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Abstract: Fifth generation (5G) is a new generation mobile communication system developed for the
growing demand for mobile communication. Channel coding is an indispensable part of most modern
digital communication systems, for it can improve the transmission reliability and anti-interference.
In order to meet the requirements of 5G communication, a dual threshold self-corrected minimum
sum (DT-SCMS) algorithm for low-density parity-check (LDPC) decoders is proposed in this paper.
Besides, an architecture of LDPC decoders is designed. By setting thresholds to judge the reliability of
messages, the DT-SCMS algorithm erases unreliable messages, improving the decoding performance
and efficiency. Simulation results show that the performance of DT-SCMS is better than that of SCMS.
When the code rate is 1/3, the performance of DT-SCMS has been improved by 0.2 dB at the bit error
rate of 10−4 compared with SCMS. In terms of the convergence, when the code rate is 2/3, the number
of iterations of DT-SCMS can be reduced by up to 20.46% compared with SCMS, and the average
proportion of reduction is 18.68%.

Keywords: 5G; low-density parity-check codes; belief propagation; minimum sum algorithm;
self-corrected minimum sum algorithm

1. Introduction

There are three major application scenarios for fifth generation (5G): enhanced mobile broadband
(eMBB), ultra-reliable low latency communication (uRLLC), and massive machine type communication
(mMTC), as defined by the International Telecommunication Union (ITU) [1]. These scenarios have
the characteristics of ultra-high traffic density, ultra-high connection number density and ultra-high
mobility. Faced with diverse scenarios and extremely differentiated performance requirements in
each scenario, it is difficult for 5G to form a solution suitable for all scenarios, using only a single
technology as the previous communication system. Channel coding is a key technology to achieve
the requirements and targets of 5G. In 5G new radio (NR), the new channel coding solution needs to
support incremental-redundancy hybrid automatic repeat request (IR-HARQ), as well as various block
lengths and code rates [2]. In order to meet these demands and achieve a high-rate transmission, the
NR standard selects low-density parity-check (LDPC) codes as the long code coding scheme for the
data channel [3,4].

The 5G NR LDPC coding scheme uses two base graph (BG) check matrices to adapt to different
code rates and block lengths. BG1 is suitable for code rates 1/3~8/9, with the maximum block length
of 8448 bits; BG2 is suitable for code rates 1/5~2/3, with the maximum block length of 3840 bits. [2]
According to the saying above, various block lengths and code rates are required for LDPC codes in
the 5G NR. Much more than this, in the coding scheme, the first several columns of the code block are
selected for puncturing. Experiments show that the introduction of relatively high puncturing variable
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nodes can produce improved performance with lower complexity [3]. However, the introduction of
puncturing variable nodes will also bring some performance loss when decoding, so it is necessary to
improve the existing decoding algorithms.

The LDPC code is a type of error correction coding with strong error correction capability, which
was first proposed by MIT’s Gallager in the 1960s [5]. Since LDPC codes have the advantages of
simple description, low decoding complexity, parallel implementation, flexible use, and low error
floor, they are widely used in practical communication and data storage systems [6–9]. The LDPC
code did not attract people’s attention when it was proposed by Gallager due to the hardware and
computer conditions at that time. In the 1990s, MacKay and Neal proved that LDPC codes had the
performance of approximating the Shannon limit under the combination of iterative decoding with
the belief propagation (BP) algorithm, since then LDPC codes have gradually become a hot topic in
academic research [10].

The disadvantage of the BP algorithm is that the computational complexity is high and the
performance is seriously degraded, especially when the message quantization bits are low. In 1999,
Fossorier proposed the minimum sum (MS) algorithm to simplify the calculation of check node
messages [11], and then MS quickly became the most widely used decoding algorithm. However, duo
to the simplification, the decoding performance has a large loss, as well as some hard-decision
algorithms [12–15]. Therefore, many new improved algorithms appeared [16], such as the performance
improvement algorithms modified by MS [17–20], the approximate simplified algorithms for the
decoding function [21–24], and the scheduling algorithms with improved decoding efficiency [25–30].
Among them, the offset minimum sum (OMS) algorithm and the normalized minimum sum (NMS)
algorithm proposed by Chen et al. improved the performance limitedly. Although the function
approximation algorithms have improved performance, they still increase the computational complexity.
The scheduling algorithms can reduce the computational complexity, but will lose some performance.
Besides, the self-corrected minimum sum (SCMS) algorithm proposed by Savin et al. improves
the decoding performance from the perspective of variable node messages and accelerates the
convergence of decoding [31–33]. However, the SCMS algorithm does not perform well when the
channel state is good, and cannot meet the requirements of high reliability and efficiency-oriented
communication systems.

In this paper, a dual threshold self-corrected minimum sum (DT-SCMS) algorithm based on
the SCMS algorithm is proposed for the design requirements of LDPC codes in 5G communication.
In the process of iterative decoding, the new algorithm determines the reliability of the messages by
setting thresholds and erasing the unreliable messages, which improves the decoding performance and
efficiency. Simulation results show that the DT-SCMS algorithm is superior to the SCMS algorithm in
terms of error characteristics and convergence characteristics. When the code rate is 2/3, the DT-SCMS
algorithm can reduce the number of iterations by up to 20.46% compared with the SCMS algorithm,
and the average proportion of reduction is 18.68%.

The remainder of this paper is organized as follows. Section 2 introduces the basic decoding
algorithm of LDPC codes. Section 3 proposes a new decoding algorithm for LDPC codes. Section 4
exhibits the performance analyses and comparisons. An architecture of the LDPC decoder is designed
in Section 5. Finally, Section 6 concludes the paper.

2. Basic Decoding Algorithm of LDPC Codes

2.1. BP Algorithm

Among the decoding algorithms of LDPC codes, the BP algorithm has the most outstanding
decoding performance, but the complexity is very high. For binary LDPC codes, by converting the
probability operation in the algorithm to the log domain, the LLR (log-likelihood ratio) BP algorithm can
be obtained. The LLR BP algorithm uses simple addition operations instead of complex multiplication
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operations, which greatly reduces the complexity of the decoding operations in the BP algorithm.
For the convenience of description, the definitions of relevant variable symbols are shown in Table 1.

Table 1. Definitions of variable symbols.

Symbol Definition

H The parity check matrix
i A variable node in H, i ∈ {1, 2, · · ·N}
j A check node in H, j ∈ {1, 2, · · ·M}

C(i) A collection of check nodes connected to variable node i
R(j) A collection of variable nodes connected to check node j

C(i)\ j A set of check nodes connected to variable node i except j
R(j)\ i A set of variable nodes connected to check node j except i
L(Pi) Channel initial probability likelihood ratio message

L(rji)
The check node message (extrinsic probability likelihood ratio
message from variable node i to check node j)

L(qij)
The variable node message (extrinsic probability likelihood ratio
message from check node j to variable node i)

L(qi) All messages collected by variable node i
α The correction factor in the NMS algorithm
ĉ Decoding sequence obtained by decoding decision

The steps of the LLR BP algorithm can be summarized as follows:
(1) Initialization
Set the maximum number of iterations (Imax), for every variable node calculate the initial probability

likelihood ratio message L(Pi)·(L(Pi) = log
(

Prob(i=0)
Prob(i=1)

)
) that the channel passes to the variable node, set

the initial message of the check nodes to 0, and then for each variable node i and its adjacent check
node j ∈ C(i), set the initial message that the variable node sends to the check node as:

L(0)
(
qi j

)
= L(Pi) (1)

(2) Iterative processing
Step 1: Check Node Processing (CNP)
For each check node j and its adjacent check nodes i ∈ R( j), at the l-th iteration the check node

message is calculated as [22]:

L(l)
(
r ji

)
= 2tanh−1

 ∏
i′∈R j\i

tanh
(1

2
L(l−1)

(
qi′ j

)) (2)

Step 2: Variable Node Processing (VNP)
For each variable node i and its adjacent check nodes j ∈ C(i), at the l-th iteration the variable

node message is calculated as [22]:

L(l)
(
qi j

)
= L(Pi) +

∑
j′∈Ci\ j

L(l)
(
r j′i

)
(3)

Step 3: Decision
For every variable node, the decision message is calculated as [22]:

L(l)(qi) = L(Pi) +
∑
j∈Ci

L(l)
(
r ji

)
(4)

Following this, a hard decision is performed. If L(l)(qi) > 0, then ĉi = 0, otherwise ĉi = 1.
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(3) Stop
If HĉT = 0, or the maximum number of iterations is reached, the iteration ends, otherwise the

iteration is continued from step 1.

2.2. MS Algorithm

The MS algorithm is an approximation of the LLR BP algorithm. In the update of the check
node, the minimum and second minimum values are used instead of the confidence information to be
transmitted. In the entire implementation process, there are only “sum” and “comparison” operations.

The CNP of the MS algorithm is described as follows.
For each check node j and its adjacent check nodes i ∈ R( j), at the l-th iteration the check node

message is calculated as [22]:

L
(
r ji

)
=

∏
i′∈R j\i

sgn
(
L
(
qi′ j

))
· min

i′∈R j\i

(∣∣∣∣L(qi′ j
)∣∣∣∣) (5)

The MS algorithm greatly reduces the hardware complexity, but the approximate substitution
sacrifices a part of the performance. To make up for the performance loss, the NMS algorithm and
OMS algorithm are the typical improved algorithms.

NMS algorithm: reduce the magnitude of message confidence by dividing by a value, the check
message is expressed as [22]:

L
(
r ji

)
=

∏
i′∈R j\i

sgn
(
L
(
qi′ j

))
· min

i′∈R j\i

(∣∣∣∣L(qi′ j
)∣∣∣∣) · 1

α
(6)

where α is called the correction factor.
OMS algorithm: reduce the magnitude of message confidence by subtracting a value, the check

message is expressed as [22]:

L
(
r ji

)
=

∏
i′∈R j\i

sgn
(
L
(
qi′ j

))
·max

(
min

i′∈R j\i

(∣∣∣∣L(qi′ j
)∣∣∣∣)− β, 0

)
(7)

where β is called the offset factor.

3. Proposed DT-SCMS Algorithm

The corrections of the NMS algorithm and OMS algorithm are made from the processing of check
node messages, and there is another type of improvement that makes corrections from variable node
messages, namely the SCMS algorithm. During the variable node message processing, according to the
variable fluctuation of the variable node message, the “untrusted” message is selectively erased, which
can speed up the convergence and restore the performance loss of the MS algorithm to a certain extent.

3.1. SCMS Algorithm

The VNP of the SCMS algorithm is described as follows:
For each variable node i and its adjacent check nodes j ∈ C(i), at the l-th iteration the variable

node message is calculated as [31]:

L(l)
(
qi j

)
= L(l−1)(qi) − L(l−1)

(
r ji

)
(8)

ei j
(l) =

(
∼ ei j

(l−1)
)
·

(
si j

(l)
⊕ si j

(l−1)
)

(9)

L(l)
(
qSC

i j

)
=

(
e(l)i j = 1

)
?0 : L(l)

(
qi j

)
(10)
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where “⊕” means the Exclusive-OR (XOR) operation in binary; ei j
(l) is used to indicate the position

of L(l)
(
qi j

)
that is erased in this iteration, to prevent erasing the message of the same position in two

consecutive iterations; si j
(l) denotes the sign of L(l)

(
qi j

)
in this iteration; L(l)

(
qSC

i j

)
is the new variable

node message obtained according to the erasure rule.

3.2. DT-SCMS Algorithm

Based on the SCMS algorithm, the proposed DT-SCMS algorithm adds two thresholds when
judging the reliability of the variable node messages, and dynamically adjusts the range of the erasure
messages so that it can better adapt to different environments. In addition, the new algorithm uses the
NMS algorithm in the check node update process to ensure the performance of the decoding.

In the variable node processing, if the variable node message changes between two set thresholds
in the opposite sign direction, it will be set to zero in the present update. This can be understood by
means of Figure 1.

Figure 1. Schematic diagram of reliable message determination for the dual threshold self-corrected
minimum sum (DT-SCMS) algorithm.

In Figure 1, L(l−1)
(
qi j

)
is the variable node message in the previous iteration. th1 and th2 are the

set thresholds. If L(l−1)
(
qi j

)
is a negative value, then L(l)

(
qi j

)
will be erased when it is between th1 and

th2 in Figure 1a. If L(l−1)
(
qi j

)
is a positive value, then L(l)

(
qi j

)
will be erased if it falls between th1 and

th2 in Figure 1b.

3.3. Thresholds Setting

If th1 deviates far from L(l−1)
(
qi j

)
, only a small number of node messages are modified so that the

performance improvement is limited. Conversely, if th1 deviates near from L(l−1)
(
qi j

)
, a large number of

node messages are modified, which expands the range of unreliable messages and causes degradation
in the decoding performance. The purpose of adding th2 is to identify L(l−1)

(
qi j

)
as a reliable message

when it deviates very far from L(l−1)
(
qi j

)
. Here, the thresholds th1 and th2 are defined as:

th1 = θ1 · L(l−1)
(
qi j

)
(11)

th2 = θ2 · L(l−1)
(
qi j

)
(12)

where θ1 and θ2 are adjustment factors, θ1 ranges from −0.5 ≤ θ1 ≤ 0.5, and θ2 ranges from
−1.5 ≤ θ2 ≤ −0.5, so that the value of th1 does not deviate too far or too near from L(l−1)

(
qi j

)
, and th2

can filter out certain reliable message nodes. At the same time, both th1 and th2 are the relative values
of L(l−1)

(
qi j

)
. As L(l−1)

(
qi j

)
is changed in each iteration, th1 and th2 will also change as iterative updates,

making sure that the criteria for judging reliability are adaptively updated.
In different LDPC codes, different thresholds can be set variously according to the requirements

of the applications. The method of density evolution can be used to choose the optimal values of θ1
and θ2, as the NMS algorithm uses [17].
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3.4. Iterative Process

The flow chart of the DT-SCMS algorithm is shown in Figure 2.

Figure 2. The flow chart of the DT-SCMS algorithm.

In the check node processing (CNP), NMS is adopted to ensure the decoding performance, and α
is the correction factor. The iterative process of the DT-SCMS algorithm is described as follows:

Step 1: VNP
For each variable node i and its adjacent check nodes j ∈ C(i), at the l-th iteration the variable

node message is calculated as:
L(l)

(
qi j

)
= L(l−1)(qi) − L(l−1)

(
r ji

)
(13)

e(l)i j =
(
∼ e(l−1)

i j

)
·

((
s(l−1)

i j ·

(
L(l)

(
qi j

)
− th1

)
> 0

)
&
(
s(l−1)

i j ·

(
L(l)

(
qi j

)
− th2

)
< 0

))
(14)

L(l)
(
qDTSC

i j

)
=

(
e(l)i j = 1

)
?0 : L(l)

(
qi j

)
(15)

Step 2: CNP
For each variable node i and its adjacent check nodes j ∈ C(i), at the l-th iteration the variable

node message is calculated as:

L(l)
(
r ji

)
=

∏
i′∈R( j)\i

s(l)i′ j · min
i′∈R( j)\i

(∣∣∣∣∣L(l)
(
qDTSC

i′ j

)∣∣∣∣∣) · 1
α

(16)

e(l)i j is used to indicate the position of L(l)
(
qi j

)
that is erased in this iteration, to prevent erasing the

message of the same position in two consecutive iterations, s(l−1)
i j denotes the sign of L(l−1)

(
qi j

)
in this

iteration, L(l)
(
qDTSC

i j

)
is the new variable node message obtained according to the erasure rule.
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Step 3: Decision
For every variable node, the decision message is calculated as:

L(l)(qi) = L(Pi) +
∑
j∈Ci

L(l)
(
r ji

)
(17)

And then a hard decision is performed. If L(l)(qi) > 0, then ĉi = 0, otherwise ĉi = 1.
SCMS sets zero as a fixed threshold to judge the unreliable messages, ignoring the changes of

the variable node messages. In the two adjacent iterations, the change range of the variable node
message is unknown. According to the dynamic adjustment rules of the thresholds, Equation (14)
gives the positions of the unreliable messages which will be erased in the iteration. Therefore, both
small and large changes will be considered. If the new value (L(l)

(
qi j

)
) deviates too near from the last

value (L(l−1)
(
qi j

)
), we can treat it as a reliable message (the role of th1); if L(l)

(
qi j

)
deviates too far from

L(l−1)
(
qi j

)
, we can also treat it as a reliable message (the role of th2); besides, if L(l)

(
qi j

)
falls between th1

and th2, it will be eased. In this way, the proposed algorithm effectively suppresses the transmission of
unreliable messages, and retains reliable messages, thereby improving the reliability of decoding and
accelerating the convergence speed of decoding.

4. Performance Analysis and Comparisons

4.1. Experiments and Simulations

Some experiments are conducted at the code rates of 1/3 and 2/3 in the 5G LDPC coding scheme.
The coded bits are transmitted by Binary Phase Shift Keying (BPSK) modulation with the Additive
White Gaussian Noise (AWGN) channel on the Matlab platform. The algorithms of BP, MS, NMS,
SCMS, DT-SCMS are simulated with the parameter settings in Table 2.

Table 2. Simulation parameters.

Parameters R = 1/3 R = 2/3

Code length (bits) 4224 1584
SNR (dB) [−0.5:1.4] [1.6:3.4]

Maximum number of iterations 30 30
Correction factor α 1.2 1.2

Adjustment factor θ1 0.1 0.125
Adjustment factor θ2 −1.2 −1.125

The simulation results are shown in Figures 3 and 4.
As can be seen from Figures 3 and 4, the DT-SCMS algorithm is superior to the SCMS algorithm both

in error characteristics and convergence characteristics. Especially in the areas of high signal-to-noise
ratio (SNR), the DT-SCMS algorithm performs more prominently than the SCMS algorithm in terms of
convergence. The number of iterations of the SCMS algorithm and the DT-SCMS algorithm in different
SNRs in Figure 4b are listed in Table 3.

Table 3. Iterations of SCMS and DT-SCMS under different SNRs (R = 2/3).

SNR (dB) 2.8 3 3.1 3.2 3.3 3.4

SCMS [31] 3311 2811 2607 2467 2246 2214
DT-SCMS 2748 2311 2124 2016 1797 1761



Information 2020, 11, 355 8 of 13

Figure 3. Simulations of belief propagation (BP), minimum sum (MS), normalized minimum sum
(NMS), self-corrected minimum sum (SCMS), DT-SCMS, when R=1/3.

From Figure 4b and Table 3, it can be seen that, as the channel SNR increases, the number of
iterations of LDPC decoding is gradually reduced. Obviously, the convergence characteristics of
the DT-SCMS algorithm are better than those of the SCMS algorithm, especially when the SNR is
high. This is because the dynamic judgment of the DT-SCMS algorithm on the erased messages is
more effective in suppressing the unreliable messages passing, thus speeding up the convergence of
decoding. According to Table 3, by calculation, when the code rate is 2/3, the DT-SCMS algorithm can
reduce the number of iterations by up to 20.46% compared with the SCMS algorithm, and the average
reduction proportion is 18.68%.
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Figure 4. Simulations of BP, MS, NMS, SCMS, DT-SCMS, when R=2/3.

In the experiment with R = 2/3, several intermediate values of L(l−1)
(
qi j

)
are taken out from the

process of iteration, and the values of th1 and th2 are calculated, as shown in Table 4.

Table 4. Some values of th1 and th2.

L(l−1)
(
qi j

)
−1.1247 5.2952 −3.9980 8.1010 3.2369

th1 −0.1406 0.6619 −0.4998 1.0126 0.4046
th2 1.2653 −5.9571 4.4977 −9.1136 −3.6415

From Table 4, we can see that th1 and th2 change dynamically with the value of L(l−1)
(
qi j

)
.

In addition, experiments show that this dynamic adjustability improves the decoding performance of
the proposed algorithm.
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4.2. Complexity Analyses

Table 5 compares the computational complexity of BP, MS, NMS, SCMS, and DT-SCMS algorithms
in a single iteration where N represents the encoding length, K represents the effective information
length, and W is the column weight of the check matrix.

Table 5. Computational complexity of decoding algorithms.

Algorithms Multiplication Division Addition

BP [10] 11NW − 6(N + K) N(W + 1) N(3W + 1)
MS [11] 0 0 N(4W − 1) + K(logW − 2)

NMS [17] 0 NW N(4W − 1) + K(logW − 2)
SCMS [31] 0 0 N(4W − 1) + K(logW − 2)
DT-SCMS 2NW NW N(6W − 1) + K(logW − 2)

It can be seen that the improved algorithm based on the MS algorithm, on the basis of the BP
algorithm, reduces a large number of multiplication and division operations, which will greatly reduce
the calculation complexity in the implementation. The DT-SCMS algorithm proposed in this paper
adds a small amount of multiplication and division operations to the variable node message processing.
During implementation, the adjustment factors of thresholds can be set to 1/2, 1/4, 1/8, etc., which can
be converted into simple shift and addition operations to obtain corresponding results. In general, the
DT-SCMS algorithm improves the performance of the decoding algorithm and reduces the number of
iterations with a small amount of computational complexity.

5. Design Architecture and Implementation

The Vivado High-Level Synthesis (HLS) platform launched by Xilinx has implemented a rapid
design with IP as the core, greatly improved productivity, and has been widely used in many
designs [34,35]. Vivado HLS is a high-level programming language that helps to achieve Register
Transfer Level (RTL) hardware functions, improving the level of abstraction of the system design.

An architecture of the LDPC decoder is designed in Figure 5, and mainly includes three modules:
initialization (readData), information update (updateInfo), and decision (Check). The information
update module consists of CNP (rowUpdate) and VNP (colUpdate). In the Vivado HLS platform, the
LDPC decoder with a code length of 1584 bits and a code rate of R = 2/3 is simulated and synthesized,
using the chip “xc7k420tffg901-2” from Xilinx’s device library.

Figure 5. Design of low-density parity-check (LDPC) decoders based on Vivado High-Level Synthesis (HLS).
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In Figure 5, llr indicates the channel input information, and blockdout indicates the output of
decoding results. In Vivado HLS, each module is implemented by C ++ functions. After compilation,
it can be simulated and synthesized, and verified by the test platform. The initialization module
mainly completes reading the initial value from the input channel information (llr) and storing it in
the variable node message (L

(
qi j

)
) and the judgment information (L(qi)). The CNP module is also

called “the row update module”, which mainly calculates the check node message (L
(
r ji

)
). The VNP

module is also called “the column update module”. It first calculates the judgment message (L(qi)),
and then calculates the variable node message (L

(
qi j

)
). The performance evaluation of the decoder

after synthesis in Vivado HLS is shown in Figure 6.

Figure 6. Comprehensive performance evaluation.

It can be seen that a total of 42,336 clock cycles are required to complete one decoding process
(22 iterations), of which approximately 1586 cycles are required to read the channel soft information,
and 1802 cycles are required for decoding iterations. As described in Section 4.1, compared with
the SCMS algorithm, the proposed DT-SCMS algorithm can greatly reduce the number of decoding
iterations. Therefore, the total latency of decoding can be correspondingly reduced when the average
number of iterations required for the decoding is reduced.

6. Conclusions

In this paper, we propose a dual threshold self-corrected minimum sum algorithm based on the
SCMS algorithm, and an architecture of LDPC decoders is designed. According to the variable node
message, two thresholds are set to judge whether the message is reliable, then the unreliable message
is erased, waiting for the next iteration update. The thresholds are set with the relative values of the
variable node message, which change with the iteration update, so the criterion for determining the
reliability is adaptively updated. Simulation results indicate that the DT-SCMS algorithm shows better
performance in a certain code rate range with a small amount of computational complexity, which can
effectively improve the error characteristics and convergence characteristics of the decoding system.
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