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Abstract: Acute kidney injury (AKI) is a common complication in hospitalized patients and can result
in increased hospital stay, health-related costs, mortality and morbidity. A number of recent studies
have shown that AKI is predictable and avoidable if early risk factors can be identified by analyzing
Electronic Health Records (EHRs). In this study, we employ machine learning techniques to identify
older patients who have a risk of readmission with AKI to the hospital or emergency department
within 90 days after discharge. One million patients’ records are included in this study who visited
the hospital or emergency department in Ontario between 2014 and 2016. The predictor variables
include patient demographics, comorbid conditions, medications and diagnosis codes. We developed
31 prediction models based on different combinations of two sampling techniques, three ensemble
methods, and eight classifiers. These models were evaluated through 10-fold cross-validation and
compared based on the AUROC metric. The performances of these models were consistent, and the
AUROC ranged between 0.61 and 0.88 for predicting AKI among 31 prediction models. In general,
the performances of ensemble-based methods were higher than the cost-sensitive logistic regression.
We also validated features that are most relevant in predicting AKI with a healthcare expert to improve
the performance and reliability of the models. This study predicts the risk of AKI for a patient after
being discharged, which provides healthcare providers enough time to intervene before the onset
of AKI.

Keywords: acute kidney injury; electronic health records; data mining; automated analysis;
imbalanced data; prediction models; risk stratification

1. Introduction

Acute kidney injury (AKI) is common among patients admitted to hospitals, affecting
approximately 10% of hospitalized patients and more than 25% of patients in the intensive care
unit [1,2]. AKI is defined as an abrupt loss of kidney function over a short period of time [2]. AKI may
lead to prolonged hospital stays, lower chance of survival, and a higher risk of developing chronic
kidney disease. Over the last 10–15 years, the incidence rate of AKI has increased in the United
States [3,4], the United Kingdom [5] and Canada [6,7]. The growing incidence rate of AKI is associated
with the changing spectrum of diseases. There is an increasing body of evidence proving that patients
with extrarenal complications and multiple comorbidities are at a greater risk of developing AKI [8,9].
Aikar et al. [10] have shown that the high comorbidity rate, measured by the Deyo-Charlson comorbidity
index, is associated with AKI. As a patient’s number of comorbid conditions grows, there is a rise
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in associated physician visits, healthcare utilization, medication intake and hospitalizations [11],
ultimately leading to an increase in healthcare expenditure. Given the associated risk and expense,
a promising strategy is required to improve the care for AKI patients. However, a UK-based report
published in 2009 demonstrated significant under-recognition of AKI, leading to delayed recognition,
inadequate treatment and ineffective monitoring [12,13].

Thus, there is a rising demand for techniques that can be used for the detection of AKI. However,
the complex pathophysiology and etiology of AKI make the diagnosis and management of this disease
challenging. There are different guidelines such as RIFLE [14], AKIN [15], WRF [16] and KDIGO [17]
for AKI diagnosis. Most of these guidelines rely on a rise in serum creatinine (i.e., a laboratory test)
alone as the gold standard. However, serum creatinine-based guidelines are often not ideal for the
diagnosis of AKI among older patients because the age-related deteriorations in glomerular filtration
rates affect the baseline measure [18]. Another limitation of this measurement is the fact that serum
creatinine may vary with muscle mass since it is a product of muscle catabolism [19]. In addition,
serum creatinine-based guidelines require a premorbid serum creatinine value to be used as a baseline
creatinine, which may not be available for all patients [20]. Although some guidelines also rely on
urine output to diagnose AKI, it is only monitored for patients with reduced kidney function [18].
Despite these challenges, even if AKI can be diagnosed properly, the clinicians often fail to intervene
due to a lack of time and treatment options. The treatments of AKI are primarily focused on avoiding
nephrotoxic medications and administering supportive care [17]. Although more advanced treatments
have been identified in recent years, their effectiveness has not been proven in clinical trials yet [21].
Thus, interventions often have poor results if a patient has developed AKI already [22,23]. So, it is
more effective to predict AKI prior to its diagnosis. A number of recent studies have shown that AKI is
predictable and avoidable if early risk factors can be identified using Electronic Health Records (EHRs).
For instance, Kate et al. (2016) have revealed that it is possible to predict up to 30% of AKI cases in the
hospital setting using the patient data stored in EHRs [18].

EHRs contain patient medical records, such as comorbid conditions, medications, laboratory
test results, diagnosis codes, demographics and discharge summaries, which can be used for the
risk profiling of patients [20,24]. With the evolution of EHRs and the widespread use of information
technology systems, these medical records are available nowadays for subsequent reuses [25–28].
EHRs offer an opportunity to employ machine learning techniques in order to recognize risk factors
associated with AKI and identify patients at risk of developing AKI. Several clinical decision support
systems have been developed in recent years for earlier detection of AKI using machine learning
techniques [29–35]. However, many of these systems suffer from various performance and design
related issues, such as lack of predictive power, substantial trade-offs between sensitivity and specificity,
a limited number of machine learning techniques, small population size, lack of predictors and limited
patient populations [20,34].

This study is designed to predict AKI among hospitalized and emergency department patients
using machine learning techniques. We incorporate ICES’ healthcare administrative datasets containing
one million older patients’ medical records who visited the hospital or emergency department between
2014 and 2016. We developed 31 prediction models based on different combinations of two sampling
techniques, three ensemble methods and eight classifiers. Our study differs from other studies in
several ways: (1) we developed prediction models for patients who are at risk of developing AKI
within 90 days timeframe after being discharged from the hospital or emergency department; (2) we
included a large number of predictors to train the models; and (3) we validated the important features
of each model with healthcare experts through formative evaluations to improve the performance
and reliability of the models. The rest of this paper is organized as follows. Section 2 describes the
methodology employed for the design of the study. Section 3 presents the experimental results. Finally,
Section 4 includes the discussion, and Section 5 describes the limitations of the study.
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2. Materials and Methods

We discuss the data sources and methodology in this section, which includes the design settings,
design flow, data integration, cohort entry criteria, input features, outcomes and proposed machine
learning techniques.

2.1. Study Design and Setting

We conducted a population-based retrospective cohort study in older patients who visited a
hospital or emergency department between 1 April 2014 and 31 March 2016, using health administrative
databases stored at ICES. These datasets were connected using unique encoded identifiers and analyzed
at ICES. The use of datasets in this study is authorized under section 45 of Ontario’s Personal Health
Information Protection Act, which does not need review by a Research Ethics Board.

Ontario has a population of about 13 million residents with universal access to physician services
and hospital care, which includes 1.9 million people aged 65 years or older. We suppressed the results
of this study in cells with five or fewer patients to comply with ICES privacy regulations and minimize
the possibility of reidentification of patients.

2.2. Workflow

Figure 1 shows the basic workflow of the study described in this paper. In the first step, we created
an integrated dataset from five different health administrative databases. The data sources are discussed
in Section 2.3. Next, we describe the inclusion and exclusion criteria in Section 2.4. The features in the
comorbidity, prescription, demographic and diagnosis codes data were encoded and transformed into
suitable forms for analysis in the preprocessing stage, which is discussed in Section 2.7. The analysis
techniques and results are presented in Sections 2.8 and 3, respectively.

2.3. Data Sources

We ascertained patient characteristics, drug prescriptions, outcome and medical history data from
5 administrative databases (as shown in Table A1 Appendix A). These datasets are linked using a unique
identifier, which is derived from health card numbers. We collected vital statistics from the Ontario
Registered Persons Database (RPDB) [36], which includes demographic data of all residents in Ontario
who have a valid health card. We utilized the Ontario Drug Benefit (ODB) Program database [37] to
get prescription medication use data. The ODB database holds all the outpatient prescription records
dispensed to older patients, which has an error rate of less than 1% [38]. We ascertained baseline
comorbidity, emergency department visit and hospital admission data from the National Ambulatory
Care Reporting System (NACRS) (i.e., for the emergency department) [39] and the Canadian Institute
for Health Information Discharge Abstract Database (CIHI-DAD) (i.e., for hospital admissions) [40].
We applied the ICD-10 (i.e., International Classification of Diseases, post-2002) [41] codes to identify
baseline comorbidities within the look-back window. In addition, baseline comorbidity data were
acquired from the Ontario Health Insurance Plan (OHIP) database [42], which holds claim records for
physician services. All the coding definitions for the comorbidity databases are provided in Table A2.

2.4. Cohort Entry Criteria

We identified a cohort of individuals aged 65 years or older who visited the emergency department
or were admitted to hospital between 2014 and 2016 (Figure 2). The hospital admission or emergency
department discharge dates were taken as the cohort entry or index date. If a patient had multiple
hospital admissions and emergency department visits, we chose the first incident. We excluded
patients with invalid or missing age, sex and/or health card number. In addition, we excluded patients
who (1) previously underwent a kidney transplant or dialysis treatment, as AKI is usually no longer
relevant once patients develop end-stage kidney disease; (2) left the emergency department or hospital
without being seen by a physician or against medical advice; and (3) developed AKI during emergency
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department visit or hospital admission, as they are already under observation. The diagnosis codes for
the exclusion criteria are presented in Table A3.
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Figure 1. Workflow diagram of the presented study where different colors are used to represent
three main parts (data integration and preprocessing, analysis and validation). The figure shows how
different combinations are formed using two sampling techniques (i.e., under sampling and synthetic
minority over-sampling technique), three ensemble methods (i.e., boosting, bagging and XGBoost),
and eight machine learning classifiers.
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Figure 2. Provides an overview of data creation plan and how we prepared the final cohort.

We identified 2,305,783 hospitalization and 12,347,256 emergency department visit records in
CIHI-DAD and NACRS, respectively. Next, a total of 5,635,909 unique individuals were identified
using RPDB. There were 1,007,993 individuals included in the cohort after excluding patients with
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invalid age, sex, and/or health card number and selecting patients aged 65 years or older. Finally, a total
of 905,442 individuals were included in the final cohort after applying the other exclusion criteria.

2.5. Input Features

All these features from different data sources were integrated using the encoded identifiers
derived by ICES using patient health card numbers. For each patient, we generated new features
and aggregated multiple values (rows) of a single feature into one by considering the latest values
of that feature. There were totals of 307,624, 768,293, 898,538 and 891,176 unique observations in
the aggregated CIHI-DAD, NACRS, ODB and OHIP databases, respectively. We identified patients
transferred from the emergency department to the hospital (appeared in both CIHI-DAD and NACRS)
and removed duplicates by considering the first incident. We identified a total number of 1878 unique
diagnosis codes (using CIHI-DAD, NACRS and OHIP) and 595 distinct medications (using ODB) for
905,442 individuals who were included in the final cohort. We used the Chi-Square test for feature
selection and then filtered the selected features with a healthcare expert. The final combined dataset
included a total of 86 unique features. The cohort contained 11 comorbidity features—namely, chronic
kidney disease, diabetes mellitus, cerebrovascular disease, coronary artery disease, hypertension,
chronic liver disease, major cancers, peripheral vascular disease, heart failure and kidney stones.
We applied a 5-year look-back window to detect these baseline comorbidities. There were four
demographics features—namely, sex, age, region and income quintile. We included 55 medications
that were prescribed to the patients within 120 days before the first hospital admission or emergency
department visit. These medications belonged to 13 distinct drug classes—namely, ACE-inhibitors
(blood pressure and heart failure), beta-blockers (blood pressure), alpha-adrenergic blocking agents
(blood pressure), angiotensin-receptor blockers (blood pressure), calcium blockers (blood pressure),
macrolides (antibiotics), fluoroquinolones (antibiotics), potassium-sparing diuretics (weak diuretic),
other diuretics, nonsteroidal anti-inflammatory agents (pain relievers), oral hypoglycemic (diabetes
mellitus) and immunosuppressive agents (immune system activity).

The cohort also included 16 ICD-10 diagnosis codes that were identified during the index
hospitalization or emergency department visit. The codes were related to delirium, mycoplasma
pneumoniae, disorders of fluid, electrolyte and acid-base balance (e.g., hyperosmolality and
hypernatraemia, hypo-osmolality and hyponatraemia, acidosis, alkalosis, mixed disorder of acid-base
balance, hyperkalaemia, hypokalaemia, fluid overload, and other disorders of electrolyte and fluid
balance), atrial fibrillation, anemia, femur fracture, valve disorders, atherosclerotic cardiovascular
disease, diseases of the digestive system (e.g., paralytic ileus, intussusception, volvulus, gallstone
ileus, other impaction of intestine, intestinal adhesions with obstruction, and other and unspecified
intestinal obstruction ileus), Certain infectious and parasitic diseases (e.g., sepsis due to Staphylococcus
aureus, other specified Staphylococcus, Haemophilus influenzae, Escherichia coli, Pseudomonas,
Serratia marcescens, other Gram-negative organisms, Gram-negative Septicaemia and Enterococcus),
dehydration and other volume depletion, abnormal function (e.g., abnormal results of function
tests of central nervous system, peripheral nervous system and special senses, pulmonary function
tests, cardiovascular function tests, kidney function tests, liver function tests, thyroid function tests,
other endocrine function tests and electrocardiogram suggestive of ST-segment elevation myocardial
infarction, abnormal cardiovascular function tests, and other abnormal results of cardiovascular
function tests), chronic pulmonary (e.g., chronic obstructive pulmonary disease with acute lower
respiratory infection and acute exacerbation and other specified chronic obstructive pulmonary
disease), dementia, glomerular disorders (e.g., glomerular disorders in infectious and parasitic diseases,
neoplastic diseases, blood diseases and disorders involving the immune mechanism, diabetes mellitus,
other endocrine, nutritional and metabolic diseases, and systemic connective tissue disorders) and
hyperplasia of prostate.
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2.6. Outcome: Identification of AKI

Machine learning models were built to predict AKI within 90 days after being discharged from
the hospital or emergency department. Positive cases were those in which patients revisited hospital or
emergency department with AKI within 90 days after being discharged, and negative cases were the
ones wherein hospitalizations or emergency department visits with AKI never took place. There were
totals of 899,449 negative and 5993 positive cases in the dataset. There were no recurrent AKI examples
(i.e., excluded 25,084 patients) in the data because we excluded the cases wherein AKI or dialysis was
acquired during the index hospital stay or emergency department visit.

The incidence of AKI was detected using the Canadian Institute for Health Information Discharge
Abstract Database and National Ambulatory Care Reporting System based on the ICD-10 (International
Classification of Diseases—Tenth Revision) diagnostic codes (i.e., ICD-10 code of AKI is “N17”).

2.7. Data Preprocessing

The features in the cohort were transformed into a format and scale that was suitable for the
machine learning techniques. For each feature described in Section 2.5, the last recorded value before
the first hospital admission or emergency department visit was captured. Medication, diagnosis code
and comorbidity features were set to either “Y” or “N.” If a patient had a certain comorbid condition
or was prescribed a medication, then its corresponding value was taken as “Y.” Instead of reporting
individual ages, we calculated age group features for the patients. If a patient’s age was within the
specified range of an age group, we set the value to “1” for that corresponding feature. The sex feature
took either “M” or “F” if the information was available in the dataset. Patients with invalid age or
sex were removed from the cohort. The region feature took either “R” or “U” to represent rural or
urban, respectively. The income feature took an integer value ranging between 1 and 5 to represent the
income quintile of a particular patient.

2.8. Analysis Using Machine Learning Techniques

We employed both traditional and state-of-art analysis techniques to build trust with end-users
and, at the same time, allow them to explore complex relationships in the dataset. We developed 31 AKI
prediction models based on combinations of eight classifiers—namely, classification and regression tree
(CART) [43], C5.0 [44], naïve Bayes (NB) [45], logistic regression [46], and support vector machine (SVM)
with four different kernels (linear, polynomial, sigmoid and radial) [47], two sampling techniques
(namely, under sampling and SMOTE) and three ensemble methods—namely, Boosting, Bagging
and XGBoost. These techniques were chosen for several reasons, as follows: (1) They each represent
different types of machine learning methods. For example, the decision tree is a rule-based, regression
is a statistical, and naïve Bayes is a probability-based method. (2) Each of these methods has its own
set of advantages and limitations. For instance, decision tree models are more human-interpretable but
often fail to represent complex relationships among data elements. On the contrary, SVM is equipped to
model complex non-linear relationships using different kernels, but is difficult to interpret. (3) Medical
experts are more familiar with regression than other machine learning algorithms, which convinced us
to include regression in this analysis.

2.8.1. Ensemble Methods

Since the number of negative cases was significantly higher than the number of positive cases,
we considered the dataset as highly imbalanced. Traditional machine learning techniques, such as
decision tree, support vector machine and so on, which are designed to optimize the overall accuracy,
tend to achieve poor performance in this class imbalanced learning scenario because they try to
minimize the overall error to which the minority class barely contributes. These techniques have
shown high precision (i.e., a small number of false positives), reduced sensitivity (i.e., a higher number
of false negatives) and low AUROC scores for our dataset, because they get biased toward the majority
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class and fail to map minority class. An ensemble method offers a solution to this problem by
combining several classification models to obtain better performance than the base classifiers [48].
To deal with the class imbalance issue in this study, we incorporated four different combinations
of ensemble and sampling methods—namely, SMOTEBoost, SMOTE-Bagging, UnderBagging and
RUSBoost, which are available in the “embc” package of R [49–51]. The RUSBoost was implemented
using the “rus” function in the “ebmc” package. The weak learners in RUSBoost are trained on random
under-sampled datasets [52]. Those learners are then combined to generate the final ensemble model.
We used the “sbo” function to implement SMOTEBoost. SMOTE (Synthetic Minority Oversampling
Technique) is a sampling technique that synthesizes new instances for the minority class using the
k-nearest-neighbors algorithm [53]. SMOTEBoost returns several weak learners that are trained on
SMOTE-generated datasets along with their error estimations [54]. The “sbag” function was used
to implement SMOTEBagging, which combines SMOTE and random over-sampling to rebalance
the dataset [44]. We used the “ub” function to implement the UnderBagging method. Unlike other
ensemble methods discussed above, UnderBagging only incorporates random under-sampling to
reduce the instances of the majority class in each bag to rebalance the class distribution. We configured
this function in such a way that the amount of majority instances became equal compared to the
minority instances (i.e., imbalance ratio = 1). We compared the models’ performance for different
ensemble sizes (i.e., 10, 15, 20, 25 and 30) and used 20 weak learners for the algorithms. We used NB,
SVM, CART and C50 as weak learners for the ensemble methods, which are discussed in the following
subsections. Since ensemble methods are designed to combine several base models to obtain better
performance than the weak learners, and these algorithms (i.e., NB, SVM, CART and C50) are used as
weak learners in this study, we did not perform an explicit grid search to tune the hyperparameters.

Support Vector Machine

The objective of the SVM is to find an optimal separating hyperplane in a multi-dimensional
space (i.e., depending on the number of features) that distinctly divides the instances of different
classes. Although SVM models are often not human-interpretable, it has been proven to work well on
prediction tasks involving a large number of features [18]. It has become popular in healthcare research
recently because it is more effective in analyzing high dimensional EHRs. In addition, the regularization
parameters of SVM kernels help users avoid over-fitting. Since the performance of the models widely
varies depending on the selection of the kernel [55], and kernels are quite sensitive to over-fitting [56],
one of the main challenges is to select an appropriate kernel. Thus, we tested the performance of four
well-known kernel functions in this study—namely, linear, polynomial, sigmoid and radial.

Decision Tree

A decision tree is the representation of possible outcomes of a decision depending on certain
conditions [44]. It is similar to a flowchart where every non-leaf node represents a test for a specific
feature, and the leaf node represents a particular outcome. A decision tree reduces the ambiguity of
complicated clinical decisions and requires reduced effort for data preparation compared to other
techniques. It can be an effective technique for analyzing datasets with missing values because the
tree-building process is not affected by the missing data [57]. We chose the decision tree mainly because
it is easy to interpret and understand. Despite the advantages, decision tree models are often volatile,
meaning that a minor alteration in the training data may cause a massive change in the structure of the
tree. To overcome this issue, we included other types of base classifiers along with the decision tree
and verified the structure of the generated tree with a healthcare expert. We incorporated two different
algorithms to develop decision tree models in this study. The classification and regression tree (CART)
were implemented using the “rpart” package [43], and the C5.0 classifier was implemented using the
“C50” package in R [44].
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Naïve Bayes

NB is a simple probabilistic classifier founded on Bayes theorem [45], which is exceptionally fast
to train compared to other complex techniques [55]. Classification of the new data using this technique
only requires mathematical operations based on the feature probability. We chose NB mainly because it
is less sensitive to missing data. However, since this technique is designed based on the assumption of
feature independence, the performance may deteriorate when features in the training data are related.
We used the “naive Bayes” package to implement the NB algorithm in this study [58].

2.8.2. Logistic Regression

Logistic regression draws a separating line among the classes using the training dataset, and then
applies that line to classify the unknown data points. It is used to analyze the relationships between one
dependent feature and one or more independent features. Logistic regression models are informative
as they reveal the association among features in terms of odds ratios. Over the last few decades,
logistic regression techniques have become very popular in healthcare studies [59]. Although logistic
regression models are not designed to support imbalanced classification directly, they can be modified
to work with skewed distributions. In order to adjust the regression coefficients while training with
the imbalance data, we implemented a cost-sensitive regression model. We adjusted the weight of
the minority class based on the cost of its misclassification compared to the cost of misclassifying the
majority class. We used internal 10-fold cross-validation during training to determine the appropriate
weight for the minority class.

2.8.3. XGBoost

XGBoost (i.e., eXtreme Gradient Boosting) is an advanced implementation of gradient boosted
decision trees that can be used for ranking, regression and classification problems [60]. One of the
main advantages of XGBoost is that it supports parallel computation, which makes it faster than other
techniques of gradient boosting. Because of its time complexity and performance superiority, it has been
widely used in healthcare research, such as analysis of EHRs [61] and cancer diagnosis [62]. We used the
“xgboost” package to implement XGBoost in R. Since this implementation of XGBoost only works with
numeric data, we converted the categorical features in our dataset into numerical vectors. The “xgboost”
package includes both a tree learning algorithm and a linear model solver. We implemented both
algorithms to compare their performances. This package also has a built-in mechanism to control the
balance of positive and negative weights. To train the models with unbalanced data, we adjusted
the “scale_pos_weight” parameter based on the ratio of the negative class to the positive class [63].
We performed a grid search on the parameters of XGBoost and tuned the regularization parameters
using the best parameters from the grid search.

2.9. Tools and Technologies

We primarily used two different data analysis software: SAS and R. SAS was used to cut and
process the cohort because ICES health administrative databases were stored in a SAS server [64].
We used SAS programming, SQL and predefined macros to prepare data for analysis. Then, we loaded
the preprocessed dataset in R packages [65] for additional analysis using machine learning techniques.
We chose R mainly because it (1) is installed on the ICES workstations already, (2) has a rich array of
machine learning libraries, (3) is open-source and platform-independent, and (4) continuously provides
updates with new libraries.
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3. Results

This section presents the results of this study. We divided the results into two subsections. First,
we provide an overview of the dataset in Section 3.1. The results of predictive models are presented in
Section 3.2.

3.1. Cohort Characteristics

A total of 905,442 participants were included in the derivation cohort, of which 5993 had AKI
during their hospital admission or emergency department visit after being discharged from the index
encounter. We excluded 25,084 patients who developed AKI during the index hospitalization or
emergency department visit. Selected characteristics of the derivation cohort are presented in Table 1.

Table 1. All the patients in the cohort were aged 65 years or older, where the mean age was 70 years.
Among the participants, about 56% were women. About 6% of patients were in long term care,
and 16% were from rural areas. The pre-existing comorbidities were diabetes (38%), hypertension
(88%), major cancer (16%), coronary artery disease (25%), cerebrovascular disease (3%), heart failure
(14%), chronic kidney disease (9%), kidney stones (1%) and peripheral vascular disease (2%). Some of
the commonly prescribed medications were rosuvastatin calcium (22%), atorvastatin calcium (24%),
amlodipine besylate (19%), metformin hcl (16%) and hydrochlorothiazide (20%). Baseline characteristics
of patients in the cohort who were admitted to the hospital or visited the emergency department
between 2014 and 2016.

Characteristics Patients Admitted to Hospital or
Visited Emergency Department

Total Patients AKI No AKI

Cohort size 905,442 5993 899,449

Age, yr, mean (SD)

65 to <70 181,088 (20%) 589 180,499
70 to <80 371,231 (41%) 1911 369,320
80 to <90 269,147 (30%) 2485 269,147
≥90 81,489 (9%) 1008 80,481

Sex

Women 507,047 (56%) 2901 504,146

Year of cohort entry (index date)

2014–2015 588,537 (65%) 3987 584,550
2015–2016 316,904 (34%) 2006 314,898

Location

Rural residence 144,870 (16%) 501 144,369

LTC

Long-term care 36,217 (4%) 745 35,472

Income Quintile

1 (lowest) 172,035 (19%) 1306 170,729
2 189,143 (21%) 1318 187,825
3 182,588 (20%) 1173 181,415
4 181,086 (20%) 1154 179,932

5 (highest) 180,590 (20%) 1043 179,547
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Table 1. Cont.

Characteristics Patients Admitted to Hospital or
Visited Emergency Department

Total Patients AKI No AKI

Comorbid conditions (by codes)

Hypertension 814,604 (88%) 5784 808,820
Diabetes 358,472 (38%) 3306 355,166

Heart failure 125,136 (14%) 1821 123,315
Coronary artery disease 239,437 (26%) 2005 237,432

Chronic liver disease 33,359 (4%) 297 33,062
Cancer 145,286 (16%) 1016 144,270

Chronic kidney disease 86,442 (9%) 1854 84,588
Kidney stones 12,457 (1%) 93 12,364

Peripheral vascular disease 13,197 (2%) 158 13,039
Cerebrovascular disease 25,835 (3%) 282 25,553

Hospital Diagnosis Codes

Disorders of fluid, electrolyte and acid-base balance (E87) 13,563 (1%) 962 12,601

Delirium (F05) 4996 (1%) 342 4654
Atrial fibrillation (I48.91) 34,120 (4%) 1978 32,142

Mycoplasma pneumoniae (B96) 6197 (1%) 434 5763
Anaemia (D64.9) 11,814 (1%) 791 11,023

Valve disorders (I35) 1261 (1%) 186 1075
Fracture of femur (S72) 7263 (1%) 231 7032

Atherosclerotic cardiovascular disease (I25.10) 21,472 (2%) 1256 20,216

Volume depletion (E86.9) 3739 (1%) 240 3499

Diseases of the digestive system (K00-K95) 4552 (1%) 264 4288

Abnormal functions of organs and systems (R94.8) 11,348 (2%) 725 10,623

Chronic pulmonary (J81.1) 24,217 (3%) 971 23,246
Hyperplasia of prostate (N40.1) 5047 (1%) 153 4894

Certain infectious and parasitic diseases (A00-B99) 1191 (1%) 105 1086

Dementia (F03. 90) 8714 (1%) 390 8324
Glomerular disorders (N08) 3988 (1%) 569 3419

3.2. Classification Results

We evaluated all of the machine learning models using 10-fold cross-validation [66]. The cohort
was divided into 10 equal groups, wherein 9 groups were used for training, and the 10th group was
used for testing. We repeated this process 10 times, using different parts for training and testing,
and assessed the performance of the models for each fold. We then combined the results of these
folds to calculate the evaluation scores. We measured the validity of the tests in terms of sensitivity
and specificity. Sensitivity is the capacity of a test to classify an individual as “at-risk” correctly.
It represents the probability of a test being positive when “AKI” is present. On the contrary, specificity
refers to the ability to classify an individual as “risk-free” correctly. Since predicting AKI was a binary
classification problem (i.e., AKI or Non-AKI), all of the machine learning techniques were capable of
providing a confidence score along with the output. The trade-off between sensitivity and 1-specificity
was achieved by altering the threshold on the confidence scores, generating the receiver operating
characteristic (ROC) curve. We used the ROC space to compare the performances of alternative tests in
terms of 1-specificity and sensitivity. Thus, we computed and reported sensitivity, specificity, and area
under the receiver operating characteristic curve (AUROC). The AUROC ranged from 0.61 to 0.88 for
predicting AKI among the 31 machine learning models. The average AUROC values of ensemble
methods were higher than the cost-sensitive logistic regression model. Among the sampling-based
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ensemble methods, the performances of the UnderBagging and RUSBoost methods were better than the
SMOTE. We achieved the best result of AUROC 0.88 with (1) a combination of RUSBoost and SVM using
a sigmoid kernel and (2) XGBoost using a tree learning algorithm. The AUROC of the linear boosting
algorithm (XGBoost) was 0.84, which was higher than the cost-sensitive logistic regression but lower
than the tree learning algorithm (XGBoost). Since it is a disease prediction problem, high sensitivity was
more useful than specificity. The highest sensitivity was 0.90, which was achieved using SVM-sigmoid
and SVM-radial kernels with RUSBoost and SMOTE-Bagging, respectively. The complete list of
performance measures is presented in Table 2.

Table 2. Performances of the machine learning techniques grouped by four ensemble-based methods
and results of cost-sensitive regression analysis. The table contains sensitivity, specificity and AUROC
of the cross-validation AUC of all the prediction models.

Ensemble-Based
Methods Machine Learning Techniques Sensitivity Specificity AUROC

NA Logistic Regression 0.79 0.72 0.77 ± 0.038

SMOTEBoost

Classification and Regression Trees (CART) 0.77 0.69 0.74 ± 0.039
C5.0 0.84 0.78 0.83 ± 0.036

NB (Naïve Bayes) 0.61 0.89 0.75 ± 0.038
Support Vector Machine (SVM) (linear) 0.84 0.74 0.79 ± 0.035

SVM (polynomial) 0.78 0.82 0.81 ± 0.033
SVM (sigmoid) 0.76 0.85 0.84 ± 0.035

SVM (radial) 0.70 0.83 0.82 ± 0.034

SMOTE-Bagging

CART 0.60 0.71 0.68 ± 0.041
C5.0 0.62 0.84 0.79 ± 0.036
NB 0.69 0.73 0.72 ± 0.039

SVM (linear) 0.76 0.84 0.81 ± 0.031
SVM (polynomial) 0.82 0.73 0.80 ± 0.033

SVM (sigmoid) 0.84 0.71 0.81 ± 0.030
SVM (radial) 0.90 0.74 0.86 ± 0.029

UnderBagging

CART 0.71 0.83 0.79 ± 0.035
C5.0 0.88 0.76 0.85 ± 0.032
NB 0.58 0.72 0.61 ± 0.041

SVM (linear) 0.77 0.84 0.83 ± 0.035
SVM (polynomial) 0.85 0.71 0.84 ± 0.037

SVM (sigmoid) 0.89 0.71 0.85 ± 0.034
SVM (radial) 0.79 0.90 0.86 ± 0.033

RUSBoost

CART 0.78 0.74 0.76 ± 0.039
C5.0 0.84 0.77 0.82 ± 0.028
NB 0.68 0.72 0.71 ± 0.039

SVM (linear) 0.84 0.78 0.83 ± 0.035
SVM (polynomial) 0.74 0.85 0.82 ± 0.037

SVM (sigmoid) 0.90 0.79 0.88 ± 0.029
SVM (radial) 0.71 0.87 0.85 ± 0.034

XGBoost
Tree boosting 0.89 0.81 0.88 ± 0.031

Linear boosting 0.86 0.77 0.84 ± 0.033

4. Discussion

In this study, we demonstrated how machine learning techniques could help with the prediction
of AKI using administrative health databases stored at ICES. Several machine learning-based models
have been developed in recent studies to predict AKI among ICU and post-operative patients [29–35].
However, most of these models only focus on a specific medical condition, and consider the risk
factors associated with that condition. For instance, Go et al. (2010) examined how AKI affects the
risk of chronic kidney disease, cardiovascular events and other patient-related outcomes in hospital
settings [67]. The earlier AKI can be predicted, the better the chances are of preventing AKI and
its associated cost. The features that have been used in most of the existing studies work better in
predicting AKI if their values are recorded closer to the timing of AKI onset. However, it may not be
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beneficial to detect AKI close to its onset because clinicians will not have enough time to intervene.
Thus, there is a trade-off between accuracy and usefulness, which can be optimized by using the
information available in EHRs. Although some studies have developed risk stratification models for
AKI using EHRs [68,69], they can only predict hospital-acquired AKI and do not consider patients who
are at risk of developing AKI after being discharged. To our best knowledge, there are no previous
studies in the literature that predict the risk of AKI after being discharged from the hospital using both
the historical and healthcare utilization data. Thus, this study is not only novel, but also clinically
relevant, because it provides clinicians with the ability to intervene and treat patients before AKI causes
irreversible damage.

We analyzed all AKI events that took place within 90 days after being discharged from the hospital
or emergency department, and developed prediction models to identify high-risk patients. We decided
to choose a 90-day timeframe for following up because (1) out of all AKI cases within six months after
discharge, about 85% were acquired within this timeframe, and (2) it was a reasonable timeframe
considering the trade-off between the models’ usefulness (from a clinical point of view) and predictive
power (from a machine learning point of view). Table 3 shows how many acquired AKI cases were
identified within different time intervals. The machine learning models presented in this study can be
adapted to make predictions at any other timeframes if needed.

Table 3. The number of AKI cases are grouped into six time periods.

Intervals Readmission with AKI

1–3 days 415
4–7 days 534

8–14 days 888
15–30 days 1517
31–60 days 3579
61–90 days 1499

We incorporated eight different machine learning classifiers, three ensemble methods and two
sampling techniques to develop 31 prediction models. Although each combination of machine learning
techniques and ensemble-based methods performed reasonably well, the performance of SVM with
sigmoid kernel and tree-based XGBoost produced better results than other techniques in general.
The performances of all of the ensemble-based methods were consistent, and produced similar results
for different base classifiers. The results shown in Table 2 indicate that the models agreed with
each other.

To understand the models better, we explored the features that are important in each prediction
model. We analyzed this information with a nephrologist to confirm the correctness of the models.
We observed the odds ratio and p-value of the features in the regression model, the feature importance
in the decision tree and XGBoost models, and the coefficients in the SVM-linear models in order
to understand the associations between different features and AKI. The features included in this
study can be divided into four categories—namely, demographics, comorbidities, medications and
diagnosis codes.

In general, features from comorbidities and hospital diagnosis codes were more associated with
AKI. Although the importance of the features varied based on the machine learning techniques,
most of the features that stood out were common among these models. For instance, diabetes
mellitus, hypertension, coronary artery disease, heart failure, major cancers, chronic liver disease,
peripheral vascular disease and chronic kidney disease were the comorbidity features that were
important in most of the prediction models. These comorbid conditions are already known to be
associated with AKI in the literature [70–74]. The medication features that contributed to the higher
risk of AKI include furosemide, allopurinol, hydrochlorothiazide, atorvastatin, metolazone, sunitinib
malate, spironolactone, dexamethasone, chlorthalidone, atenolol, dexamethasone and oseltamivir
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phosphate. These medications are known to be nephrotoxic [3,75–79]. Delirium, anaemia, mycoplasma,
fluid disorders, atrial fibrillation, atherosclerotic cardiovascular disease, mycoplasma pneumoniae,
hyperplasia of prostate, glomerular disorders and valve disorders were the features belonging to
the diagnosis codes that were associated with increasing the risk of AKI in the prediction models.
Several studies in the literature associate these medical conditions with AKI [80–84]. Among the
demographic features, age, sex, location (i.e., urban or rural residence) and long-term care were found
to be associated with AKI in most of the prediction models. Similar to comorbidity, medication and
diagnosis code, these demographic features are already known to be associated with AKI [85–87] in
the literature, which more conclusively proves the correctness of the prediction models. Through a
comprehensive analysis of ICES’s healthcare administrative datasets, this study shows that AKI is
predictable using EHRs. Successful implementation of these prediction models in a healthcare setting
can potentially reduce the risk of AKI among older patients.

5. Limitations and Future Work

The paper should be evaluated with respect to several limitations. First, our models were trained
and tested on a cohort of older patients (65 years or older), which limits the generalizability of the
models. Second, we excluded patients with missing or invalid demographics information. This may
affect the performance of the models if the excluded data includes any interesting or rare cases. Third,
the models are based on a cohort containing Ontario patients only, which limits this study to a specific
geographic location. Fourth, the proposed prediction models are trained and tested on a specific
patient cohort. It is essential to test the models’ performances with real-time medical data before
applying them in a clinical setting. Fifth, since we developed 31 prediction models, and many of them
have different mechanisms of identifying feature importance, the interrelationships produced by these
models are very complex. This paper only identifies the most significant predictors, but does not
incorporate any ranking system for predictors. Finally, we identified episodes of AKI using ICD-10
codes, which may not include undetected cases in hospital settings. Moreover, since AKI was identified
using the diagnosis code, this study does not consider the severity of AKI. Our future work concerns a
deeper analysis of severe AKI that requires dialysis.

6. Conclusions

AKI is characterized by a sharp decline in renal function, and is associated with increased
health-related costs and mortality. AKI is avoidable and may be preventable through an earlier
prediction using risk factors available in EHRs. This study is designed to identify older patients who
are discharged from the hospital or emergency department, and are at risk of developing AKI within
90 days after discharge. We employed eight traditional and state-of-art machine learning algorithms,
along with two sampling techniques and three ensemble methods, to build AKI prediction models.
The performances of these models were consistent, and a maximum AUROC of 0.88 was achieved
through 10-fold cross-validation. We analyzed the models with a healthcare expert and identified
features that are most relevant in predicting AKI. Most of these features are already known to be
AKI-associated, which proves the correctness and feasibility of the prediction models. This study
predicts the risk of AKI for a patient after being discharged from the hospital or emergency department,
which provides healthcare providers enough time to intervene, monitor them more carefully, and avoid
prescribing nephrotoxic medications for such patients.
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Appendix A

Table A1. List of databases held at ICES.

Data Source Description Study Purpose

Canadian Institute for Health
Information Discharge Abstract

Database and National Ambulatory
Care Reporting System

The Canadian Institute for Health Information
Discharge Abstract Database and National Ambulatory
Care Reporting System collect diagnostic and
procedural variables for inpatient stays and ED visits,
respectively. Diagnostic and inpatient procedural
coding use the 10th version of the Canadian Modified
International Classification of Disease system 10th
Revision (after 2002).

Cohort creation, description,
exposure and outcome estimation

Ontario Drug Benefits

The Ontario Drug Benefits database includes a wide
range of outpatient prescription medications available
to all Ontario citizens over the age of 65. The error rate
in the Ontario Drug Benefits database is less than 1%.

Medication prescriptions,
description and exposure

Registered Persons Database

The Registered Persons Database captures
demographic (sex, date of birth, postal code) and vital
status information on all Ontario residents. Relative to
the Canadian Institute for Health Information
Discharge Abstract Database in-hospital death flag,
the Registered Persons Database has a sensitivity of
94% and a positive predictive value of 100%.

Cohort creation, description
and exposure

Ontario Health Insurance Plan

The Ontario Health Insurance Plan database contains
information on Ontario physician billing claims for
medical services using fee and diagnosis codes
outlined in the Ontario Health Insurance Plan Schedule
of Benefits. These codes capture information on
outpatient, inpatient and laboratory services rendered
to a patient.

Cohort creation, stratification,
description, exposure

and outcome

Table A2. Coding definitions for co-morbid conditions.

Variable Database Code Set Code

Major cancer

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

150, 154, 155, 157, 162, 174, 175, 185,
203, 204, 205, 206, 207, 208, 2303,

2304, 2307, 2330, 2312, 2334

International Classification of Diseases
10th Revision

971, 980, 982, 984, 985, 986, 987, 988,
989, 990, 991, 993, C15, C18, C19,

C20, C22, C25, C34, C50, C56, C61,
C82, C83, C85, C91, C92, C93, C94,
C95, D00, D010, D011, D012, D022,

D075, D05

Ontario Health Insurance Plan Diagnosis 203, 204, 205, 206, 207, 208, 150, 154,
155, 157, 162, 174, 175, 183, 185

Chronic liver disease

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

4561, 4562, 070, 5722, 5723, 5724,
5728, 573, 7824, V026, 571, 2750,

2751, 7891, 7895

International Classification of Diseases
10th Revision

B16, B17, B18, B19, I85, R17, R18,
R160, R162, B942, Z225, E831, E830,
K70, K713, K714, K715, K717, K721,
K729, K73, K74, K753, K754, K758,

K759, K76, K77

Ontario Health Insurance Plan
Diagnosis 571, 573, 070

Fee code Z551, Z554

Coronary artery disease
(excluding angina)

Canadian Institute for Health Information
Discharge Abstract Database

Canadian Classification of Diagnostic,
Therapeutic and Surgical Procedures

4801, 4802, 4803, 4804, 4805, 481,
482, 483

Canadian Classification of Health
Interventions 1IJ50, 1IJ76

International Classification of Diseases
9th Revision 412, 410, 411

International Classification of Diseases
10th Revision I21, I22, Z955, T822
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Table A2. Cont.

Variable Database Code Set Code

Ontario Health Insurance Plan
Diagnosis 410, 412

Fee code R741, R742, R743, G298, E646, E651,
E652, E654, E655, Z434, Z448

Diabetes

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision 250

International Classification of Diseases
10th Revision E10, E11, E13, E14

Ontario Health Insurance Plan
Diagnosis 250

Fee code Q040, K029, K030, K045, K046

Heart failure
Canadian Institute for Health Information

Discharge Abstract Database

Canadian Classification of Diagnostic,
Therapeutic and Surgical Procedures 4961, 4962, 4963, 4964

Canadian Classification of Health
Interventions

1HP53, 1HP55, 1HZ53GRFR,
1HZ53LAFR, 1HZ53SYFR

International Classification of Diseases
9th Revision I500, I501, I509, I255, J81

International Classification of Diseases
10th Revision I21, I22, Z955, T822

Ontario Health Insurance Plan
Diagnosis 428

Fee code R701, R702, Z429

Hypertension

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision 401, 402, 403, 404, 405

International Classification of Diseases
10th Revision I10, I11, I12, I13, I15

Ontario Health Insurance Plan Diagnosis 401, 402, 403

Kidney stones Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

5920, 5921, 5929, 5940, 5941, 5942,
5948, 5949, 27411

International Classification of Diseases
10th Revision

N200, N201, N202, N209, N210,
N211, N218, N219, N220, N228

Peripheral vascular
disease

Canadian Institute for Health Information
Discharge Abstract Database

Canadian Classification of Diagnostic,
Therapeutic and Surgical Procedures

5125, 5129, 5014, 5016, 5018, 5028,
5038, 5126, 5159

Canadian Classification of Health
Interventions

1KA76, 1KA50, 1KE76, 1KG50,
1KG57, 1KG76MI, 1KG87, 1IA87LA,

1IB87LA, 1IC87LA, 1ID87LA,
1KA87LA, 1KE57

International Classification of Diseases
9th Revision 4402, 4408, 4409, 5571, 4439, 444

International Classification of Diseases
10th Revision

I700, I702, I708, I709, I731, I738,
I739, K551

Ontario Health Insurance Plan Fee code

R787, R780, R797, R804, R809, R875,
R815, R936, R783, R784, R785, E626,
R814, R786, R937, R860, R861, R855,
R856, R933, R934, R791, E672, R794,

R813, R867, E649

Cerebrovascular disease
(stroke or transient

ischemic attack)

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

430, 431, 432, 4340, 4341, 4349, 435,
436, 3623

International Classification of Diseases
10th Revision

I62, I630, I631, I632, I633, I634, I635,
I638, I639, I64, H341, I600, I601, I602,
I603, I604, I605, I606, I607, I609, I61,

G450, G451, G452, G453, G458,
G459, H340

Chronic kidney disease

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

4030, 4031, 4039, 4040, 4041, 4049,
585, 586, 5888, 5889, 2504

International Classification of Diseases
10th Revision

E102, E112, E132, E142, I12, I13, N08,
N18, N19

Ontario Health Insurance Plan Diagnosis 403, 585
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Table A3. Diagnostic codes for exclusion criteria.

Variable Database Code Set Code

Dialysis

Canadian Institute for Health
Information Discharge

Abstract Database

Canadian Classification of
Diagnostic, Therapeutic and

Surgical Procedures
5127, 5142, 5143, 5195, 6698

Canadian Classification of
Health Interventions

1PZ21, 1OT53DATS, 1OT53HATS,
1OT53LATS, 1SY55LAFT, 7SC59QD,

1KY76, 1KG76MZXXA, 1KG76MZXXN,
1JM76NC, 1JM76NCXXN

International Classification of
Diseases 9th Revision V451, V560, V568, 99673

International Classification of
Diseases 10th Revision T824, Y602, Y612, Y622, Y841, Z49, Z992

Ontario Health Insurance Plan Fee code

R850, G324, G336, G327, G862, G865,
G099, R825, R826, R827, R833, R840,
R841, R843, R848, R851, R946, R943,
R944, R945, R941, R942, Z450, Z451,
Z452, G864, R852, R853, R854, R885,

G333, H540, H740, R849, G323, G325,
G326, G860, G863, G866, G330, G331,
G332, G861, G082, G083, G085, G090,
G091, G092, G093, G094, G095, G096,

G294, G295

Kidney transplant

Canadian Institute for Health
Information Discharge

Abstract Database

Canadian Classification of
Health Interventions 1PC85

Ontario Health Insurance Plan Fee code S435, S434
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