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Abstract: Cluster headache (CH) belongs to the group III of The International Classification of
Headaches. It is characterized by attacks of severe pain in the ocular/periocular area accompanied by
cranial autonomic signs, including parasympathetic activation and sympathetic hypofunction on the
symptomatic side. Iris pigmentation occurs in the neonatal period and depends on the sympathetic
tone in each eye. We hypothesized that the presence of visible or subtle color iris changes in both
eyes could be used as a quantitative biomarker for screening and early detection of CH. This work
scrutinizes the scope of an automatic diagnosis-support system for early detection of CH, by using
as indicator the error rate provided by a statistical classifier designed to identify the eye (left vs.
right) from iris pixels in color images. Systematic tests were performed on a database with images
of 11 subjects (four with CH, four with other ophthalmic diseases affecting the iris pigmentation,
and three control subjects). Several aspects were addressed to design the classifier, including: (a) the
most convenient color space for the statistical classifier; (b) whether the use of features associated to
several color spaces is convenient; (c) the robustness of the classifier to iris spatial subregions; (d) the
contribution of the pixels neighborhood. Our results showed that a reduced value for the error rate
(lower than 0.25) can be used as CH marker, whereas structural regions of the iris image need to be
taken into account. The iris color feature analysis using statistical classification is a potentially useful
technique to investigate disorders affecting the autonomous nervous system in CH.

Keywords: cluster headache; early diagnosis; quantitative analysis; iris color; color spaces;
statistical classification

1. Introduction

The iris is the eye area located between the pupil and the ciliary region. It contains a variety of
grooves, ridges, and pigmented areas, which form a ring bounding the central pupil, through which
the light penetrates. The light entering the eye is adjusted by the iris sphincter and dilator. The iris
coloration is a physical phenomenon arising from the interaction between the light and the iris
stroma. This coloration is due to the melanin concentration, the secretion of which is controlled by the
sympathetic nervous system [1].

Information 2020, 11, 393; doi:10.3390/info11080393 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-0189-6075
https://orcid.org/0000-0003-0735-367X
https://orcid.org/0000-0002-5067-6784
https://orcid.org/0000-0003-1356-2646
https://orcid.org/0000-0003-0426-8912
http://dx.doi.org/10.3390/info11080393
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/8/393?type=check_update&version=2


Information 2020, 11, 393 2 of 13

The iris coloration or the presence of abnormal iris textures has been related to some diseases since
remote history, about 1000 years BC. In recent years, diagnostic techniques, evaluation procedures,
and treatments have been developed from iris color and texture analysis [2]. Trigeminal autonomic
cephalalgias (TACs) belong to Group III of The International Headache Society (IHS), and they share
the clinical features of pain felt in the area supplied by the first division (V-1) of the trigeminal nerve,
accompanied by a variable combination of cranial autonomic features [1,2]. Cluster headache (CH)
is the most frequent TAC [3], and is a male-predominant disorder with a usual age at onset in the
late twenties. CH is typically accompanied by very severe strictly unilateral, orbital/periorbital
pain, with a variable combination of autonomic features, such as conjunctival injection, lacrimation,
rhinorrhea, nasal stuffiness, ptosis, miosis, eyelid edema, and facial/forehead sweating. The attacks
last 15–180 min and recur with a frequency from one every other day to 8 per day during symptomatic
periods (cluster periods). During attacks of CH, a sympathetic hypofunction is manifested clinically as
ptosis and miosis on the painful side. The sympathetic hypofunction remains latent (subclinical) in
between attacks, throughout the symptomatic period, but can be unveiled by provocative test with
appropriate eye drops substances. If there is a persistent but subtle and constitutional (since birth)
sympathetic hypofunction in the symptomatic side, the iris of the symptomatic side would have been
less pigmented. In these cases, the sympathetic defect would be congenital or would have occurred
in the neonatal period [4,5]. One of the CH signs could be different iris coloration in the patient’s
eyes, which is not always noticeable by simple visual inspection. Accordingly, the screening and
early detection of CH could be addressed by creating a biomarker from subtle color changes in both
eyes’ irises.

Regarding the clinical usefulness of machine learning approaches, many works have been
proposed in the literature to deal with different kinds of medical signals and images. As detailed
in [6], migraine patients, cluster headache patients, and controls are discriminated using a supervised
machine learning approach based on multimodal MRI Study. In [7], a decision support system is
proposed to diagnose primary headache patients using semantically enriched data. To support the
diagnosis, five primary headache classes were classified using machine learning [8], and a primary
headache diagnosis classification task was solved using advanced machine learning techniques [9].

In this paper, we analyze the statistical differences in iris color to develop an automatic quantitative
CH diagnosis method by a machine learning approach, in particular the support vector classifier (SVC).
We hypothesized that subtle differences in the iris color of both eyes in the same individual could be
quantified in terms of the error probability when classifying left and right iris from the pixels of digital
iris images. Thus, for each individual, a classification system was designed to determine if a pixel
(characterized by color features) belongs to the left/right iris. For this purpose, we considered iris images
of both of a patient’s eyes, with images taken under the same conditions. A database of images, specifically
recorded for this study, was collected by ophthalmologists in the Hospital Universitario Fundación de
Alcorcón in Spain. First, we studied the applicability of statistical classifiers to detect differences in the
iris color under a pixel-by-pixel approach. Then, we analyzed the robustness of the classifier to regional
changes due to substructures possibly present in the iris images, as well as the impact of simultaneously
using features from several color spaces and the contribution of the pixel neighborhood to the classifier
performance. A preliminary version of this work was presented in [10].

The paper is outlined as follows. In the next section, we present our image database with patients
and control subjects. In Section 3, the classifier approach is introduced. The conducted experiments
and results are described, yielding the proposed scheme to generate the CH biomarker from the
classification of iris pixels in Section 4. Finally, Section 5 contains conclusions and future perspectives.

2. Image Database

Heterochromia of the eye can sometimes be recognized by the naked eye. Thus, in the example
shown in Figure 1, the blue eye is abnormal in terms of noticeably different iris color, which is also
confirmed by other signs such as a smaller pupil and subtle drooping of the upper eyelid. In other cases,
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when the difference is subtle, visual identification can be severely limited. In these cases, an automatic
method can be extremely useful for supporting medical diagnosis, which is in line with the approach
proposed in this work.

Figure 1. Screenshots of eyes in a patient with pigmentation deficit when heterochromia is visible to
the naked eye.

Iris images analyzed in this work were collected by the Ophthalmology Service in Hospital
Universitario Fundación de Alcorcón (HUFA) (Madrid, Spain). Original true color images
(in RGB format) were acquired under controlled conditions regarding illumination, magnification,
and exposition parameters. They were recorded with high resolution (camera Zeiss FF 450 plus Fundus
IR, providing images of 768 × 576 pixels) and stored with a digital image file system (451 Visupac
Digital, version 3.2.1). To avoid the potential influence of external elements, pictures were centered
in the iris by using a circle-shaped frame overlapping the camera. Since the flash effect on the iris
cannot always be completely removed, the flash was focused on the pupil center when taking the
image. The presence of eyelashes was also minimized at this acquisition stage.

No primary information regarding the symptomatic side of the patient was known by the
ophthalmologist who obtained the images. Clinical diagnoses were made by one of the authors
(J.A.P-G), and they were in accordance with the diagnostic criteria of the ICH disorders [11].
The database patients was created, with two iris images for each patient (left and right eye).
Three subject subsets were considered, namely, subjects with symptomatic CH (Group 1), control
subjects (Group 2), and subjects with ophthalmic diseases affecting iris pigmentation (Group 3).

3. Support Vector Classifier Approach

In this work, we propose a statistical-learning approach to support the diagnosis of CH from iris
color differences in patients’ eyes. We propose the use of a support vector classifier (SVC) because of its
model robustness and good generalization capabilities, arising from the structural risk minimization
principle. The SVC principles were developed by Vapnik for the first time [12], and this classifier has
since been applied to a dramatically large number of tasks [13].

The design of statistical classifiers such as SVC is conducted by a set of N training samples
{xi, yi}N

i=1 where xi is the input multivariate sample (also named the input feature vector) and yi
is a categorical variable indicating the corresponding label (desired output of the model). From a
conceptual point of view, the simplest classifier only has to distinguish between two classes, then coding
yi with binary labels +1 and −1. The aim of the SVC is to find the optimal decision boundary based on
the maximum margin from the boundary to the training samples of each class. Note that the boundary
is just a line in two-dimensional space, which readily extrapolates to a hyperplane in high-dimensional
spaces. The decision function can be shown [12] to be expressed as

f (x) =
L

∑
i=1

αiyi〈xi, x〉+ b (1)

where 〈., .〉 denotes the inner product, L is the number of training samples contributing to building the
decision boundary, αi are the Lagrange multipliers obtained during the optimization process, and b is the
interception or bias term. Samples with a non-zero Lagrange multiplier are known as support vectors.
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When samples are not linearly separable in the original input space, Equation (1) does not provide
good performance, and input feature vectors are instead nonlinearly mapped to an intermediate
high-dimensional feature space. In this case, the SVC constructs an optimal hyperplane in the
intermediate space, corresponding to a nonlinear decision boundary in the input space. The expression
for the decision function can be shown [12] to be as follows:

f (x) =
L

∑
i=1

αiyiK(xi, x) + b (2)

where K(., .) is a Mercer kernel holding the nonlinear mapping. In our work, the radial basis function
(RBF) kernel was used, due to its good performance in many other problems. The RBF kernel, which
corresponds to a spherical Gaussian function, has the following expression:

K(x, xi) = exp
(
−||x− xi||2

2σ2

)
(3)

where σ refers to the Gaussian width, for which best value has to be found. When samples of two
classes are not fully separable in the transformed space, the SVC includes a penalty term of the
structural risk, which is weighted by the hyperparameter C in the optimization process. For large C
values, the optimization will choose a lower-margin hyperplane if it achieves a good classification
in training. Conversely, a very small value of C will cause the optimization to look for a separation
hyperplane with a higher margin, even if the hyperplane misclassifies more training samples [12].

4. Experiments and Results

Several experiments were performed in order to determine the most appropriate color space and the
classifier parameters providing the best system operation. On the one hand, the number of pixels required
for training was initially scrutinized for SVC. On the other hand, the suitability of different color spaces was
analyzed, in particular RGB, Lab, and HSV [14]. In addition, the impact of the possible presence of image
structures was tackled by analyzing iris sectors of 45◦ and creating classifiers to distinguish between the
right and left iris using features from different color spaces. Finally, we analyzed the effect of considering as
input features the pixel neighborhood, and therefore information about local variability.

To get the iris samples (pixels), the iris was previously segmented from the whole image.
This segmentation could not be done automatically with the usual Daugman algorithm [15], since the
flash sometimes caused it to fail. Therefore, since the iris segmentation is not the main goal of this paper,
it was manually performed using two size-adjustable ellipses for each iris, one for the sclera outer edge
and another one for the pupil contour. Figure 2 shows the segmented iris for the left and right eyes in a
subject from our database. Pixels outside the area of the segmented iris were discarded in the following
stages. To avoid manual intervention, in the future we propose to explore novel graph-based approaches
such as FastGCN + ARSRGemb for the iris detection and segmentation [16].

Since the property being scrutinized for use as a CH biomarker is conceptually simple (color differences
between pixels from both irises), one might consider using simple statistics on the color image, but we
found that it is not so straightforward. Figure 3a shows the histogram of the segmented irises for the red
component (RGB space) in a control case (no CH). Example histograms for a patient with CH are given in
Figure 3b. Note that the histogram shape for both irises is similar for the control case, as are their means and
standard deviations. However, some differences may be observed in the CH example, both in the histogram
shape and in their corresponding basic statistics. Nevertheless, simple statistics may not be sufficient for
providing a good-quality biomarker. Figure 4 depicts the scatter plot of the iris pixels when using the three
components of the color space (Lab and RGB color space in these examples), showing that complex joint
distributions can be more informative. In addition, the joint distribution can change with the subject and
with the color space. These observations represent the rationale for proposing a classification strategy from
machine learning techniques.



Information 2020, 11, 393 5 of 13

Figure 2. Example of the original right and left iris images (top panels) and their corresponding
segmentation (bottom panels).

(a)

(b)

Figure 3. Histograms of the intensity level for the R component (RGB color space) of the segmented iris
images (mean± std) for two patients: (a) a patient with no cluster headache (CH), right iris (95.2± 13.4),
left iris (93.5 ± 16.0); and (b) a patient with CH, right iris (98.1 ± 13.6); left iris (111.7 ± 20.8).



Information 2020, 11, 393 6 of 13

Figure 4. Pixel scatter plot in the Lab space (left panels) and in the RGB space (right panels) for a
patient with CH (top panels) and without CH (bottom panels). Red/blue points are respectively
associated to the right/left iris pixels.

4.1. Number of Training Pixels for SVC Learning

The proposed method for quantifying the presence of differences in pigmentation between both
eyes uses the components of the color space as features to characterize pixels. Thus, each pixel
corresponds to a sample: the color components are the input features for the classifier, and the label
is the identification of the right/left iris that the pixel comes from. For every patient, iris pixels are
randomly separated into two subsets, so-called training and test subsets. The training subset is used to
build the SVC, and the test subset is used to provide an estimation of the classification error probability,
denoted as Pe. Note that this separation between training and test subsets makes it possible to check
the generalization capabilities of the SVC by using the test pixels, which are different from those used
to set the function defining de SVC boundary. In addition, since the RBF kernel implicitly uses the
Euclidean distance as a similarity measure between vectors, each input feature is standardized (zero
mean and unit variance) to have a similar range.

Hence, the Pe estimation provided by a SVC on the iris pixels of both eyes can be used as a simple
biomarker for a given patient. It can support the clinician in determining the CH risk of a patient
based on color differences between both eyes: the lower the Pe, the higher the CH risk. In patients
with other pathologies in which differences in eye color are well-known, this method is not necessarily
useful. Rather, the usefulness for clinical diagnosis would be focused on CH cases which remain
asymptomatic but still exhibit subtle differences in color.

Since the number of available pixels on the iris images was extremely high, it was unnecessary to use
all of them for training the classifier. The use of too many training samples would lead to an excessive
computational burden in training. Therefore, we first conducted an analysis of how many training samples
were needed to yield suitably trained classifiers.

It was also considered convenient to benchmark the SVC with another statistical classifier, in order
to confirm that SVC is suitable to tackle this problem. For its conceptual simplicity and performance
properties, we chose to use the well-known voting k nearest neighbors (k-NN) classifier, where k is a
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hyperparameter to be determined [17]. In k-NN, a sample is classified by voting of the labels associated
to its k nearest neighbors in terms of the Euclidean distance [18].

Accordingly, the following experiment was conducted to analyze the training set size and the
performance of both classifiers (k-NN and SVC). After the iris segmentation of each patient, the same
number of pixels (np) were randomly selected for the training and test sets, also balancing the number
of pixels for each iris. Pixels in the training set were not considered for selection in the test set. The best
values for the hyperparameters of each classifier were selected by cross-validation [19] on the training
set. In particular, for the SVC we explored values in the range

[
1, 105] for the hyperparameter C,

and in the range
[
10−12, 103] for the hyperparameter γ, with γ = 1

2σ2 . Regarding the k-NN classifier,
the search range for k was [1, 20]. To avoid the bias provided in the results by one training/test
partition, we ran 10 realizations (partitions of the training/test sets) from the complete set of iris pixels.
Figure 5 shows the results in terms of Pe for two subjects, one being a control and the other a CH
patient. Note that for both classifiers, a higher Pe was obtained for the control subject. Note that the Pe

was not 0.5, as this would correspond to a perfectly matched color distribution in both eyes; instead, its
value tended to be close to 0.4. The Pe value obtained with the CH patient in this case was noticeably
lower. Additionally, the Pe was generally lower for SVC than for k-NN, which was more pronounced in
the CH patient. This result gives the rationale for choosing the SVC as the classifier for building the
CH biomarker. Finally, note that at about np = 2000, the SVC performance reached stability, hence this
was considered a sufficient size for the training set in subsequent experiments.

Figure 5. Study of the required number of training pixels for the machine learning classification,
benchmarked on a control subject (green), on a different pathology (orange), and on a CH patient
(red), when using support vector classifier (SVC; continuous) and k nearest neighbors (k-NN; dashed)
classifiers. Shaded bands depict the mean ± standard deviation of 10 realizations.

4.2. Color Spaces

Different color spaces are usually considered in color image processing depending on the scene
characteristics and the ultimate goal. Thus, while the RGB color space is considered because its three
components (red, green, and blue) are necessary to define the color, other spaces are considered because
they consider two components for describing the chromatic information and one component for the
achromatic part [14,20].

This section scrutinizes the suitability of different color spaces in our system. In addition to
the original RGB color space, we benchmarked its normalized version RGn, where the effect of
normalization is a reduced dependence between the red and green components on the brightness,
where it possible to omit the third component, hence reducing the space dimensionality [21].
Other color spaces based on linear and nonlinear transformations of their components have been
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proposed [14,22]. We also considered the Fleck color space [22], based on logarithmic transformations
of the RGB components and one of the so-called opponent color spaces. The Fleck transformation
is physiologically motivated by the way that the human visual system transforms RGB values into
an opponent color vector with one achromatic and two chromatic components. The Otha color
components were also considered [23]. They are obtained as a linear transformation of the RGB
space, proposed when trying to derive three orthogonal color features with large discriminant power
on a representative sample of images. The family of perception-based models are quite intuitive
to humans because they are related to human color perception (color, saturation, and luminance):
for example, HSI (hue–saturation–intensity) and HSV (hue–saturation–value), which are cylindrical
color spaces based on a nonlinear transformation of the RGB space [14]. Finally, the CIE Lab (L for
lightness, a and b for color) space was also considered because, in addition to separate chromatic
and achromatic components, distance relations (Euclidean) are in accordance with perceptual color
differences. The separability of pixels belonging to the left and right iris was benchmarked for each
patient when considering the six previously presented color spaces (RGB, HSI, HSV, Otha, Fleck,
and Lab) as input features.

The estimated mean error probability on the test set for each patient is shown in Table 1 for the
k-NN classifier, and in Table 2 for the SVC. In general terms, the error rate for the SVC was lower than
for k-NN. Regarding the input features, and though there were no features which worked best for all
patients, we can state that: (1) the color spaces Lab, RGB-Lab, and HSI provided reasonable results
when considering the three components of the color space; (2) ab components were the best when just
considering chromatic components; and (3) HV and Lb could be selected when choosing the achromatic
component and one of the chromatic components, though there were some contradictory trends for
some patients. Taking these conclusions into account and analyzing the values of Pe, we conclude that
input features containing the ab components would be the most appropriate for our purpose. This is in
accordance with the similarity measure implicitly considered by the statistical classifiers of this work,
since both are based on the Euclidean distance. Nevertheless, other options should not be discarded,
such as HSI or RGB-Lab.

Table 1. Mean Pe on the test partitions when applying the k-NN classifier on the iris pixels of each
patient (rows, organized according to the group to which they belong). Double column headers
represents two designs, each one with a different feature space (values in cells keep the order in the
column header).

Group Pat. no. RGB Lab La Lb ab HSI IH IS HSHSI
HSV VH VS HSHSV RGn Fleck Ohta RGBLab

1 0.34 0.32 0.34 0.35 0.32 0.35 0.34 0.33 0.35
0.31 0.38 0.34 0.39 0.34 0.54 0.30 0.31

2 0.37 0.39 0.40 0.41 0.42 0.40 0.41 0.41 0.42
1 0.39 0.39 0.42 0.43 0.42 0.50 0.39 0.41

3 0.43 0.45 0.49 0.48 0.48 0.47 0.48 0.45 0.45
0.46 0.45 0.48 0.47 0.47 0.51 0.46 0.47

9 0.39 0.38 0.41 0.40 0.44 0.41 0.41 0.40 0.44
0.38 0.41 0.44 0.43 0.45 0.42 0.38 0.41

4 0.44 0.40 0.45 0.44 0.41 0.43 0.45 0.42 0.43
0.39 0.46 0.44 0.43 0.44 0.47 0.42 0.41

8 0.37 0.38 0.40 0.43 0.46 0.37 0.39 0.42 0.41
2 0.35 0.42 0.42 0.43 0.40 0.49 0.36 0.38

11 0.43 0.43 0.46 0.46 0.46 0.44 0.46 0.47 0.44
0.45 0.47 0.47 0.46 0.45 0.50 0.44 0.45

5 0.19 0.18 0.21 0.24 0.22 0.21 0.20 0.27 0.24
0.22 0.19 0.29 0.25 0.24 0.53 0.21 0.21

6 0.22 0.20 0.41 0.27 0.24 0.20 0.35 0.24 0.26
0.23 0.41 0.23 0.23 0.23 0.49 0.20 0.21

3 7 0.28 0.31 0.30 0.38 0.31 0.29 0.34 0.39 0.44
0.29 0.31 0.35 0.44 0.44 0.50 0.29 0.33

10 0.17 0.20 0.22 0.22 0.22 0.18 0.23 0.22 0.24
0.18 0.25 0.26 0.24 0.23 0.52 0.17 0.17
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Table 2. Mean Pe on the test partitions when applying the SVC classifier on the iris pixels of each patient
(rows, organized according to the group to which they belong). Double column headers represent two
designs, each one with a different feature space (values in cells keep the order in the column header).

Group Pat. no. RGB Lab La Lb ab HSI IH IS HSHSI
HSV VH VS HSHSV RGn Fleck Ohta RGBLab

1 0.32 0.29 0.34 0.32 0.37 0.33 0.33 0.36 0.38
0.30 0.36 0.32 0.34 0.35 0.47 0.29 0.28

2 0.38 0.40 0.41 0.42 0.40 0.40 0.41 0.42 0.41
1 0.38 0.39 0.41 0.41 0.41 0.49 0.38 0.38

3 0.44 0.46 0.47 0.48 0.46 0.46 0.47 0.46 0.46
0.45 0.47 0.47 0.47 0.47 0.49 0.44 0.45

9 0.37 0.36 0.38 0.38 0.42 0.36 0.40 0.39 0.42
0.34 0.40 0.39 0.43 0.43 0.51 0.34 0.37

4 0.42 0.39 0.43 0.42 0.44 0.40 0.45 0.42 0.42
0.39 0.44 0.43 0.40 0.40 0.45 0.41 0.37

8 0.36 0.37 0.35 0.42 0.43 0.38 0.37 0.41 0.42
2 0.38 0.42 0.42 0.41 0.43 0.50 0.35 0.32

11 0.43 0.43 0.44 0.43 0.40 0.45 0.45 0.43 0.42
0.48 0.43 0.45 0.44 0.43 0.50 0.43 0.41

5 0.19 0.18 0.20 0.24 0.22 0.20 0.19 0.26 0.25
0.19 0.18 0.25 0.27 0.21 0.52 0.20 0.17

6 0.22 0.21 0.39 0.25 0.21 0.19 0.34 0.24 0.24
0.22 0.38 0.20 0.23 0.23 0.48 0.19 0.18

3 7 0.28 0.27 0.27 0.45 0.39 0.29 0.30 0.39 0.46
0.27 0.29 0.34 0.45 0.43 0.49 0.28 0.27

10 0.17 0.16 0.19 0.19 0.22 0.17 0.20 0.19 0.23
0.17 0.19 0.23 0.23 0.23 0.48 0.16 0.15

4.3. Effect of Neighbor Pixels and Textures

In the previous experiments, the usefulness of different color components as input features to the
classifier was scrutinized on a pixel basis. Despite the color being a pixel property, it is reasonable to
analyze whether the color of a given pixel could be better represented by the color of its neighboring
pixels. For this purpose, a new feature space was generated by increasing the size of the 3× 1 vector
given by the three components of the pixel in any color space with those provided by the three
components associated to its 8 neighboring pixels. Thus, the new feature space is represented by a
vector of 27 elements. On the other hand, to get a better characterization of the iris texture, we increased
the neighboring size to a distance of 2 pixels. That is, each pixel can be characterized by a vector of 75
elements (25 values per neighborhood and color component).

Figure 6 shows the comparison of input spaces as given by individual pixels and when extending
to eight neighbors, and more neighbors (texture). Classifiers were trained and tested with 5000 and
10,000 samples, respectively. Results are shown for the Lab input space. The k-NN classifier showed a
defined trend of bringing all the cases closer in terms of Pe with increasing pixel neighborhood size,
whereas the SVC was less sensitive to the increase of the pixel neighborhood. Nevertheless, there was
a trend in some specific cases (specially for patient P4 in the figure) for which Pe decreased despite
being a control case. Thus, it can be concluded for this problem that feature spaces just associated with
individual pixels are better suited than extended spaces considering neighborhood pixels.
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Figure 6. Comparison of the mean Pe obtained when considering three approaches (one pixel-based
and two extensions to the neighbor pixels, see the abscissa axis), both for k-NN (left panel) and SVC
(right panel) classifiers.

4.4. Iris Image-Region Analysis

In previous experiments, we considered the whole iris area and different numbers of neighbors
and components of the color space as features to design the statistical classifier. In addition,
some structures can be expected to be present in iris images (e.g., spots or patches), which could
modify the color structure and affect the performance of the SVC in this setting. We conducted an
experiment for the analysis of the iris by taking the pixels in 45◦ sectors, as depicted in Figure 7.
The features used for this purpose were components of the previously analyzed RGB-Lab space.

iLe$	  iRight	  

45°	  45°	  

0°	  0°	  

Figure 7. Scheme of the iris segmentation in 45◦ sectors for evaluating the impact of image structure
on the classifier performance.

We analyzed two strategies. First, a classifier was designed using only those pixels of the same
angular sector of the iris in each eye. This approach aimed to account for the presence of structures
and for regional differences, which are more noticeable in some sectors than in others. Secondly, the
impact of including pixels from increasingly accumulated sectors was also studied. Each classifier was
trained with 5000 samples and tested with 10,000 samples for obtaining the Pe.

Figure 8 shows that the four patients in Group 3 (P5, P6, P7, and P10) generally exhibited a
noticeably reduced Pe, which was consistent throughout all angles, although for some sectors their Pe

was increased. In general terms, the concatenation of all sectors softened the Pe and made it constantly
low. Additionally, the three healthy subjects in Group 2 showed a consistently increased Pe, both in
every sector (with some occasional drop in Pe) and in the accumulated figure.

However, results on CH patients in Group 1 exhibited a more complex behavior. In the
accumulated classifiers, patients P1 and P9 were readily and consistently identified by the classifiers,
P2 showed a trend to be identified but still remained in the Pe values of control subjects, and P3 could
not be identified and generally exhibited a high Pe. On the other hand, the identification by accounting
for each sector separately exhibited a larger variance; nevertheless, some sectors were more adequate
to better separate Groups 1 and 3 from 2, namely, sectors of 180–225◦and 270–315◦. Overall, a perfect
discrimination could not be achieved. Iris images of patients P2 and P3 often showed a behavior
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strongly overlapping with an increased Pe, which does not seem to support the hypothesis that the
iris color features can provide a universal criterion for CH detection, at least as considered in this
work. By visual iris inspection on our database, we believe this could mainly be due to two facts: first,
the iris tissue in those cases actually contained a variety of spots and marks; and second, the subtle
differences in color in these cases were more pronounced in some sectors. Therefore, even when the
sector analysis increases the sensitivity, the reduction in the number of pixels makes it more sensitive
to spots and marks.

Figure 8. Study of the Pe per iris sector (abscissa axis), for each separate sector (top) and for accumulated
sectors (bottom), using k-NN (left panels) and SVC (right panels).

5. Discussion and Conclusions

An SVC-based approach was developed with the aim of supporting the diagnosis of CH with
an automatic system. Statistical analysis of its performance was based on sample-based algorithms
for learning to classify the pixels of each iris image of the same individual. The corresponding error
probability when classifying iris image pixels of an individual was inversely associated to the risk that
the individual suffers from CH.

We obtained better CH identification results with features containing both luminance and
chrominance information. Additionally, the SVC was a good option as machine learning classifier for
use in this task. Moreover, some color spaces were found to be more suitable (Lab, RGB, and HSI).
Finally, single-pixel input spaces were found to be better than pixel-neighborhood input spaces.
However, CH patients with extremely subtle changes in their eye color could not always be identified
by the method. Though this could be alleviated by considering more reduced regions of the iris for
increasing sensitivity to color differences, this also increases the sensitivity of the method to marks
and spots.

The implications of this study could be clinically relevant. According to recent works, newborns
have an inherited and indeterminate iris coloration, which is formed during the first months of life by
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the cell-coating activity (melanophores). The sympathetic nervous system exerts a trophic action on the
activity of the melanophores. When there is a congenital or acquired sympathetic defect in the neonatal
period, pigmentation deficiency occurs in the side of the sympathetic hypofunction [4,5]. This results
in heterochromia, which can be noted in the different colored eyes, typically blue and brown, with the
clearer iris being the defectively pigmented one. Some headaches (typically CH) occur with strictly
unilateral pain, centered in the ocular region. During symptomatic periods, a sympathetic deficit on
the side of the pain causes ptosis, and miosis is developed. Both signs of sympathetic hypofunction
are known as Horner’s syndrome. If there is a latent defect in the sympathetic side of pain that occurs
during the symptomatic periods, then there can also be decreased pigmentation of the iris in that
side. In that case, sometimes the sympathetic defect has occurred in the neonatal period, and it can
sometimes be congenital [5,24].

The present work aimed to open the way towards an automatic diagnostic system. As such,
it highlighted the scope and limitations of the color as a sole criterion. The method provided
encouraging results, and it arises as a possibility to provide clinicians with diagnostic support for the
early detection and screening of CH patients with a low-cost system.
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