function µF̃(x) has a
triangular shape as follows

µF̃(x) =


0

x−a
b−a
c−x
c−b
1

x ≤ a∧ x ≥ c
a ≤ x ≤ b
b ≤ x ≤ c

x = b

. (A4)

where a, b, and c are lower, medium, and upper parameters of the triangular fuzzy number F̃. The triangular
fuzzy number can be formally written as F̃ = (a, b, c).

Bellman’s optimality principle is used for finding a solution of the mathematical models with
conditions that may not hold strictly [31]. First, two important notions must be defined. A fuzzy
condition is such a condition that is expressed only approximately. It means that its relation mark does
not hold exactly, but with some toleration. A fuzzy goal is actually the objective function expressed as a
fuzzy condition where a proximity is declared by its extreme values.

Let us use a model with fuzzy goals G j, j = 1, 2, . . . , k, fuzzy conditions C j, j = 1, 2, . . . , k, and
strict conditions creating the set X. Goals and conditions actually get to the same level. They fulfill the
same role in the model. To each j-th fuzzy goal, or each i-th fuzzy condition, a membership function
µG j(x) , or µC j(x) is specified. A fuzzy decision (solution) is defined as a fuzzy set that is a result of the
intersection of fuzzy goals and fuzzy conditions. Under the condition of a solution feasibility declared
by the strict set X, the fuzzy decision can be formulated as a fuzzy set A

A = G1 ∩G2 ∩ . . .∩Gk ∩C1 ∩O2 ∩ . . .∩Cm ∩X. (A5)

The membership function of the fuzzy set A is specified through the following operation

µA(x) = µG1(x)∧ µG2(x)∧ . . .∧ µGk(x)∧ µC1(x)∧ µC2(x)∧ . . .∧ µCm(x) = min
i, j

{
µG j(x),µCi(x)

}
. (A6)

Then, the maximizing decision can be defined as a fuzzy number with this membership function

µA(xM) =

maxµA(x) x ∈ X

0 x < X
. (A7)

If the function µA(x) has one unique maximum xM, then this solution (decision) is classified as
strict (certain), which represents all goals and conditions with the highest possible grade of membership.

It is obvious that the solution is obtained on the basis of the maximin operator. Thus, the maximum
of the membership function µA(x) in the problem with fuzzy goals and fuzzy conditions can be found
through the following supporting strict model [35]

max α
µG j(x) ≥ α j = 1, 2, . . . , k
µCi(x) ≥ α i = 1, 2, . . . , m
x ∈ X
0 ≤ α ≤ 1

, (A8)

when µA(x) = min
i, j

{
µG j(x),µCi(x)

}
. The idea of Bellman’s approach can be expressed by another

formulation of the mathematical model, which can be studied by Gupta and Bhattacharjee [36] and
Mohamed [37]. The linear model can be solved by a simplex method. In the case of nonlinearity, a
gradient or interior point method could be applied. The (mixed) integer mathematical programming
model can be solved using the branch and bound method. Thus, a selection of the suitable method is
influenced by variable specifications, objective function characters, or searched extremes.
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