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Abstract: Many industries today are struggling with early the identification of quality issues,
given the shortening of product design cycles and the desire to decrease production costs, coupled
with the customer requirement for high uptime. The vehicle industry is no exception, as breakdowns
often lead to on-road stops and delays in delivery missions. In this paper we consider quality
issues to be an unexpected increase in failure rates of a particular component; those are particularly
problematic for the original equipment manufacturers (OEMs) since they lead to unplanned costs
and can significantly affect brand value. We propose a new approach towards the early detection
of quality issues using machine learning (ML) to forecast the failures of a given component across
the large population of units. In this study, we combine the usage information of vehicles with the
records of their failures. The former is continuously collected, as the usage statistics are transmitted
over telematics connections. The latter is based on invoice and warranty information collected in the
workshops. We compare two different ML approaches: the first is an auto-regression model of the
failure ratios for vehicles based on past information, while the second is the aggregation of individual
vehicle failure predictions based on their individual usage. We present experimental evaluations
on the real data captured from heavy-duty trucks demonstrating how these two formulations have
complementary strengths and weaknesses; in particular, they can outperform each other given
different volumes of the data. The classification approach surpasses the regressor model whenever
enough data is available, i.e., once the vehicles are in-service for a longer time. On the other hand,
the regression shows better predictive performance with a smaller amount of data, i.e., for vehicles
that have been deployed recently.

Keywords: fault detection; predictive maintenance; machine learning

1. Introduction

Heavy-duty vehicles are complex systems with a vast number of possible specifications, in
which component breakdowns can originate from multiple sub-components that malfunction for
different reasons. However, in this day and age, such modern equipment logs large amounts of
data using hundreds of sensors. This data can be potentially analyzed to provide early warnings
about future quality issues. In this context, we are interested not only in the degradation of
performance—e.g., decreased capacity of a battery due to heavy use or wear and tear, but also
broken components—e.g., a compressor.
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There are established lines of research on the prediction of components breakdowns, degradation,
reliability, etc., in the context of the transportation and vehicle industry [1–8]. Recently, some of these
studies provide fault detection systems under the umbrella of statistical machine learning approaches,
such as deep neural networks, recurrent neural networks, and support vector machines [5,9–11].
They build diagnostic models based on the data, which are collected from machines to forecast
the healthiness and unhealthiness of the machine or its components. Such forecasting is crucial,
since manufacturers can potentially lower their maintenance costs significantly by identifying and
remedying the quality problems before they happen for a considerable portion of the population. Such
knowledge enables manufacturers to take the preventive actions in the short term and plan for the
longer term. Even though the literature review shows significant progress in this area, there are few
works focusing on quality issues detection and forecasting. The ones which focus on quality issue
detection mostly relate warranty claims to the age of the vehicle or other machinery.

In this study, we take advantage of multiple sources of data consisting of a large number of
parameters that capture status information about the vehicles over time. We use the data to forecast
the ratio of component breakdowns for a population of vehicles produced within the same month,
during the entire warranty period. In general, we aim to use the sensor data (logged vehicle data, LVD)
and combine it with information collected on warranty claims (WCs). More specifically, this paper
presents and compares two approaches: the first is predicting failure rate using historical information
about the history of failure rates, through an auto-regressive model; the other maps out the usage
information (LVD) into component failure probabilities for each truck separately, and aggregates these
predictions during the entire period of interest.

Both approaches aim at predicting the failure rate over the vehicle population during the warranty
period. The first approach uses regression to estimate the failure rate based on the operations of similar
vehicles that have been in service before. It can take advantage of significantly more historical data and
capture aspects such as seasonality; however, it is not able to account for possible design changes or
manufacturing deficiencies that appear suddenly. The second approach uses a classification algorithm
to predict components’ failures, based on the history accumulated from the particular population of
interest. These predictions are aggregated and translated into the failure rate, and take into account
specifics of usage and any potential early symptoms of unusual wear.

These two approaches are compared in the results section and provide a suggestion for
manufacturers and workshops to assess which approach can be used for a reliable prediction under
different conditions.

The classification algorithm consists of four stages as follows: stage 1 consists of data integration,
where LVD and WC data are concatenated in a time series to be used as an input for the classification
pipeline. The main purpose of this step is to label the LVD using claim information; stage 2 takes the
place as a feature engineering process consisting pf feature selection to get the most informative sub-set
of features, and feature extraction to generate new features from LVD to attain a valuable pattern that
is conductive to a higher level of prediction performance; model construction as stage 3 is responsible
to build several models based on the data collected from thousands of heavy duty trucks in different
batches of productions. Finally, evaluation construction in stage 4 is in charge of assessing how the
system performs in different batches of vehicle production over a year.

The rest of the paper is organized as follows. In Section 2, we review the related works in the
field; then in Section 3 we describe the available data sources used in this work. Problem formulation
and the proposed approach are described in Sections 4 and 5, respectively. Section 6 describes the
experimental evaluation and the results, which are followed by a discussion and conclusion of the
work in Section 7.

2. Related Work

Diagnosing and identifying emerging issues and component failures enable the manufacturers to
take preemptive action in the form of controlled handling of the necessary repairs and minimizing
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downtime for the customers. Most importantly, doing so allows the manufacturer to plan their
maintenance strategy for the longer term. Under this hypothesis, numerous studies have been
conducted over the past decades to develop various sorts of solutions in order for early prediction of
components’ failures to minimize the quality issues [12–14]. In the same context, Kalman filter [15],
time series and linear regression models have been used in order to build models to predict the
number of warranty claims [16,17]. Another interesting forecasting method has been done in [18],
wherein a mixed non-homogeneous Poisson process (NHPP) was used to predict the warranty claims.
Within these studies, life time/age and mileage are mostly used as the two main factors to predict the
quality issues. For example, Nozer et al. in [19] introduced a probabilistic model based on time, and a
time-dependent quantity such as the amount of usage. Later, Chukova et al. in [20] exploited two
variables, age and mileage, of the vehicle to estimate the mean cumulative number of claims. Similarly,
using lifetime distribution, a warranty claim prediction model was provided by Kleyner et al. in [21]
based on a piece-wise application of Weibull and exponential distributions. In general, this study
contributes two main prediction tasks consisting of ongoing forecasting for the current products,
and prediction of upcoming warranty at a product planning time. In [22,23], advantage was taken of
artificial neural networks. For example, multi-layer perceptrons (MLP) [22,23], and radial basis [24]
algorithms were exploited to predict quality issues. Similar techniques have been recently used to
predict remaining useful lives (RULs) of the components [25–29]. As an example, in [25], an ANN
model was developed by utilizing acoustic emission (AE) signals [30] to estimate the RULs of bearings
in the gearbox. In [26], a similar ANN model for RUL prognostic is provided to estimate the RUL of
bearings in wind turbine gearbox. Under this formulation—RUL—Benkedjouh et al. [31] proposed a
diagnostic model, in which the isometric feature mapping reduction method and classical support
vector machine were integrated, aiming to estimate the residual useful lives of bearings. Targeting the
same component and problem to predict, Boskoski et al. in [32] introduced a RUL prognostic approach
using Gaussian process (GP) models and Renyi-entropy-based features.

Manufacturers keep track of repairs and warranty claims in their customer service and quality
assurance departments. Several studies have combined these statistics with the ages and lifetimes of
particular components to estimate warranty claims in the future [33–36]. For instance, M.Y. You et al.
in [37], combined the capability of classical statistical lifetime distribution preventive maintenance and
predictive maintenance techniques for predicting residual life.

There do, however, exist several recent studies done in the automotive domain dealing with
predictive maintenance [38–40], which take advantage of multiple available data-sources mentioned,
and we think that the prediction of failures can be improved based on these developments. Taking
all these studies into consideration, we hypothesize that prediction of quality concern (here we mean
component failures, particularly component failure ratios) can be improved from the vehicles’ usage
data during their operation and the history of reported failures over different seasons.

3. Data Presentation

In this section we present the two datasets, which were used to carry out the proposed forecasting
method: Logged Vehicle Data (LVD), which basically includes usage and specification of the vehicles
and is aggregated over time in a cumulative fashion; and Warranty Claim (WC) data, consisting of the
claims’ information, as they are reported during the vehicles’ life time.

3.1. Logged Vehicle Data (LVD)

The logged vehicle data (LVD) used in this study were collected from commercial trucks over a
three year period, from 2017 to 2019. The LVD consists of the aggregated usage information for a fleet of
heavy-duty trucks operating in Europe. The values of the parameters were collected using telematics,
and each time a vehicle visited an authorized workshop for repairs and service. In general, two types
of parameters were logged in this dataset. The first type expresses the configuration of the vehicles;
for example, the type of the engine, gearbox information, and the types of pumps. This information



Information 2020, 11, 354 4 of 15

consists of categorical features. The second type logs the usage of the vehicle during its operation.
These data are continuously aggregated and contain a number of different parameters, such as fuel
consumption, compressor usage, gears used, cargo load, etc.

3.2. Claim Data

Claim data contain information regarding a vehicle’s warranty claims that were logged during its
operation, collected by original equipment manufacturer (OEM)-authorized workshops in different
places around the world. In particular, the claim database shows which part or component of which
vehicle has been repaired or changed and on which date. The parts and components are defined by
the normalized identification codes using four different levels of detail. For example, a single digit
number can refer to all components related to the electrical system in a vehicle, whereas a four digit
number (starting with that digit) refers to a specific component, such as the starter battery.

This claim dataset contains various parameters, such as vehicle ID, names of the components,
codes and descriptions, dates, etc. It needs to be mentioned that in this study we only merged the
parameters which are related to repaired date, component code and vehicle identification with the
LVD from the claim dataset.

4. Problem Formulation

In this section, we present the two proposed formulations for failure ratio forecasting:

• First we use only claim data, without LVD, to predict the future ratio of the vehicles’ failure over
time, based on how it looked in the past. The approach is based on the assumption that the
patterns of reported claims that happened in the past will also continue in the future.

• Second, we have investigated the combination of the LVD and claim data, formulating it as a
classification task to predict the failure ratio. Basically, the model acts based on the knowledge
that can be extracted from vehicle usage to predict the upcoming failures. In this formulation,
individual fault predictions are aggregated for the whole population into the failure ratio
over time.

Concerning the above two formulations, we then define the ground truth failure ratio using
Equation (1). The failure ratio FRG in the above formulations, can be calculated as the numbers of
failures exploiting function IG(i, t) divided by the population of vehicles |Vp| produced in that specific
month |Vpm|, which are operated and logged during a year.

FRG =
∑i∈Vp(m) ∑t IG(i, t)

|Vp(m)|
(1)

IG(i, t) =

{
1 if vehiclei has failure in montht

0 else

These two formulations require two ML pipelines to be developed to provide a comprehensive
forecasting solution. In the following sections we describe the proposed approach to tackle and answer
the above formulations.

5. Approach

5.1. Approach 1: Forecasting Claim Rate Using Claim Data

The first approach in this study is based on claim data only. It basically regresses the past failure
ratios against future failure ratios. Indeed, we hypothesize that the failures that happened in the past
may provide a pattern that can be exploited to predict future possible failures. The goal is, first of
all, is to identify how many past failures can be used to predict future failures. For the second: as the
in-service time of vehicles increase, how much of this incremental information can help forecasting?
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To investigate the first aspect, we regress the failure ratio during chosen months in-service against
the remaining number of months in-service using a linear regression model. In particular, we take the
advantage of a linear regression model, e.g., to predict failure ratio for the last nine months in-service
from the first three months in-service.

To study the second aspect, we increase the in-service time, and at the same time, we predict the
corresponding remaining in-service. In other words, we look at how much the prediction power will
be increased as more information about failures is gathered.

5.2. Approach 2: Data Integration and Feature Engineering

Before diving into the second approach, a data preparation process for cleaning, selecting
and extracting the most informative features need to be presented. The main two pre-processing
components are data integration and feature engineering which are shown as Stage1 and Stage2 in
Figure 1. The data integration and feature engineering processes are implemented on the two datasets.

LVD

Claim

Feature Engineering

Feature selection

Feature extraction

Model Construction

Multiple Models

Building the Model in 
               an 
Incremental Manner

--Monthly--

Algorithm:
LogisticRegression

Data Integration

Monthly Time Interval
are Conducted for

Integration

--Labeling-- 

Evaluation Construction
--Claim Rate Forecasting--

Based on LVD
  Reading

 Point over time

Based on 
Assembly Date

Evaluating the models with different sets
 under the warranty period

Multiple Evaluation s set

Stage1 Stage2 Stage3 Stage4

Figure 1. The conceptual view of the proposed classification method for predicting individual
failures/claims with different pipelines.

5.2.1. Data Integration

The purpose of this module is to merge the LVD and claim datasets, to create an integrated
dossier with both the usage and failure information for all the vehicles. We merge the two datasets
based on the vehicle’s Chassis IF, date of readout and date of claim report. To this end, we select a
time-window of one month preceding each warranty claim. We consider this to be the interval in
which the symptoms of an imminent failure are most likely to be visible (indeed, we took advantage of
expert knowledge to select this one-month time interval), and when the vehicle usage has the highest
effect on a failure. An example of a one-month interval integration is illustrated in Figure 2, where the
two closest readouts to the failure are marked as faulty samples.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

LVD data with target values --0 & 1--

0 1 1 0 0 0 0 1 1 0 0 0

biweekly

A  claim reported
between r3 and r4

A  claim reported
between r9 and r10

C
la
ss
ifi
ca
tio
n

impact interval

Figure 2. The conceptual view of labeling positive (non-healthy samples) and negative (healthy
samples) target values in the logged vehicle data (LVD).

The integrated dataset contains a new feature named failure (as the target feature ft). This has a
value of 1 for a given row if and only if a claim for the specific component of interest has been reported.
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More formally, each time-window/time span is assigned a binary label according to Equation (2),
where t refers to a time window (one month) that has a highest impact on failures in trucks.

Lt =

{
1 if failure in [t, t+τ)

0 if no failure in [t, t+τ)
(2)

5.2.2. Feature Engineering

This module (initially developed in our previous study [40]) includes two sub-modules,
feature selection and feature extraction, which are described as follows:

Feature Selection

Logged vehicle data (LVD), which were collected by multiple sensors in a time series, contain
hundreds of parameters carrying valuable knowledge regarding vehicle usage style. However,
we believe only a small subset of the data is informative for predicting component breakdowns.
Thus, taking into account all the features F = { f1, f2, . . . , ft} in the LVD, where ft is a target
variable corresponding to the component breakdowns, we intend to pick a subset Fs ⊂ F of the
features that are highly relevant for predicting the target value (healthy vs unhealthy vehicles).
Due to the fact that every feature selection algorithm considers a different aspect of the data to
select the most informative features, we exploit an ensemble method to select the features, where
their importance can be seen from multiple algorithms. To this end, we used and integrated
feature importance [41] and SelectKBest [42] algorithms in a parallel way (see [40]). (We have
usedsklearn.feature_selection [43] library (Python) implementations of these feature selection
algorithms.) Then, to obtain the desired list of features Fs = { f1, f2, . . . , fm, ft}, the common subset of
features from the output of each algorithm is selected to build and train the model.

Feature Extraction

In contrast to the former process, where the intention was to decrease the dimensionality of
the LVD, in this sub-module, we attempt to generate new features aiming to uncover the hidden
information that can not be directly seen by feature selection algorithms. It has been recorded before,
in a related study [44], that additional ways to represent data collected on-board vehicles can lead to
increased classification performance.

In this module, we calculate the differences between subsequent data points, and exploit them as
the new features in modeling. Figure 3a,b shows the examples of significant and moderate changes,
highlighted in red and blue. These subplots show the changes in two different features (F1 and F2) in a
vehicle (V1). The green line in both subplots shows the average movement in the changes during the
vehicle’s operation.
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(a) F1-V1
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(b) F2-V1
Figure 3. Illustration of the extracted features distinguishing between significant and gradual changes
in each feature. Subplots (a,b) show the changes in feature 1 (F1) and feature 2 (F2) in vehicle 1.
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We expect that the significant change (decrease or increase) in the vehicle’s usage pattern might
be correlated with a failure in the near future. Figure 4a,b show how these changes are related to the
healthy and non-healthy vehicles (healthy vehicles point to those that do not have any failures during
their operational life, while unhealthy refers to the vehicles that have at least one reported breakdown
in their history). In these two sub-figures, the y-axis shows the relative frequency of changes in four
different categories. We have quantified the numbers of those changes and divided them into four
categories; high, medium, low and no changes [45]. These are shown on the x-axis. These sub-figures
clearly reveal that the proportion of significant positive and negative changes in non-healthy vehicles
is higher than in the healthy vehicles during their lifetimes. In contrast, the proportion of healthy
vehicles is more than that of non-healthy, when we took into consideration no changes to assess the
correlation between them. Similar results were observed when medium and less significant changes
were taken into consideration. Basically, the findings express the message that healthy vehicles have
fewer usage deviations than unhealthy vehicles. Thus, this extra information may support the model
to result in more accurate predictions.
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(a) Positive significant changes
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(b) Negative significant changes

Figure 4. Illustration of significant positive and negative usage changes in healthy and non-healthy
vehicles. Subplots (a,b) show how the positive and negative significant usage changes, in one feature,
relate to the health of the vehicles.

We conducted this extraction on the list of the features (Fs), which were obtained and selected
from the Feature Selection module described in above. Thus, to construct the dataset to be trained by
the classifiers in different experiments, we merged these extracted changes as extra parameters to the
list Fs, to get Fse = { f0s, f1s, f2s, . . . , fms, f0ex, f1ex, . . . , fmex}.

5.3. Approach 2: Forecasting Failure Rate Using LVD and Claim Data

This section presents our proposed approach in which forecasting is achieved based on the
sensor data captured during vehicles’ operations. In this approach, we formulate the problem as the
classification task exploiting the data logged from the vehicles (LVD), integrated with the claim data
to predict the individual warranty claims/failures over time. We then aggregate all the individual
predictions from the complete population into the failure ratio estimation. The conceptual view of
the proposed classification method is illustrated in Figure 1, where in stage 3, the LVD is considered
as vehicles behavior to predict the imminent failures during their warranty period. In this way,
the vehicles which are produced in the same month (considered to be the same batch) are used to build
the models for prediction task over time, and accordingly, to estimate the failure ratio of the complete
batch of vehicles under their warranty period. Indeed, for every individual LVD sample, which shows
the usage style of a particular vehicle in a certain time, we predict whether or not the vehicle will fail
within a month, by taking into account the past usage and failures of the whole population of the
vehicles produced in the same batch.

More to the point, in stage 3 (see Figure 5), we incrementally build multiple models such that the
more time the vehicles are in service—e.g., one month, two months—the more LVD are considered for
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building the prediction model. In other words, we are incrementally adding more knowledge about
vehicle usage in order to build the model to predict future failures until the end of their warranty time.
Subsequently, over time, when the model exploits more LVD to train, the prediction time—here we
mean the remaining time of warranty—will be decreased, since it reaches the end of the warranty
period. For example, in the first iteration (e.g., for the first batch—Batch1 Figure 5—of our vehicles
May-2017) we train the model with one-month vehicles LVD, and then the prediction process takes
place with the data collected during the eleven months (from Jun-2017 to April-2018). In the second
iteration—in this batch—the model uses two months of vehicle data in operation from May-2017
to June-2017 to be trained; accordingly, ten-months LVD from July-2017 to April-2018 are used for
the validation part. These modeling and validation processes through different iterations continue
until the end of the vehicles’ warranty periods. Over the year, different sorts of vehicles with various
specifications have been produced in different months, so this way of modeling potentially supports
the system to forecast any possible component breakdowns during the warranty period for each batch
of vehicles.

Batch 1

May-2017 Batch 2

Jun-2017 Batch 3

July-2017
Batch 12

April-2
018

1 M in O

2 M in O

12 M in O

1 M in O
-Training-

11 M for -Prediction and Validation (P&V)-
June-2017	to	April-2018

2 M in O
-Training-

10 M for -Prediction and Validation (P&V)
July-2017	to	April-2018

3 M in O
-Training-

9 M for -Prediction and Validation (P&V)
Aug-2017	to	April-2018

---- -----

---- ----

11 M in O
-Training-

1 M for
P&V

Structure of training and validation process
in a batch of vehicles --e.g., Batch 1--

Fir
st

 Ite
rat
ion

Se
co
nd

 Ite
rat
ion

Th
ird

 Ite
rat
ion

Ele
ve
nth

 Ite
rat
ion

May-2017

April-2
018

May-2018

June-2018

March-2019

May-2017	to
June-2017

May-2017	to
July-2017

May-2017	to
March-2018

April-2018

Figure 5. The conceptual view of building and validating the model for all batches of vehicles produced
in one year. This process incrementally increases the size of the training set by one month. Then the
rest is considered to validate the model.

Thus, given the failure ratio definition in Equation (1), we then formulate the prediction of failure
ratio—in this classification pipeline—over time using Equation (3):

FRP =
∑i∈Vp(m) ∑t IP(i, t)

|Vp(m)|
(3)

IP(i, t) =
TPi,t + FPi,t

2



Information 2020, 11, 354 9 of 15

where TPi,t and FPi,t refer to the predicted failures of the vehiclei in montht. As it is described in the
integration process, Section 5.2.1, and illustrated in Figure 2, we labeled two closest readouts/samples
(in the LVD) as the faulty samples. Therefore, for each reported breakdown, we expect a “perfect” classifier
to report two positive predictions. To account for that, we divide the sum of TPi,t + FPi,t by 2, to be
comparable with ground truth FRG. Thus, as the predicted failure ratio, FRp, gets closer to the ground
truth failure ratio, FRG, the model to predict the failure ratio in each production month becomes more
precise. In the next section, we describe in detail the evaluation of the two formulations by constructing
various training and test sets over different vehicle production months.

6. Experimental Evaluation and Results

As it is explained in Section 1, the main objective of this study is failure ratio forecasting. Hence the
goal of these experiments is to demonstrate to what extent we can predict components’ failure ratio
during the vehicles’ warranty period based on their past claims and operation for every batch of
vehicles. This provides valuable knowledge, so that an OEM can react if there is an increase in the
claim/failure ratio under the warranty period. E.g., an increase in the failure ratio indicates that there is
a quality problem in a specific component in a particular batch of vehicles. Thus, one should investigate
more to avoid or decrease warranty claims before they happen. In this way, we illustrate how machine
learning algorithms can be leveraged for failure prognostication taking into consideration the two
data sources.

In this section, we present the evaluations and results of the two formulations to address the
prediction task. In this task, we focus on the issue of predicting component failures for a particular
component that is a part of power train, by building several models to forecast whether each individual
vehicle will have a component failure within a month. The reason why multiple models are needed
to be constructed is that we are predicting the failures for several different months. Thus, in this
way, models gradually exploit more knowledge of vehicles’ usage (once they are more in-service) for
building the models, and accordingly, the prediction in various months.

We used the Gradient Boosting (we took the advantage of sklearn library in Python to
employ this classifier to build the model: https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.GradientBoostingClassifier.html) algorithm to build the prediction models, where we
constructed the training sets for the batches of vehicles produced in the same months over a year
from May-2017 to April-2018. For each production month—e.g., the vehicles that are produced in
May-2017; see Figure 5—we built eleven models so that the first model utilizes the data captured during
one-month of the vehicles’ operation (here we assume the vehicles, e.g., with May-2017 production
month, started to operate in the same month). Then, models incrementally exploit more knowledge
once the vehicles are in the traffic more and more (e.g., two months, three months, etc.).

We first report how good the individual failure prediction models are across different production
months. Figure 6 depicts the two ways of representation of auc values that we obtained as the
prediction performance. Blue bars show the average of auc values, as obtained from eleven iterations
for each production month. It can be observed that in most batches of vehicles auc values are above
the random prediction > 0.50. The lines show how the models perform with vehicles’ usage data with
different numbers of months in operation. In fact, the lines—in different colors—represent the auc
values obtained from the models, which are built based on LVD of the vehicles with different months
in service/operation—such as three, five, eight and ten months—in each specific batch of production.
It can be seen that, as expected, prediction based on 10-months in operation provides the best results
auc = 0.63. However, in some cases, models based on eight months in operation perform better.
Although the overall auc value achieved in this experiment is not a remarkable outcome, we should
keep in mind that in this prediction task, we are dealing with a very difficult problem. Given the
unbalanced data and the low informativeness of the collected signals, the performance of the predictive
models on an individual vehicle is not expected to be high. Overall, the figures from experiments

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
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suggest that the more data that is collected (the longer vehicles are in-service) to model and map the
vehicle usage to breakdowns, the better the predictions one can achieve are.
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Figure 6. AUC values in different production months.

As it is shown in Equation (3), FRP represents the prediction of failure ratio in each production
month, and the value of FRP is highly sensitive to the choice of the threshold on each confusion matrix
(in other words, the values of TP and FP). To choose this threshold for each of the multiple models in
every production month, we optimize FRP over a range of possible thresholds.

Figure 7 shows the average of the eleven optimal thresholds on failure ratio estimations and their
standard deviations for each specific production month. Indeed, we aimed to find a static threshold
so that we can utilize it for upcoming production months. Thus, we take the mean of all optimal
thresholds achieved in each specific batch as the optimal threshold which is opt = 0.53. This optimal
threshold can be used for the future data in which we do not have any ground truth to validate. Thus,
to calculate the failure ratio, Equation (3) is used, where we obtained eleven different failure ratios for
all batches of vehicles. For instance, if there are 20 faulty samples in the second iteration (in ten-months
from Sept-2017 to Jun-2018) of the Batch3, in which 200 vehicles are produced, our model predicts 35,
including TP and FP; so in this case the failure ratio would be (35/2)/200) = 0.0875. Indeed, this is a
classification task by individual failure prediction, which translated to regression in the resulting level,
where we measure the error between predicted failure ratios and ground truth failure ratios.

Figure 7. Mean values of eleventh optimal thresholds in different production months and
the standard deviation of them, which were obtained from a range of possible thresholds
in every iteration.

Figure 8 delineates the ground truth and the prediction of failures ratios, which are obtained by
the two approaches. In fact, these are the resulting plots from the models constructed based on three,
five, eight and ten-months of vehicles in operation. Accordingly, we considered both healthy and
unhealthy samples, which are logged during the next nine, seven, four and two months to validate
and estimate the failure ratio for all batch of vehicles. Since, in each production month, the failure
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population is distinct, the ground truths are different in each experiment, as depicted in Figure 8.
For instance, the solid black lines show the actual failure ratios (actual numbers of failures divided
by vehicles population in that batch) which happened during the vehicles operations, while the dash
lines illustrate the prediction of failure ratios, from both approaches, under the warranty period.
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Figure 8. Failure ratio in different vehicle production months.

As an example of the first approach, we train the model with eight months of operation, and then
take the data, which were collected during four months, to forecast whether the vehicle will fail during
the next month.

Concerning the results from classification approach, indeed it is expected to observe such poor
performance with having less knowledge of vehicle usage; for instance, three or five months. The lack
of this knowledge is more visible when we compare it with the result of regression approach. Figure 8
top three plots, green lines, clearly demonstrate how far the prediction using claim data is from the
actual baseline—mostly from the vehicles, which are produced in 2017 with regard to the vehicles
produced in 2018. In contrast, the red lines confirm the superiority of the regression using regression
between failure ratio in the past to predict the failure ratios over all batches of vehicles, when three,
five and eight months in operations are considered to build their models. This is reversed, however,
once the classification approach gets enough usage knowledge to train the model. The bottom plot
in Figure 8 depicts the overestimation of the failures ratios by the approach using only claims data;
the classification performs better in all but one batches of vehicles.

Although we formulated this forecasting task as a classification problem by individual prediction
of failures, once we considered the predicted numbers of breakdowns and translated to the failure ratio
for each batch of vehicles, the problem is transformed into regression task in the result presentation
level. Thus, to quantify and compare the performance of the two approaches, we calculated the
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mean absolute error (MAE) between ground truth and predicted ratios, which are reported in Table 1.
Concerning the errors from the first approach, it could be observed the errors smoothly decreased
from 0.25 to 0.12 considering three to ten months data, respectively, at building the models. The same
trend was achieved by the classification approach, while we observed a significant drop in the errors;
e.g., from three months (3.9) to five months (1.62) or from five and eight months (0.70) to ten months
(0.08) once the model was trained by more data. Basically, they show to what extent more usage data is
valuable to map the vehicle usage to component failures, so that classification formulation outperforms
the regression model, once the model is trained with enough data. Overall, the figures depicted in the
table confirm that the more data we get to build the models, the less error the models make to predict
the upcoming failures.

Table 1. Mean absolute errors of different predictions by the two approaches.

Three
Months

Five
Months

Eight
Months

Ten
Months

Claim MAE 0.25 0.24 0.24 0.12

LVD MAE 3.9 1.61 0.70 0.08

7. Discussion and Conclusions

Two machine learning pipelines have been proposed in this study, for the early prediction of
components’ failure ratio. This study found that estimating the ratios can be accomplished through
vehicles’ usage patterns and failures history, whereas it did not receive much attention in the literature
this way of addressing the problem. In these two pipelines, the prediction task is formulated as
regression and classification problems, in which the evaluation of them has been constructed based
on vehicles’ production dates, and their operations using two sources of data. We have (i) taken into
account only claim data to calculate the regression between the previous failures and future failures to
predict the upcoming breakdowns; (ii) taken into consideration vehicles’ usage with the integration of
claim data (history of failures) to forecast failures, and then failure ratio over time.

For both formulations, the evaluation results show that the proposed solutions may support
manufacturers in designing and scheduling their plan for the necessary actions—mainly in two
situations. More to the point, the figures obtained from the two formulations suggest that the regression
approach is suitable when the vehicles are less than ten months in-service. In contrast, the classification
pipeline offers significantly better performance once well-enough data are available for building the
prediction models. However, the low AUC and high MAE values obtained from the models throughout the
evaluations signify that there still room to be improved in this way of tackling the prediction problem.

The findings of this work, however, have delivered limitations, which imply some new directions
for our future research. The first limitation pertains to the issue of a very unbalanced data. In this
work, the limited number of positive samples in the training set to build and draw inferences
brings about a threat for validation, when we target a specific component, that should be addressed.
Although we could observe an admissible result, in some batches of vehicles—see Figure 6—using
special weight for the minority class to train the model, transfer learning [46] could be a solution [47].
The second limitation relates to the evaluation of the regression approach. It is fair to remark that,
although our formulation and evaluation suggest how the correlation between the past failures could
affect the failure ratio prediction over time, the evaluation constructed only based on reported failures
so that if a failure is sourced from a poor design of vehicle, usage, etc., it is not be able to model
them. The third limitation is associated with the components dependency and their influence to failure
prediction and ratio. Our approach considers past failures, their correlations and LVD to forecast
failures ratio over time; however, it does not include the parameters’ impact and relations to failures
which is crucially important to recognize which can affect more to the ratio of failure over time.
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An interesting extension of the solutions proposed in this study can be constructed aiming to
address the third limitation described above. It is possible to conduct types of network dependencies [48]
on top of LVD to extract the parameters dependencies and relations to breakdowns. These could reveal
which parameters have the highest impact in failure ratio over time, so that enables the manufactures
to properly plan their investigation on a specific component.
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