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Abstract: With the rapid increase in the popularity of big data and internet technology, sequential
recommendation has become an important method to help people find items they are potentially
interested in. Traditional recommendation methods use only recurrent neural networks (RNNs)
to process sequential data. Although effective, the results may be unable to capture both the
semantic-based preference and the complex transitions between items adequately. In this paper,
we model separated session sequences into session graphs and capture complex transitions using
graph neural networks (GNNs). We further link items in interaction sequences with existing external
knowledge base (KB) entities and integrate the GNN-based recommender with key-value memory
networks (KV-MNs) to incorporate KB knowledge. Specifically, we set a key matrix to many relation
embeddings that learned from KB, corresponding to many entity attributes, and set up a set of value
matrices storing the semantic-based preferences of different users for the corresponding attribute. By
using a hybrid of a GNN and KV-MN, each session is represented as the combination of the current
interest (i.e., sequential preference) and the global preference (i.e., semantic-based preference) of that
session. Extensive experiments on three public real-world datasets show that our method performs
better than baseline algorithms consistently.

Keywords: sequential recommendation; knowledge base; graph neural network; memory network

1. Introduction

Recommender systems play an increasingly important role in helping users find items they are
interested in by proactively recommending items in a variety of scenarios (e.g., e-commerce, news
website and social networking sites). Many existing sequential recommender systems are based on
transition probabilities, co-occurrence, item-to-item similarity or recursive neural networks. Despite
their effectiveness, user behavior history is complex and the information from browser sessions is
limited in many application scenarios; thus, prediction from sequential recommender systems remains
a challenging problem [1,2].

The important goal of sequential recommendation is to enhance the quality and efficiency of
recommendation. Although many kinds of methods have been developed, recommender systems
are still in their early stages of development because of some of the following shortcomings. (1) The
Markov chain (MC) [3] is a traditional model which assumes that the user’s next behavior is strongly
based on previous behavior. However, with an independence assumption, independent combinations
of the past components will reduce the performance in the experiment. (2) Recurrent neural networks
(RNNs) have improved the performance of the recommender system effectively [4,5]. However, it is
very limited in its ability to explicitly capture the complex transitions among distant items or the
fine-grained user interest from the sequence of user behavior, but it should be taken into account for
a sequential recommender system. (3) Self-attention has been used to model interaction sequence
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widely, which is used as a special attention mechanism, and has achieved remarkable results in many
scenes (e.g., sentiment analysis and recommender systems) [6]. However, this approach distracts the
distribution of attention, reducing local dependencies between adjacent nodes and lacking the ability
to learn the contextualized representations of items. (4) Recently, researchers have turned to deep
learning models based on knowledge graph for sequential recommendation task. For example, Huang
Jin et al. [7] proposed a novel model, namely the knowledge-enhanced sequential recommender (KSR),
based on a knowledge graph which consists of two parts, RNNs and key-value memory networks
(KV-MNs). By linking the items in interaction sequences with the entities in the external knowledge
graph, the RNN component captures a sequential representation for the user, while the KV-MN
component captures the representation at the attribute level. However, this approach has limited
representation power in explicitly capturing the complex transitions [8,9].

In general, although effective above, we argue that incorporating the external knowledge base
into the sequential recommender system can improve the system capability to capture fine-grained
preferences and incorporating complex transitions among distant items can improve the accuracy of the
item embedding vectors, which are difficult to solve by most of the existing sequential recommendation
methods. Traditional approaches always tend to use only limited item information and model
only single way transitions between back-to-back items, which makes modeling fine-grained user
preferences difficult and ignores the complex transitions among distant items. Therefore, we improve
the KSR model by constructing a session graph from interaction sequences and replacing the RNN
component with a GNN.

In this work, we propose a knowledge-enhanced recommendation method using graph neural
networks and memory networks to tackle the sequential recommendation task and overcome the
limitations mentioned above. This consists of a current interest component (i.e., sequential preference)
and a global interest component (i.e., attribute-level preference). In the current interest module, we
construct directed graphs from a sequence of sessions at first. Based on session graphs, a GNN can
obtain the complex transition information between neighbor items and produce the accurate latent
vectors of all nodes in the session graph accordingly. However, the priority level of each node in the
session graph is different, so we further capture different priorities for each node using the soft-attention
mechanism. By doing this, complex transitions between items are considered by the recommender
system when making recommendations for users. In the global interest module, we take the external
knowledge base into consideration for the sequential recommendation task. The integrated knowledge
base should be rich and varied in order to represent different context information in different fields;
thus, determining the kind of knowledge to use and the method to represent it is an important step.
In this work, items in the interaction sequences are linked to existing knowledge base entities, and
the utilization of external knowledge becomes possible for the recommendation task. An external
knowledge base consists of lots of triples (i.e., head entity, relation, tail entity), usually corresponding
to entities’ attribute information. In order to obtain useful representations of external knowledge base
information, we use the KB embedding method (i.e., TRANSE); thus, entities and relationships are
mapped into low-dimensional vectors (i.e., KB embeddings). Due to the structural characteristics of
nodes in KBs, we store KB knowledge using KV-MNs which consist of many key vectors and value
vectors. Specifically, we set a key vector shared by all users to store a relation embedding that learned
from KB knowledge, corresponding to an entity attribute. For specific key vectors, we create different
value vectors for different users to store different preferences for the corresponding attribute. As
a result, KV-MNs successfully acquire external KB knowledge. We have extensively evaluated our
method on three public real-world datasets and compared with many of the baseline approaches using
two performance validation metrics. The results in the experiment not only show the improvement of
our method over other baseline methods but also verify the effectiveness of our architecture.

To summarize, the main contributions of this work are as follows:
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• To improve the representation of session sequences, we propose a novel sequential recommender to
fuse the current interest (i.e., sequential preference) and the global preference (i.e., semantic-based
preference) effectively.

• To model the current interests of users, we model separated session sequences into session graphs
and capture complex transition information between items using graph neural networks.

2. Related Works

2.1. Conventional Recommendation Methods

Traditional recommendation studies are largely focused on collaborative filtering (CF) that is
based on the interaction records of users. For instance, matrix factorization (MF) factorizes a user-item
rating matrix into two low-rank matrices, each of which contains the latent features of users or items.
Yang et al. [10] used the interactions between users; by factorizing social trust network, users are
mapped to trustee space and truster space. The Markov chain is a classic method used in recommender
systems, which predicts a user’s next click according to the last click. By extracting sequential features
using a probabilistic decision-tree, Zimdars et al. [11] first use Markov chains to process sequential
recommendation tasks. Rendle et al. [3] proposed a hybrid method combining the merit of matrix
factorization and Markov chains to implement a next-basket recommendation task.

2.2. Deep-Learning-Based Recommendation Methods

In recent years, researchers have turned to deep learning for sequential recommendation tasks.
For example, RNN-based methods have been used to capture the sequential patterns for the sequential
recommendation task by Hidasi et al. [4]. Subsequently, neural attentive recommender model
(NARM) [5] has been designed to obtain the user’s main purpose and sequential pattern accordingly
by combining a global and local RNN. More recently, a current attention priority model [12] that
employing an attentive net and simple multi-layer perceptron (MLP) networks is proposed in order to
completely obtain the current and global interests for user.

The emergence of GNNs leads to unique inspiration for learning the representation for
non-Euclidean information. For the sequential recommendation, Wu et al. [1] construct directed graphs
from separated session sequences, applying a GNN to generate accurate item embedding vectors.
Based on potential vectors of items, the GNN is able to construct more efficient session representations
and the next-click item can be inferred.

2.3. Knowledge-Aware Recommendation Methods

With the wide application of internet technology, the availability of a wide variety of
knowledge data is increasing [13], such as knowledge information [14] and social interaction
information [15]. LibFM is a typical approach that integrates context information into recommender
systems. Subsequently, a neural network has been used to improve the modeling of knowledge
information, such as RNNs with video semantic embedding [16] and fine-grained attention [17].
Especially, Zhang et al. [18] enhance the performance of deep learning with CF by using knowledge
base information.

In this paper, the approach that we proposed is different from previous methods. Our model
adopts a graph neural network for capturing complex transitions and incorporates external knowledge
base information for enhancing the semantic representation of KV-MN.

3. Research Methodology

In this section, we introduce the proposed recommendation method in detail. We define the task
of sequential recommendation at first and show the architecture of the proposed method (as shown in
Figure 1).
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Figure 1. The general architecture of our method. This consists of a key-value memory network 
(KV-MN) and a graph neural network (GNN). By linking existing external knowledge base entities 
with items in recommender systems, key-value memory networks are able to incorporate KB 
knowledge, and the GNN component is used to capture complex transitions. By combining a GNN 
and KV-MN, the final user preference is a combination of current and global interests. 

3.1. Problem Definition 

The aim of the sequential recommendation task is to predict which potential items that users 
will interact with according to past interaction sequences in the near future. Thus, our detailed 
description for this task is as follows. 
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session s  is defined as ,s iv V∈ . Formally, the aim for the sequential recommendation task is to 

predict a potential item , 1s nv +  (i.e., the sequence label) that users will interact with in the near future 

for the session s . To be exact, for the session s , we generate probabilities ŷ  for all candidate 

items accordingly, where an element value of vector ŷ  represents the prediction score of an item. 

After this, we set the items with top K values from ŷ  to be the candidates for recommendation task. 

3.2. A GNN-Based Sequential Recommender 

Traditional recommendation methods only capture single-way transitions but neglect complex 
transitions between items. To alleviate this problem, we adopt the graph neural networks as the base 
sequential recommender to capture rich dependencies from graph-structured data. The GNN is 
proposed by Scarselli et al. [19], which extends deep learning methods for processing the 
graph-structured data and is suited for the sequential recommendation task. In this section, we 
introduce the GNN-based component. We introduce how to construct session graphs from session 
sequences at first, and then we describe the GNN-based component in detail. 

3.2.1. Session Graph Construction 

Since interaction sequences are not inherently graph-structured data, we model each session 
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appear more than once in a sequence in the session sequence, each edge is assigned normalized 

Figure 1. The general architecture of our method. This consists of a key-value memory network
(KV-MN) and a graph neural network (GNN). By linking existing external knowledge base entities with
items in recommender systems, key-value memory networks are able to incorporate KB knowledge,
and the GNN component is used to capture complex transitions. By combining a GNN and KV-MN,
the final user preference is a combination of current and global interests.

3.1. Problem Definition

The aim of the sequential recommendation task is to predict which potential items that users will
interact with according to past interaction sequences in the near future. Thus, our detailed description
for this task is as follows.

In the sequential recommendation task, V =
{
v1, . . . , vt, . . . , vm

}
represents the set containing all

unique items in all interaction sequences. A session sequence s containing many clicked events is
denoted as s =

[
vs,1, . . . , vs,t, . . . , vs,n

]
, ordered by timestamps, where an interaction event for a user

in the session s is defined as vs,i ∈ V. Formally, the aim for the sequential recommendation task is to
predict a potential item vs,n+1 (i.e., the sequence label) that users will interact with in the near future
for the session s. To be exact, for the session s, we generate probabilities ŷ for all candidate items
accordingly, where an element value of vector ŷ represents the prediction score of an item. After this,
we set the items with top K values from ŷ to be the candidates for recommendation task.

3.2. A GNN-Based Sequential Recommender

Traditional recommendation methods only capture single-way transitions but neglect complex
transitions between items. To alleviate this problem, we adopt the graph neural networks as
the base sequential recommender to capture rich dependencies from graph-structured data. The
GNN is proposed by Scarselli et al. [19], which extends deep learning methods for processing the
graph-structured data and is suited for the sequential recommendation task. In this section, we
introduce the GNN-based component. We introduce how to construct session graphs from session
sequences at first, and then we describe the GNN-based component in detail.

3.2.1. Session Graph Construction

Since interaction sequences are not inherently graph-structured data, we model each session
sequence as a directed graph ςs = (νs, εs) in which each node corresponds to an item vs,i ∈ νs and each
edge (vs,i−1, vs,i) ∈ εs corresponds to two consecutive click events. Since the same item may appear
more than once in a sequence in the session sequence, each edge is assigned normalized weight, which
is calculated as the occurrence of the edge divided by the outdegree of that edge’s start node. For
instance, for a session s = [i1, i2, i3, i1, i4], the corresponding session graph and connection matrix are
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shown in Figure 2. We can apply the two weighted connection matrices with the graph neural network
to obtain latent embedding of all items.
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3.2.2. Node Vectors Updating

After this, we introduce the training process of the graph neural network. We embed every item
v ∈ V into a unified low-dimension embedding space, and the vector v ∈ Rd of the node denotes a
d-dimensional latent vector corresponding to item v. For each node vs,i in the graph session, the update
functions can be formalized as follows:

at = Ms,i:
[
vt−1

1 , . . . , vt−1
n

]>
H + b (1)

zt = σ(Wzat + Pzvt−1
i ) (2)

rt = σ(Wrat + Prvt−1
i ) (3)

ṽt = tanh(Woat + Po(rt � vt−1
i )) (4)

vt = (1− zt) � vt−1
i + zt � ṽt (5)

where vi ∈ Rd denotes the latent vector of node vs,i, H ∈ Rd×2d controls the weight, [vt−1
1 , . . . , vt−1

n ]

denotes the list of node vectors in session s, and b ∈ Rd is the bias vector. The connection matrix
Ms ∈ Rn×2n denotes how the information propagation between different nodes and Ms,i: ∈ R1×2n are
the two rows of blocks in Ms corresponding to vs,i, and Ms denotes the concatenation of two adjacency

matrices M(out)
s and M(in)

s , which control weighted connections of outgoing and incoming edges
in session graph. � denotes the element-wise multiplication operator, and σ(.) denotes the logistic
sigmoid function, Wz, Wr, Wo ∈ R2d×d, while Pz, Pr, Po ∈ Rd×d are learnable parameters.

When the recommender system starts, the graph neural network simultaneously proceeds to the
nodes in the session graph; Equation (1) represents the information interaction between different nodes
to obtain the latent vectors based on neighborhoods. Equations (2) and are the update gate and reset
gate, which control how information is discarded and retained, respectively. Equation (4) represents
the construction of the candidate state, which is based on the reset gate, the current state and the
previous state. Equation (5) describes the construction of the final state, which is built on the candidate
state, the previous state, and the update gate. Thus, after updating all nodes until convergence, the
final node vectors can be obtained.

3.2.3. Generating Sequential Embeddings

After all session graphs are fed into the graph neural network, the latent vectors of all nodes
in the session graph are obtained. Each session is represented as an embedding vector hu

t ∈ Rd,
which aggregates all node vectors. However, the priority of information in these nodes is different.



Information 2020, 11, 388 6 of 14

Thus, we further represent the sequential preference via the soft-attention mechanism, as described in
Equation (6).

ai = q>σ(W(1)vn + W(2)vi + c) (6)

hu
t =

n∑
i=1

aivi (7)

where q ∈ Rd and W1,W2 ∈ Rd×d denote the weights of item vectors.

3.3. Augmenting Sequential Recommender with Memory Network

Traditional recommendation models to capture the semantic-based preferences of items are
difficult. Meanwhile, capturing the user interests on the semantic level can improve the recommender’s
performance. Therefore, we propose to incorporate semantic-based information of entities from KB
into the sequential recommender and use key-value memory networks to store the KB knowledge,
where each memory unit represents a certain type of latent interest for the user; thus, the KV-MN
component is integrated with the GNN-based recommender.

3.3.1. Semantic-Based Preference User Interest Modeling

KV-MNs use an external memory for storing data, which splits a memory slot into a key vector
and a value vector and associates the key vector with the value vector in a memory slot [20]. Thus,
KV-MNs are more powerful in capturing and modeling semantic-based information of items in KBs by
storing the attribute information of items in the key vectors and attribute-specific user preferences in
value vectors [21].

An item set contains N kinds of unique attribute information. For instance, in the item set of
Movie, there are unique attributes of director and actor shared by all items in the set. Therefore, we
treat the specific user KV-MNs as N pairs of vectors

{(
k1, vu

1

)
, . . . ,

(
kN, vu

N

)}
, where kn ∈ RLK represents

attribute a and vn ∈ RLV represents the preference of a specific user corresponding to attribute a. For
instance, the director attribute of user u is James Cameron. In this way, a public key memory matrix
K ∈ RLK×A that is shared by all users and a lot of user-specific value memory matrices Vu

∈ RLv×A are
used for different user accordingly, as shown in Figure 3.Information 2020, 11, x FOR PEER REVIEW 7 of 14 
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By linking external knowledge base entities with items in recommender systems, we can capture
semantic information of recommender system items. For an item i, we define ei as its corresponding
entity in KB. Since KB contains a lot of triples originally, we are able to obtain a lot of useful triples.
To encode KB information effectively, we plan to obtain a vector ei ∈ RLE for entity ei and r ∈ RLE for
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relation r by using the effective method TRANSE [22]. The learned KB embeddings are convenient for
subsequent usage.

3.3.2. Write and Read Operations

Write Operation

As long as the recommender system receives a new interaction item i for user u, the system starts
the write operation using the entity embedding ei

a of item i, which updates the user-specific value
vectors using the decomposed vectors for ei

a.{
vu

1 , . . . , vu
A

}new
←WriteOperation

({(
k1, vu

1

)
, . . . ,

(
kA, vu

A

)}old
, ei

)
(8)

ei
a = ei + ra (9)

where ei denotes the embedding representation for item i, ei
a ∈ RLE denotes the decomposed update

vector of item i corresponding attribute a, and ra represents the relation between the tail entity and
head entity. Following [22], we calculate the loss based on the distance ‖e1 + r− e2‖ of a triple 〈e1, r, e2〉.
Thus, the tail entity embedding (i.e., attribute-based embedding) can be approximated by the merging
of head entity embedding and relation embedding. For instance, the movie Avatar has the attribute of
director corresponding to eAvatar + rdirectedby ≈ eJamesCameron.

Following [23], we use a gate vector z ∈ RA to determine the proportion of updated information
for each attribute, and the gate weight za ∈ z for each attribute a is shown as follows:

za = sigmoid
(
vu

a
>
· ei

a

)
(10)

With update vector ei
a and the update weight za, each value vector in the value memory matrix Vu

is updated.
vu

a ← (1− za) · vu
a + za · ei

a (11)

After this, the value memory matrix Vu accurately stores the user interests at the attribute level [7].

Read Operation

In order to obtain the preference representation at the attribute level for user u, we take the
sequential preference representation hu

t from the GNN as the query to the key memory matrix K at
each time t and combine the associated value vector as the return. Since hu

t is hard to calculate with the
key vectors directly, we implement a nonlinear transformation by utilizing a multiple-layer perceptron,
i.e., h̃

u
t = MLP(hu

t ). The read operation can be formalized as the following:

mu
t ← ReadOperation

({(
k1, vu

1

)
, . . . ,

(
kA, vu

A

)}
, h̃

u
t

)
(12)

where mu
t is a latent vector that is obtained by querying KV-MNs, representing user u’s attribute-level

preference at time t [7].

3.4. Making Training and Prediction

When the recommender system starts, the system obtains the sequential preference hu
t from the

graph neural network using Equation (7) at first, and then the transformed hut h̃
u
t is treated as the

query to derive the semantic-based preference mu
t using Equation (12) correspondingly.

To better infer the user preference, we combine the current representation (i.e., sequential
preference) and the global representation (i.e., semantic-based preference) together as pu

t = hu
t ⊕mu

t
using a vector concatenation. For the construction of candidate item embedding, we combine the item
embedding vn in the interaction sequence and the entity embedding ei in the external knowledge base
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together to obtain the following: q̃i = vn ⊕ ei. After this, we can predict the value of su,i,t for each
candidate item i given the user’s preference embedding pu

t as follows:

su,i,t = g(u, i, t) = MLP
(
pu

t

)>
·MLP(q̃i) (13)

where MLP(.) denotes a multilayer perceptron. Finally, we can describe the loss function as the cross
entropy; this is shown as follows:

loss =
∑
u∈U

nu∑
t=2

∑
j∈I−U

log σ(g(u, it) − g(u, j)) (14)

where σ(·) denotes the sigmoid function, nu denotes the length of the interaction sequence of user u in
the training set, and I−u denotes a small set of sampled negative items that user u has not interacted with.

4. Experiment and Analysis

In this section, we describe the experimental set-up first and then analyze the performance
comparison results of different methods. Finally, we further understand our model by conducting a
detailed analysis.

4.1. Datasets

We evaluate our method on two types of public datasets (i.e., knowledge base data and
recommender systems data). For recommender system data, we adopt three different datasets
(i.e., AMAZON book [24], MOVIELENS ml-20m [25], and MOVIELENS ml-1m [25]). For knowledge base
data, we use the FREEBASE dump containing lots of triples. Since the MOVIELENS ml-20m dataset is
very large, we use only the subset from year 2005 to 2015. Similar to [3,26], we filter out inactive
items and users appearing less than k records. The parameter k is set to 10 in MOVIELENS dataset
and 3 in AMAZON book datasets. Furthermore, we link items in recommender systems with FREEBASE

entities. Specifically, we set item titles as queries and utilize an offline FREEBASE search application
programming interface (API) to obtain knowledge base entities. In addition, the interactions associated
with the linked items in the filtered datasets are used for recommendations. We classify the original
interaction records according to users and sort them by the timestamps ascendingly, and we then set
the earliest 70% of the interactions for each user sequence as the training set and set the next 10% of
the interactions for each user sequence as the validation set to tune the hyper-parameters, and the
remaining 20% of the interactions is set as the test set to report model performance. Since the item set
is large, it takes a lot of time to set all the items as candidates. Therefore, similar to [27], each positive
item in the test set is paired with 100 sampled items that the user has not associated with (i.e., negative
items). To make the sampling real and effective, for the 100 negative items, we pick 50 items randomly
and the remaining 50 items according to their popularity.

To train TRANSE, we filter out inactive relations with less than 5000 triples and expand the graph
from filtered linked seed entities. We present the detailed statistics in Table 1.

Table 1. Statistics of our datasets.

Dataset Interactions Users Linked Items

Book 828,560 65,125 69,975
ml-20m 5,868,015 61,580 19,530
ml-1m 916,714 6040 3210
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4.2. Baseline Algorithms

To verify the validity of our model, we use the following baseline algorithms for comparative
analysis:

(1) Factorization-based methods bayesian personalized ranking (BPR-MF) [28] is a classic method
optimizing matrix factorization by the Bayesian personalized ranking loss to learn pairwise
item rankings.

(2) Factorizing personalized markov chain model (FPMC) [3] is a classic hybrid model that combines
Markov chain and matrix factorization to obtain the current and global interests for next-basket
recommendation task.

(3) Gated recurrent unit for recommendation (GRU4REC) [4] is a classic model modeling interaction
sequences via employing RNNs for the sequential recommendation task.

(4) GRU4REC+ [29] is an enhanced version of GRU4Rec which uses an advanced loss function
(5) NARM [5] captures the pattern of interaction sequences and the main purpose for the user by

using RNNs with attention mechanisms.
(6) Short-term attention/memory priority model (STAMP) [12] captures the long-term interests from

previous clicks and the current interest from the last clicks for the sequential recommendation task.
(7) Session-based recommendation with graph neural networks (SR-GNN) [1] generates latent item

vectors by using a GNN and attention network for the session-based recommendation task.
(8) KSR [7] is a knowledge-enhanced sequential recommender based on the knowledge graph, using

gated recurrent unit (GRU) and KV-MN.

4.3. Parameter Setting

In the experiment, the item embedding size is fixed to 50, the KB embedding size LE with TRANSE
is fixed to 50, and the key vector size LK and the value vector size LV are also fixed to 50. For
hyper-parameters, we tune them by conducting a grid search on the validation set. Moreover, the
learning rate and the batch size are set to 0.001 and 4096, respectively.

4.4. Evaluation Metrics

To compare and verify the performance of our method and the baseline algorithms, we use two
classic metrics (i.e., Recall@K and NDCG@K). Recall@K (R@K) represents the proportion of test cases
which has the correctly predicted items in a top K position in a ranking list. NDCG@K (N@K) is the
normalized discounted cumulative gain at K, which considers the position of correctly recommended
items. By default, we set K to 10.

4.5. Results and Analysis

The results of our method and the baseline algorithms are shown in Table 2.
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Table 2. The performance of our method and baseline methods on two metrics over three datasets.

Methods
Ml-20m Ml-1m Book

R@10 N@10 R@10 N@10 R@10 N@10

BPR-MF 0.069 0.071 0.082 0.086 0.023 0.013
FPMC 0.071 0.070 0.091 0.098 0.022 0.015

GRU4REC 0.079 0.090 0.089 0.102 0.026 0.015
GRU4REC+ 0.081 0.093 0.097 0.112 0.029 0.021

NARM 0.107 0.101 0.116 0.119 0.028 0.028
STAMP 0.106 0.102 0.118 0.110 0.027 0.026

SR-GNN 0.107 0.105 0.121 0.126 0.031 0.029
KSR 0.119 0.121 0.141 0.143 0.039 0.030
OUR

MODEL 0.124 0.127 0.150 0.154 0.040 0.029

4.5.1. Observations about Our Model

Firstly, it is obvious that our model achieves almost the best performance in all cases, which
verifies the superiority of our model in this field. Secondly, our model performs better than KSR, which
illustrates the effectiveness of the construction of the session graph and using graph neural network.
Thirdly, our model outperforms SR-GNN, demonstrating the power of adopting semantic-enhanced
memory networks in this domain. Fourthly, our model performs better than STAMP, NARM,
GRU4REC+, and GRU4REC. One possible reason is that RNN-based models fail to consider sufficient
transitions between items in a session. On the contrary, we take complex transitions into account
by using a graph neural network. Fifthly, our model outperforms the traditional baselines (e.g.,
BPR-MF and FPMC) in all cases, which indicates the effectiveness of neural-network-based methods
for predicting the next behavior problem.

4.5.2. Other Observations

Firstly, KSR achieves the best performance except in our model, which verifies the effectiveness
of introducing an external knowledge base. Secondly, GRU4REC+ outperforms GRU4REC with two
evaluation metrics on all datasets, which illustrates the effectiveness of an advanced loss function
and sampling strategy. Thirdly, SR-GNN performs better than STAMP, NARM, GRU4REC+, and
GRU4REC in nearly all cases. This illustrates the importance of transitions between items in a session.
Fourthly, the performance of traditional methods like BPR-MF and FPMC is relatively poor, which
verifies the effectiveness of adopting deep learning for a sequential recommendation task.

4.5.3. Model Analysis and Discussion

In this section, we conduct further detailed model analysis in order to better understand the
framework of our model.

Impact of Variants of Connection Schemes

Since the process of constructing a session graph from interaction sequences is flexible, we
construct a variant connection scheme and compare it with the original connection scheme. Specifically,
we first constructed a directed whole item graph from all anonymous session sequences. In the directed
whole item graph, each node represents a unique item and each edge represents a directed interaction
from one to the other. After this, we can replace the connection matrix with edge weights that are
extracted from the directed whole item graph on the basis of the original session graph.

Figure 4 displays the experimental results of applying variants of connection schemes on three
datasets. We can observe that both the original scheme and variant scheme outperform SR-GNN,
which verifies the effectiveness of KB knowledge, and the original connection scheme outperforms
the variant connection scheme. A possible reason is that the variant connection scheme considers the
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influence of the whole session graph in addition to the current session graph, which notably affects the
integrity of the current session graph.
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Impact of Varying the Amount of Training Data.

To further discuss the influence of varying amounts of training data on the experiment, we split
the complete training data into 20%, 40%, 60%, and 80% for verification and constructed the test sets
accordingly. Figure 5 shows the performance of the two methods under tuning of different ratios of
dataset (i.e., ml-20m).
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From the figure, it is obvious that our model consistently outperforms SR-GNN with two
evaluation metrics, and as the amount of data increases, the values of two evaluation metrics are
improved significantly, which indicates that data sparsity negatively impacts performance, and using a
hybrid of current and global interests and incorporating KB knowledge can improve the performance
of the model.

Impact of Cold Start Scenarios

We further discuss the impact of cold startup on experimental performance. We use the data from
the second interaction to the 50th interaction in the ml-20m dataset to observe the performance under
cold start scenarios. The experimental results are shown in Figure 6.
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Our method has an inherent advantage for new users regarding the cold start problem; compared
with traditional methods (e.g., matrix factorization and collaborative filtering) based on rich user
interaction records, our method can use the trained neural network to adapt to new users. As shown in
Figure 6, the proposed method on the cold start scenarios also has good performance. With the increase
in user interaction records, the performance of our model gradually strengthened, and the experimental
results outperformed SR-GNN, which indicates the effectiveness of introducing an external knowledge
base and graph neural network.

5. Conclusions and Future Work

In this paper, we devised a novel sequential recommender framework which can effectively capture
semantic-based interests and the complex transitions between items. To be exact, we first modeled
separated interaction sequences into session graphs to capture complex transitions by using a graph
neural network. Next, we linked items in interaction sequences with existing external knowledge base
entities and incorporated knowledge base information via KV-MNs. Finally, we combined the current
interest (i.e., sequential interest) and the global interest (i.e., semantic-based interest) to better predict
users’ next actions. Comprehensive experimental comparisons on three public datasets demonstrated
that our model can consistently perform better than baseline algorithms in terms of effectiveness. In our
future work, we will focus on analyzing, researching, and improving the strategy for constructing
session graphs from interaction sequences to better implement the sequential recommendation task.
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