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Abstract: This paper describes how we tackled the development of Amaia, a conversational agent
for Portuguese entrepreneurs. After introducing the domain corpus used as Amaia’s Knowledge
Base (KB), we make an extensive comparison of approaches for automatically matching user requests
with Frequently Asked Questions (FAQs) in the KB, covering Information Retrieval (IR), approaches
based on static and contextual word embeddings, and a model of Semantic Textual Similarity (STS)
trained for Portuguese, which achieved the best performance. We further describe how we decreased
the model’s complexity and improved scalability, with minimal impact on performance. In the end,
Amaia combines an IR library and an STS model with reduced features. Towards a more human-like
behavior, Amaia can also answer out-of-domain questions, based on a second corpus integrated in
the KB. Such interactions are identified with a text classifier, also described in the paper.

Keywords: semantic textual similarity; question answering; conversational agents; machine learning;
information retrieval; text classification

1. Introduction

ePortugal (https://eportugal.gov.pt/) is a web portal managed by the Portuguese Administrative
Modernization Agency (AMA), which “aims to facilitate the interactions between citizens, companies and
the Portuguese State, making them clearer and simpler”. Among others, it provides information on public
administration services, which may, indirectly, answer a broad range of questions. However, due to the
huge amount of information on different services, involving significantly different procedures, and thus
also organized differently, some answers can be hard to get or take too much time to find.

In order to make the process of finding answers for entrepreneurs easier, about two years ago,
we were challenged to develop an alternative interface to Balcão do Empreendedor (BDE, in English,
Entrepreneur’s Desk), now incorporated in ePortugal. Beyond a search interface, it would enable
interested users to make questions, in natural language, to be answered automatically, also in
natural language, thus avoiding to explore the site, and spending time on navigation and reading
long documents. In fact, the challenge was to develop a computational agent that, among other
conversational skills, would be apt to help entrepreneur’s willing to develop an economic activity in
Portugal, by providing answers to their questions.

Given the limitations of end-to-end conversational agents, and once we noticed that lists of
Frequently Asked Questions (FAQs) were available for some of the target services, we decided to
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develop a retrieval-based agent. This option would also allow us to focus on two components of the
work, independently: (i) the “Knowledge Base” (KB), which would contain all the questions that the
agent would be able to answer, as well as their answers; (ii) retrieval, which would encompass all the
processing required to the user input and how it would be exploited for searching for and retrieving a
suitable answer from the KB. This approach also had in mind that both adding questions or adapting
the agent to a different domain would be mostly a matter of changing the KB.

The KB would consist of FAQs from BDE and ePortugal that, along the duration of this project,
were provided by AMA. However, the main focus was on the retrieval component. In order to
select the approach to follow, different approaches and technologies were explored for matching user
requests with FAQs in the KB and providing their answers. To go beyond traditional Information
Retrieval (IR) [1], we looked at Semantic Textual Similarity (STS, [2,3]) as a useful task to tackle for this
process, i.e., user requests would be matched to the most semantically-similar questions in the KB.

STS aims at computing the proximity of meaning of two fragments of text. Shared tasks on
the topic have been organized in the scope of SemEval 2012 [2] to 2017 [3], targeting English,
Arabic, and Spanish. For Portuguese, there have been two editions of a shared task on the
topic, dubbed ASSIN [4,5]. In this work, we explore different approaches for STS, including
simple unsupervised methods, based on IR, word overlap, or on pre-trained models of word
embeddings. We further exploit several features and train our own STS model in the ASSIN collections.
Such approaches are tested in a corpus created for this purpose, AIA-BDE [6], which, besides the FAQs
in the KB, contains their variations, simulating user requests.

Following an extensive comparison of the previous approaches and the discussion of their results,
we came to the conclusion that the supervised STS model is a good option. However, since it relies on
many features, we also: (i) reduce its complexity through feature selection; and (ii) combine it with an IR
library for a preliminary selection of candidate questions. The previous options were supported by a set
of experiments, which confirmed that the impact on question-matching performance was minimal.

Moreover, we aimed at developing an agent that would not simply answer domain questions,
but with which it would be possible to have a lighter conversation, more or less on any topic,
or at least simulate this capability. For this purpose, we compiled another corpus, this time for
Out-Of-Domain (OOD) questions and answers, i.e., chitchat. Some of those questions were added
manually, while others came from a corpus of movie subtitles [7].

The resulting agent was dubbed Amaia, and we see it as an evolution of Cobaia, described in our
previous paper [8], for which this is an extended version. The main differences of the present work are
the following:

• We compare the supervised STS model with a broader range of unsupervised approaches for STS
and make a more thorough selection of features, also considering the complexity of the model;

• Amaia uses and is assessed in a new version of the AIA-BDE corpus;
• Amaia relies on a more flexible strategy for identifying OOD interactions, based on a classifier,

and provides answers to such questions based on a smaller and more controlled corpus.

The remainder of the paper is organized as follows: Section 2 overviews related work on
conversational agents and IR-based natural language interfaces to FAQs; Section 3 describes the
corpora used in this work, namely the AIA-BDE corpus, used both as Amaia’s KB and for evaluation
purposes, and the Chitchat corpus, which Amaia resorts to for handling OOD interactions; Section 4
discusses the performance of several unsupervised approaches for STS in the AIA-BDE corpus;
Section 5 describes how a model can be trained for STS in Portuguese and then applied to AIA-BDE,
also including a discussion on the selection of the most relevant features; Section 6 is on the approach
for dealing with OOD interactions, which includes training a classifier for discriminating between
such interactions and domain questions. Before concluding in Section 8, Section 7 wraps everything
with the integration of the IR library, the STS model, and the OOD classifier, as well as the created
corpora, in Amaia, illustrated with an example of a conversation.
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2. Related Work

Dialogue systems typically exploit large collections of text, often including conversations.
End-to-end generative systems model conversations with a neural network that learns to decode
sequences of text (e.g., interactions) and translate them to other sequences (e.g., responses) [9].
Such systems are generally scalable and versatile, always generate a response, but have limitations
for performing specific tasks. As they make few assumptions on the domain and generally have no
access to external sources of knowledge, they can rarely handle factual content. They also tend to be
too repetitive and provide inconsistent, trivial or meaningless answers.

Domain-oriented dialogue systems tend to follow other strategies and integrate Information
Retrieval (IR) and Question Answering (QA) techniques to find the most relevant response for natural
language requests. In traditional IR [1], a query represents an information need, typically in the form
of keywords, to be answered with a list of documents. Relevant documents are generally selected
because they mention the keywords, or are about the topics they convey. Automatic QA [10], diversely,
finds answers to natural language questions. Answers can be retrieved from a structured KB [11]
or from a collection of documents [12]. This has similarities to IR, but queries have to be further
interpreted, possibly reasoned—where Natural Language Understanding (NLU) capabilities may be
necessary—while answers are expected to go beyond a mere list of documents.

Given a user input, IR-based conversational agents search for the most similar request on the
corpus and output their response (e.g., [13]). They rely on an IR system for efficiently indexing
the documents of the corpus and, in order to identify similar texts and computing their relevance,
a common approach is to rely on the cosine between vector representations of the query and of the
indexed texts, where words can be weighted according to their relevance, with techniques such as
TF-IDF. Instead of relying exclusively on the cosine, an alternative function can be learned specifically
for computing the relevance or relatedness of a document for a query. This can be achieved, for instance,
with a regression model that considers several lexical or semantic features to measure Semantic
Textual Similarity (STS, [14]). This is also a common approach of systems participating in STS shared
tasks (e.g., [3]), some of which covers pairs of questions and their similarity [15]. A related shared
task is Community Question Answering [16,17], where similarity between questions and comments or
other questions is computed, for ranking purposes.

STS can also be useful in the development of natural language interfaces for lists of FAQs.
Due to their nature and structure, the latter should be seen as valuable resources for exploitation.
On this context, there has been interest in SMS-based interfaces for FAQs [18], work for QA from
FAQs in Croatian [19], and a shared task on this topic, in Italian [20]. FAQ-based QA agents often
pre-process text in questions, answers, and user requests, applying tokenization and stopword removal
operations. For retrieving suitable answers, the similarity between user queries and available FAQs
is computed by exploiting word overlap [19], the presence of synonyms [18,21], or distributional
semantic features [19,22].

In opposition to generative systems, IR-based dialogue systems do not handle very well requests
for which there is no similar text in the corpus. However, an alternative IR-based strategy can still be
followed, in this case, for finding similar texts in a more general corpus, such as movie subtitles [23].
Either with an IR or generative approach, an important challenge is to give consistent responses.
For this purpose, there are different approaches for developing conversational agents with a persona.
In the generative domain, persona embeddings can be incorporated [24], while in the IR-domain,
this issue has been tackled by including a smaller corpus of personal questions and answers [25].

3. Corpora

Our main goal was to develop a conversational agent that would answer questions related
to entrepreneurship and performing economic activity in Portugal. To some extent, it would
be an alternative channel to searching for the necessary information in the former Balcão do
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Empreendedor (BDE, in English, Entrepreneur’s Desk) and related services, now incorporated in the
e-Portugal website.

However, towards a more human behavior, we also wanted the agent to enable basic open-domain
conversations. Therefore, we have also compiled the Chitchat corpus, to be used instead of AIA-BDE
for answering out-of-domain (OOD) interactions. This section describes both corpora and, later,
Section 6 explains how Amaia discriminates between domain and OOD interactions.

3.1. The AIA-BDE Corpus

In order to create what we later called the agent’s KB, we asked AMA for data available in BDE
that would be valuable to such an agent and, at the same time, easy to integrate and exploit. Once we
found that several services had FAQs, we decided to focus the development of the KB around them,
and get some inspiration from related work on FAQ-based agents [18–20]. At the same time, we aimed
to develop an agent with a flexible architecture that would be easily adapted to other domains, and this
also seemed like a good option from that perspective.

FAQs were collected and compiled in the KB, so that the agent would access questions and their
answers. The agent would thus try to match natural language user requests with questions for which
it had an answer, i.e., they were answered by a FAQ in the KB. Once it identifies the most similar FAQ
to the request, it may provide its answer to the user.

We baptized the corpus of FAQs as AIA-BDE, and it is now in the second version, the one used
in this paper, with more questions and more variations than its first version [6]. More precisely,
it contains 855 FAQs from four different sources: Espaço Empresa (EE, Business Spot, 625 FAQs),
Apoios Sociais (AS, Social Support, 56 FAQs), Regime de Acesso a Atividades de Comércio, Serviços e
Restauração (RJACSR, Access Regime to Commerce, Services and Catering Activities, 118 FAQs),
and Alojamento Local (AL, Local Accommodation, 56 FAQs) (For those interested, both versions of the
AIA-BDE corpus are available from https://github.com/NLP-CISUC/AIA-BDE).

However, in addition to the FAQs, AIA-BDE also contains their variations, which are paraphrases or
related questions using other words, sometimes omitting information. To some extent, such variations
simulate user requests for which answers are available. Therefore, we may use them for assessing our
agents on this domain, i.e., how well they can match variations with the original questions.

There are at least five variations for each question, and some have up to 12. Though, as there is no
perfect way of creating variations, and because their manual creation is time-consuming, variations
were produced along the time, following significantly different approaches, and by different people.
Therefore, since matching variations created differently may pose different challenges, we marked
variations according their creation process, namely:

• Two types generated automatically, with the help of the Google Translate API (https://cloud.
google.com/translate/docs/), as follows: translation of the Portuguese question to English and
back to Portuguese (VG1); the previous result back to English and back to Portuguese (VG2).
A variation of each type is available for every original question in the corpus. Most of them end
up being very similar to the original questions, and several VG2 are the same as the corresponding
VG1. In addition, a minority of these variations has errors or imprecisions resulting from the
translation process.

• Three types of manually created variations. Two were created by different controlled groups
of native Portuguese speaking volunteers, one consisting of the authors of this paper (VUC),
and another produced by Computer Science undergraduates of the Technical University of
Lisbon (VIN). A third type was the result of a crowdsourcing task in the Amazon Mechanical
Turk (https://www.mturk.com/) platform (VMT). For all the types, volunteers were instructed to
read the original question and answer, and to rewrite the question using other words, but keeping
its original meaning or, in some cases, a meaning entailed by it.

https://github.com/NLP-CISUC/AIA-BDE
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://www.mturk.com/
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However, not all FAQs have all types of variation. VMT variations are only available for the AS
FAQs, with each having three of them. VIN variations are only available for the EE FAQs, but each of
those FAQs may have from 0 to 9 of such variations, all different. Finally, there are VUC variations
for most of the EE FAQs, as well as for all the RJACSR and AL, each with between 2 and 10 of
such variations.

Table 1 illustrates the AIA-BDE corpus, with examples of a question from each source, some of its
variations, and its answer. When they are the same as the VG1, VG2 variations are omitted.

Table 1. Examples of the AIA-BDE corpus.

Source Var Text

EE P Qual o custo de constituição de uma “Empresa na Hora”?
(What is the cost of setting up a “Company on the Spot”?)

VG1 Qual é o custo de configurar um “Negócio no local”?
(What is the cost of setting up a “Business on site”?)

VUC Preço para constituir uma empresa na hora.
(Price for setting up a company on the spot.)

VIN Quanto terei de pagar para ter uma empresa na hora?
(How much will I have to pay to have a company on the spot?)

R O custo de constituição de uma sociedade é de e360, incluindo publicações ...
(The cost of setting up a company is e360, including publications ...)

AS P Quando é que me dão uma resposta sobre o apoio social a crianças e jovens?
(When can you give me an answer on social support for children and young people?)

VG1 Quando recebo uma resposta sobre apoio social para crianças e jovens?
(When do I get a response on social support for children and youth?)

VG2 Quando recebo uma resposta sobre apoio social a crianças e jovens?
(When do I get a response on social support for children and youth?)

VMT Tenho que esperar muito para ter uma resposta sobre o apoio social a crianças e jovens?
(Do I have to wait too long to get an answer on social support for children and young people?)

R Depois de fazer a sua inscrição na instituição que lhe interessa, pode acontecer ter de ficar
em lista de espera...
(After registering at the institution you are interested in, you may have to wait on the waiting list...)

RJACSR P Qual a coima aplicável às contraordenações graves?
(What is the fine for serious offences?)

VG1 Qual é a multa aplicável à falta grave?
(What is the fine applicable to serious misconduct?)

VUC coima para contraordenação grave
(fine for serious offence)

R As contraordenações graves são sancionáveis com coima: ...
(Serious offences are punishable with a fine ...)

AL P No alojamento local é obrigatória a certificação energética? Em que termos deve ser efetuada?
(Is energy certification compulsory in local accommodation? In what terms should it be done?)

VG1 No alojamento local é obrigatório a certificação energética? Em que condições deveria
ser feito?
(Is energy certification compulsory in local accommodation? Under what conditions should it be done?)

VG2 A certificação energética é necessária em alojamento local? Em que condições deve ser feito?
(Is energy certification required in local accommodation? Under what conditions should it be done?)

VUC Como deve ser feita certificação energética do meu alojamento local?
(How should the energy certification of my local accomodation be done?)

R De acordo com esclarecimento da DGEG (Direção-Geral de Energia e Geologia) ...
(According to DGEG (General-Direction of Energy and Geology) ... )

3.2. The Chitchat Corpus

The Chitchat corpus has the same format as AIA-BDE, but includes OOD interactions and its
responses, acquired from two different sources:
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• Handcrafted set of 22 personal questions, i.e., questions that are commonly made in chats,
and their responses;

• About 1500 interaction–response pairs obtained from the Portuguese part of the Subtle [7] corpus
of movie subtitles.

Subtitles are indeed a great source of material for chitchat. However, we soon noticed that,
when using too many subtitles with no selection criteria, conversations could easily become impractical.
Therefore, we selected a subset of interactions that occur 50 or more times in Subtle, as well as their
most frequent response (For those interested, the Chitchat corpus is available from https://github.
com/NLP-CISUC/AIA-BDE). In this process, interactions and responses with strange characters and
proper nouns were ignored.

Table 2 illustrates the Chitchat corpus with some examples of its entries.

Table 2. Examples of the Chitchat corpus.

Source Type Text

Personal P Quem és tu?
(Who are you?)

R Olá, eu sou a Amaia, um sistema inteligente para apoio a empreendedores, desenvolvido em 2019
no Centro de Informática e Sistemas da Universidade de Coimbra.
(Hello, I’m Amaia, an intelligent system for supporting entrepreneurs, developed in 2019 at the Center for
Informatics and Systems of the University of Coimbra.)

P Que idade tens?
(How old are you?)

R Essa pergunta não se faz a uma senhora, mas será que isso importa assim tanto? Em que o
posso ajudar?
(This question should not be asked to a lady, but does it really matter that much? How can I help you?)

P És um chatbot?
(Are you a chatbot?)

R Sou um sistema inteligente de resposta automática a perguntas, mas podes tentar
conversar comigo.
(I’m an intelligent system for answering questions, but you can try chatting with me.)

Subtitles P Até amanhã.
(See you tomorrow.)

R Adeus.
(Goodbye.)

P Prazer em conhecê-lo.
(Nice to meet you.)

R Igualmente.
(Me too.)

P Que fazes aqui?
(What are you doing here?)

R E tu?
(What about you?)

P O que queres dizer com isso?
(What do you mean?)

R Nada.
(Nothing.)

4. Answering AIA-BDE with Unsupervised Approaches

As the AIA-BDE corpus allows for the assessment of different approaches when matching
variations (i.e., simulations of user requests) with actual questions, we used it as a benchmark in
this task. In this section, we look at the performance of several unsupervised approaches for STS, in the
sense that they rely exclusively on the existing data and, in some cases, on pre-trained embeddings.
The first is a traditional IR approach, based on a full text search library, used for indexing and
searching the text, according to different configurable parameters. The second group of approaches
is based on vector representations of text, which can be created directly from the data, or based on

https://github.com/NLP-CISUC/AIA-BDE
https://github.com/NLP-CISUC/AIA-BDE
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pre-trained models of word embeddings. To some extent, these approaches could be seen as baselines.
However, as we show throughout the paper, some rely on very powerful language models that lead to
high performances.

In both cases, performance was measured by computing the accuracy of each approach in all the
variations of the AIA-BDE corpus. Moreover, having in mind that, in many scenarios, it is better to
return a smaller set of answers that include the correct one, than to give no answer or return one that
is incorrect, accuracy was also measured for the presence of the correct answer in the top-3 or top-5
best-ranked candidates.

4.1. Traditional IR

For testing a traditional IR approach, we relied on Whoosh (https://whoosh.readthedocs.io),
a Python full text search library, which builds an index for a corpus and enables efficient text-based
searches on it. More precisely, Whoosh was used for indexing the AIA-BDE corpus, such that each
FAQ was represented by two fields, the question and the answer, with searches made on the question.
Despite using the same corpus, Whoosh provides different ranking functions and analyzers that may
be used, some of which for Portuguese. We tested both BM25F and Frequency scoring functions,
opting for the former due to the poor performance of the latter, whose accuracy remained below 15%
on all our tests. The group parameter value of the query parser was changed to OrGroup, which makes
the terms in the query optional. When compared to the default setting (see our previous paper [8]),
this improves the matching performance significantly.

In addition to the default indexation, Whoosh also allows for the application of a set of filters,
possibly included in an analyzer, which may differ in how text is tokenized, or how tokens are
normalized. In this work, the following configurations were compared:

• Default Whoosh configuration.
• Default + Fuzzy, the default configuration with Fuzzy Search, which enables partial matches

(e.g., spelling mistakes).
• LanguageAnalyzer, which converts words to lower-case, removes Portuguese stopwords,

and converts words to their stem, following Portuguese rules.
• Stemming Analyzer, a simplification of the previous that does not remove stopwords.
• Stemming Analyzer + Charset Filter, the Stemming Analyzer followed by a filter that removes

graphical accents.
• N-gram Filter (2–3), which tokenizes text and indexes it according to character n-grams of sizes

2 and 3.
• N-gram Filter (2–4), which tokenizes text and indexes it according to character n-grams of sizes 2,

3 and 4.

Table 3 shows the accuracy of the previous configurations when matching the original questions
with themselves, for sanity check, and with the set of all available variations in AIA-BDE. Since Whoosh
may return more than a single result, i.e., a ranked list with the most relevant results, we can also
look for the presence of the correct question in the top-n results. Thus, in addition to the first in the
rank (Top1), the table presents the proportion of questions for which the correct match was in the top-3
and top-5. This has also in mind that, even in a real application scenario, missing the correct match
might be minimized by presenting the top-n matches, hoping that one of them will be correct.

As expected, the great majority of questions is correctly matched with itself, which shows that the
traditional IR approach is doing its job well. The minority of questions not matched are short questions
that share the majority of tokens with others. For instance, with the Default configuration, this includes
mostly questions with a single different word, such as: O que é um certificado digital? and O que é um
certificado digital qualificado?, or Quem é o franchisador? and Quem é o franchisado?. As for the variations,
the Stemming Analyzer leads to the best results, especially with the Charset Filter. We recall that the
only difference between the Language and the Stemming Analyzer is that the latter does not remove

https://whoosh.readthedocs.io
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stopwords, which shows that, in opposition to other tasks, stopwords are important here. With the
best configuration, the proportion of correct matches is close to 80%, with almost 90% in the top-3 and
more than 92% in the top-5. This confirms that, given a user request, considering more than a single
question may significantly increase the chance of giving the right answer. Table 4 shows the accuracy
for the variations of each type.

Table 3. Proportion of original questions and variations correctly matched with original FAQs (Top1),
in Top-3 and in Top-5 most similar, using different configurations of Whoosh.

Configuration Original (855) Variations (4973)
Top1 Top3 Top5 Top1 Top3 Top5

Default 96.4 99.2 99.4 72.3 83.3 86.0
Default Fuzzy 93.3 97.9 98.5 75.5 85.8 88.4

Language 93.7 97.9 98.5 75.4 85.8 88.4
Stem 98.3 100.0 100.0 79.4 89.2 91.6

Stem + Charset 94.2 98.0 98.5 79.7 89.7 92.5
Ngram (2-3) 97.4 99.9 99.9 6.4 22.2 29.0
Ngram (2-4) 97.8 99.8 99.8 46.8 70.9 76.9

Table 4. Proportion of variations of different types correctly matched with original FAQs (Top1),
in Top-3 and in Top-5 most similar, using different configurations of Whoosh.

Configuration
Variation

VG1 (855) VG2 (855) VIN (2279) VUC (816) VMT (168)
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

Default 83.2 90.9 93.1 80.2 88.3 90.5 73.8 85.7 88.2 50.9 65.6 69.5 59.5 73.8 79.2
Default+Fuzzy 86.0 94.3 95.2 83.7 92.6 93.8 76.9 87.2 89.7 55.2 68.1 72.7 58.9 75.6 83.3

Language 82.3 90.6 93.0 79.0 88.3 91.0 80.1 90.2 92.8 55.2 73.0 78.1 52.4 75.6 86.3
Stem 86.2 94.2 95.4 84.4 92.3 94.2 76.4 87.4 90.2 54.7 68.1 71.6 60.7 74.4 81.0

Stem+Charset 88.1 95.6 96.6 85.4 93.7 95.6 82.3 91.4 94.0 62.5 78.9 83.0 54.8 70.2 81.5
Ngram (2-3) 7.8 28.3 36.1 6.7 26.5 33.5 7.0 21.7 28.6 3.9 15.6 21.0 3.0 9.5 13.7
Ngram (2-4) 55.3 80.5 85.6 52.4 77.1 82.5 48.1 71.2 77.1 30.8 56.1 63.6 35.1 59.5 66.7

As expected, the highest performance is for the VG1 and VG2 variations because, in terms of
surface text, they are closer to the original questions. Nevertheless, accuracy is significantly lower
than for the original questions (about 10 points for the top-1, and 3 for the top-5, considering the best
configuration in both). Manually-created variations are the most difficult to match correctly, especially
VUC and VMT. With the best configuration, about 62% of the VUC variations is matched correctly,
and 83% in the top-5. VMT variations are also those for which the best performance, 60% correct
matches, is achieved without the Charset Filter, and for which the best performance for the top-3 (75%)
and top-5 (86%) is achieved with the Language Analyzer. Nevertheless, from these figures, we would
decide to use Whoosh with the Stemming Analyzer and the Charset Filter. With the N-gram filter,
performance decreases significantly for all variations, especially when 4-grams are not included, so it
would not be a viable option.

4.2. Word Vector Approaches

In the second group of approaches, each sentence was represented by a fixed-length vector of
numbers, and similarity was computed with the cosine between the vector representation of each
variation and the vector representation of all original questions. Different methods were used for
representing the sentence as a vector, including traditional approaches, where the vector representation
considers only the vocabulary of our data and the surface text, but also approaches based on pre-trained
models of static word embeddings and state-of-the-art contextual embeddings. The traditional methods
tested were based in the following scikit-learn [26] implementations:

• Count Vectorizer, which converts each sentence to a vector of token counts.



Information 2020, 11, 428 9 of 21

• TFIDF Vectorizer, which converts each sentence to a vector of TF-IDF features, i.e., the weight of
each token increases proportionally to count, but is inversely proportional to its frequency in the
corpus, in this case, the original questions of AIA-BDE.

Both were used with default parameters, meaning that sentences were represented by sparse
vectors with a fixed-size equal to the size of the vocabulary.

In approaches based on static word embeddings, the sentence vector is computed from the
vector of each of its words, according to a pre-trained model. In this process, tokens without
alpha-numeric characters (e.g., punctuation signs) and tokens not covered by the model are ignored.
Moreover, all words may have the same weight, resulting in the average embedding, or they can
be weighted by the relevance of each word, given by the TF-IDF, again computed in the original
questions. Four different pre-trained models of this kind were tested in this experiment, learned with
the following algorithms:

• word2vec [27], namely its two common variations of CBOW and SKIP-GRAM;
• GloVe [28], a common alternative to word2vec;
• FastText [29], as an attempt to better deal with the Portuguese morphology, given that it considers

character n-grams.

The word2vec and GloVe models pre-trained for Portuguese were obtained from the NILC word
embeddings repository [30]. For FastText, we used a different source, trained by the creators of this
algorithm (https://fasttext.cc/). All of them had vectors with 300 dimensions and were loaded with
the Gensim Python library [31].

Approaches based on contextual embeddings relied on BERT [32], a recent model that encodes
words and longer sequences based on a Transformer neural network. In this case, full sentences were
encoded directly by BERT, which resulted in their vector representation. Two pre-trained BERT models
were used for this purpose:

• BERT-Base, Multilingual Cased (Multilingual BERT), trained by the creators of BERT
(https://github.com/google-research/bert) for 104 languages, which encodes given text in
768-sized vectors;

• bert-large-portuguese-cased (Portuguese BERT) [33], trained specifically for Portuguese,
which encodes given text in 1024-sized vectors.

BERT models were loaded with the bert-as-a-service tool (https://github.com/hanxiao/bert-
as-service), with default options, except for the maximum length of sequences, set to NONE for
dynamically using the longest sequence in the batch.

Similarly to Table 3, Table 5 shows the accuracy of the approaches based on the previous models
when matching the original questions, for sanity check, and for the set of all variations in AIA-BDE.
As in the previous section, accuracy is obtained from the number of variations for which the correct
question was the most similar. For the top-3 and top-5, the correct question must be in the top-3 and
top-5 most similar, respectively.

The first observation is that word vectors that are learned from external sources of text lead
to better performances than the Count and the TF-IDF, which are computed from the questions of
AIA-BDE and rely only on the surface text. Another observation is that, with the pre-trained word
embeddings, performance decreases with TF-IDF. Although TF-IDF would give more weight to more
relevant words, this is only based on the questions of AIA-BDE, which are probably not enough
for computing proper weights. Another reason for this may be related to the role of stopwords.
TF-IDF should give them less weight, but the previous experiments with Whoosh suggested that
removing stopwords had a negative impact on performance.

https://fasttext.cc/
https://github.com/google-research/bert
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service
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Table 5. Proportion of original questions and variations correctly matched with original FAQs (Top1),
in Top-3 and in Top-5 most similar, using different Word Vector approaches.

Approach Original (855) Variations (4973)
Top1 Top3 Top5 Top1 Top3 Top5

CountVectorizer 32.3 100.0 100.0 4.0 23.3 24.5
TFIDF-Vectorizer 98.8 100.0 100.0 4.0 4.7 5.5

CBOW 99.0 100.0 100.0 79.8 89.8 92.1
CBOW + TF-IDF 98.8 100.0 100.0 61.5 76.0 80.4

SKIP 99.0 100.0 100.0 78.8 88.3 91.0
SKIP + TF-IDF 98.8 100.0 100.0 57.5 71.1 76.0

FastText 99.0 100.0 100.0 41.8 52.7 57.3
FastText + TF-IDF 98.8 100.0 100.0 33.2 41.8 46.0

GloVe 99.0 100.0 100.0 70.6 79.9 82.8
GloVe + TF-IDF 98.8 100.0 100.0 43.7 55.3 59.7

Multilingual BERT 98.9 100.0 100.0 73.9 82.9 86.0
Portuguese BERT 98.9 100.0 100.0 79.0 88.9 91.1

Different performances are achieved by different models, with the best achieved by the
word2vec-CBOW, without TF-IDF. Its figures are comparable to the best achieved with Whoosh.
Surprisingly, none of the state-of-the-art BERT models could outperform word2vec. Out of the two,
the best was the Portuguese BERT, which makes sense because it was trained exclusively for Portuguese.
Its performance is comparable to word2vec-SKIP, which is the second best model. Table 6 shows the
accuracy for the variations of each type.

Table 6. Proportion of variations of different types correctly matched with original FAQs (Top1),
in Top-3 and in Top-5 most similar, using different Word Vector approaches.

Approach
Variation

VG1 (855) VG2 (855) VIN (2,279) VUC (816) VMT (168)
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

CountVectorizer 6.1 40.0 41.8 5.5 35.2 36.7 3.3 17.4 18.2 1.4 9.4 9.4 7.7 26.2 33.3
TFIDF-Vectorizer 9.1 9.7 10.3 7.5 7.8 8.4 2.0 2.7 3.6 0.6 0.9 1.1 3.0 9.5 15.5

CBOW 88.4 95.8 97.1 86.5 94.7 96.4 82.2 91.0 93.3 59.1 75.5 79.8 70.8 86.3 89.9
CBOW + TF-IDF 71.5 84.8 87.8 67.8 81.8 86.0 64.3 78.3 82.4 38.7 53.8 60.4 50.6 76.8 83.3

SKIP 88.9 95.7 96.6 87.1 94.5 95.8 80.4 89.2 91.7 57.2 72.3 78.4 69.6 83.9 89.9
SKIP + TF-IDF 67.0 80.8 84.4 64.4 76.4 80.9 61.1 74.1 78.5 32.6 47.1 53.6 46.4 72.6 81.0

FastText 57.2 68.5 72.6 51.5 63.4 68.0 40.0 51.0 55.2 21.0 28.8 34.2 39.9 57.7 64.9
FastText + TF-IDF 43.9 48.7 53.3 40.2 48.7 53.2 32.6 42.5 46.2 15.8 23.8 27.9 36.3 50.0 56.5

GloVe 85.1 92.0 93.9 82.5 90.3 92.2 70.0 79.2 81.7 46.3 58.0 64.6 63.7 79.8 83.3
GloVe + TF-IDF 49.1 60.2 63.7 45.8 56.6 60.6 48.9 60.9 65.1 21.4 32.4 37.5 42.3 61.3 70.2
Multiling BERT 90.6 95.3 96.6 90.6 96.0 97.5 73.7 84.0 87.1 46.4 59.6 65.8 39.9 53.0 56.5

Portuguese BERT 86.1 94.9 96.1 83.6 93.1 94.5 83.5 92.4 94.1 60.4 75.2 79.4 47.6 57.1 62.5

Again, performance is higher for VG1 and VG2 and lower for the manually-created variations.
However, these figures show that the selection of the best model is not as straightforward as
it was for Whoosh, with different models having the best performance for different variations.
For instance, Multilingual BERT achieved the best performance for VG1, considering only the
first result, and VG2, possibly because these variations are generated with the help of machine
translation and this BERT model is multilingual. Moreover, since this model was trained by Google,
it is also possible that it is somehow used by Google Translate. The best performance in the VIN
variations (83.5%, about 1 point higher than the best with Whoosh) is by the Portuguese BERT, the same
model that achieves the best performance in the VUC (60.4%, about 2 points lower than the best with
Whoosh). However, this happened only for the first result, with word2vec-CBOW slightly improving
in the top-3 and top-5. This was also the best model for the VMT variations and, when considering the
top-3 and top-5 in VG1, which is why it was the best model overall.

Considering also that word2vec is less complex than BERT, out of the tested models, it would be
our choice. However, we believed that these figures could be further improved if several models were
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combined, and possibly combined with other features. Therefore, in the next section, we describe how
different features can be exploited for learning a model of Portuguese STS that suits our purpose.

5. A Model for Portuguese STS

After testing several unsupervised approaches, which, due to their easy implementation,
can be seen as baselines, we leveraged on available data for training an STS model for Portuguese,
which would hopefully improve the performance of the baselines. The goal was to develop a model
as broad as possible that would exploit many potentially useful features. However, at the same time,
we did not want it to become too complex, which is why we tried to use only a fraction of all the
features that we could extract. The development of the STS model followed a supervised learning
approach. It was validated, trained, and tested in sentence pairs from the collections of ASSIN [4] and
ASSIN 2 [5], which comprise a total of ≈20,000 pairs with annotated similarity scores, based on human
opinions, ranging between 1 (completely different) and 5 (equivalent).

Before concluding the section, we describe how the IR approach can be combined with the STS
model for reducing the number of necessary computations.

5.1. Training a Model for Portuguese STS

To compute the STS between sentence pairs, a broad set of 64 features was initially extracted,
covering different types of features, namely lexical, syntactic, semantic, and distributional.
Features were extracted with the help of the following Python libraries: NLTK [34], for getting
token and character n-grams; NLPyPort [35] (i.e., NLTK with some improvements for Portuguese),
for getting Part-of-Speech (PoS) tags, named entities and lemmas; Gensim [31] and scikit-learn [26],
for extracting distributional features, which included the word embeddings in Section 4.2 and others.

However, as mentioned earlier, we wanted to avoid a very complex model. Therefore, even before
training and testing any model, we tried to reduce the dimensionality of the feature set. For this
purpose, we ran Recursive Feature Elimination (RFE), available in scikit-learn, to select the most
relevant features out of the initial 64. This method requires an external estimator for assigning
weights to features according to their respective importance. In this case, we chose a Random Forest
Regressor (RFR) model as the estimator. Even though other algorithms could have been used for
this purpose, we had previous experience with the RFR in a similar context. Starting with the initial
set of features, the estimator is repeatedly trained until the desired number of features is reached,
by removing the least important feature from the group at each iteration. We tested different thresholds
for the number of features to be selected, ranging from 20% (top-13 features) to 80% (top-51 features)
of the original set, and evaluated the performance of each test with the coefficient of determination R2

of the prediction, which allowed us to select the threshold value. To avoid overfitting, this process was
run in a validation set comprising of 10% of the sentence pairs in the ASSIN and ASSIN-2 training
collections, selected randomly.

The best performance was achieved with a threshold of 42%, meaning that the initial set of
64 features could be reduced to 27. This includes the following features:

• Jaccard coefficient computed between the sets of token 1-grams (1).
• Overlap and Dice coefficients, each computed between the sets of token 1/2-grams (4).
• Jaccard, Overlap, and Dice coefficients, each computed between the sets of character 2/3/4-grams (9).
• Cosine of averaged token vectors, i.e., as in Section 4.2, computed with the following word

embeddings: NILC word2vec-CBOW (300-sized), NILC GloVe (300-sized), fastText.cc [29],
Numberbatch [36], and PT-LKB [37] (5).

• Cosine of TF-IDF-weighted averaged token vectors, computed with the previous word embeddings (5).
• Cosine of TF-IDF-weighted token vectors (1).
• Absolute difference of used adverbs, computed with the NLPyPort’s PoS tagger (1).
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• Jaccard coefficient computed between the triples of syntactic dependency relations, obtained with
spaCy’s (https://spacy.io) dependency parser (1).

These features are also summarized in Table 7. We note that most models of static word
embeddings tested in Section 4.2 were in the set of 64. BERT contextual embeddings, on the other
hand, were not included, due to the large memory requirements of these models. What is curious
to see is that, even though fastText was one of worst-performing methods back then, it was selected,
possibly due to its complementary nature.

Table 7. Features in the reduced set.

Lexical Features (15)

Metric Tokens Characters

Jaccard 1-grams 2-grams, 3-grams, 4-grams
Overlap 1-grams, 2-grams 2-grams, 3-grams, 4-grams

Dice 1-grams, 2-grams 2-grams, 3-grams, 4-grams
TF-IDF 1-grams

Syntactic features (2)

Metric Description

Jaccard Triples of syntactic dependencies
Difference Adverbs

Distributional Semantic features (10)

Cosine(token vectors) Models

Average word2vec-CBOW, GloVe, fastText.cc, Numberbatch, PT-LKB
TF-IDF weighted word2vec-CBOW, GloVe, fastText.cc, Numberbatch, PT-LKB

With this feature set, we explored different regression algorithms available in scikit-learn.
They were trained in the remaining training pairs of ASSIN and ASSIN-2 (90%, after removing
the 10% used for feature selection), and tested in each of the three test collections available. In those
experiments, a Support Vector Regressor (SVR) and a Random Forest Regressor (RFR), both using
default parameters, stood out, with comparable results. However, we decided to stick with the SVR
because we had already used it in our previous work, with both ASSIN [38] and AIA-BDE [8].

5.2. Further Reducing the Size of the Model

Even though we were able to reduce the feature set considerably with RFE, we had an intuition
that this set could be further reduced. Our intuition mainly relied on the fact that the reduced set
includes five models of word embeddings that, although learned with different algorithms, should be
somehow overlapping. Moreover, we would like to analyze whether we could get rid of two features
that require the use of two external libraries, namely the syntactic dependencies, which require spaCy,
and the adverbs, which require NLPyPort. Those features do not only increase the complexity of the
model, but also of Amaia’s installation, which will depend on additional software packages. In fact,
even though the STS model only requires the dependency parsing and PoS tagging, in order to compute
such features, those external libraries end up making additional analysis that takes time, with no direct
benefits for the model.

We thus decided to test the impact of removing the aforementioned features from the
27-feature model. However, before this, we analyzed the impact of reducing the size of the
largest word embeddings, namely word2vec-CBOW, GloVe, and fastText.cc. This had in mind
that, in the embeddings matrix, words of the vocabulary are ordered according to their frequency,
i.e., most frequent words are in the initial lines and the final lines include rare words, frequently
typos. Thus, what we did was to remove everything except the first 300,000 lines of each of the
three aforementioned models and repeat the experiments of Section 4.2 with the smaller versions.

https://spacy.io
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The conclusion was that such a reduction did not impact the performance in AIA-BDE. The highest
drop of performance was 0.2 percentual points in fastText.cc, while word2vec-CBOW and GloVe had
exactly the same performance and an increase of 0.1 points in the top-5. Therefore, we decided to start
using the reduced embeddings, thus decreasing the memory required for the STS model.

After that, we moved on to what can be seen as an ablation study. Table 8 shows the performance
of each model when tested on both ASSIN and ASSIN-2 test collections. More precisely, it has the
Pearson correlation (ρ) and the Mean Square Error (MSE) between the automatically-assigned similarity
scores and those in the collection, which is based on human opinions. In the first line, REDUCED-27
corresponds to the model that uses the 27 features, with subsequent lines corresponding to models
where features were manually removed, namely: ADV for the adverbs, DP for dependency parsing,
CBOW for word2vec-CBOW, FT for fastText.cc, NB for Numberbatch, and PTLKB for the PT-LKB
embeddings. Removing a feature based on embeddings, in fact, entails the removal of both features
computed from them, namely, the average embeddings vector and the one weighted with TF-IDF.

Table 8. Performance of the STS model on ASSIN and ASSIN-2 collections, when additional features
are removed.

Configuration ASSIN 1-PTPT ASSIN 1-PTBR ASSIN 2

ρ MSE ρ MSE ρ MSE

REDUCED-27 0.71 0.65 0.71 0.38 0.75 0.54
R/ ADV, DP 0.72 0.65 0.71 0.37 0.73 0.58
R/ ADV 0.72 0.64 0.72 0.37 0.73 0.58
R/ ADV, FT, PTLKB, GloVe, NB 0.71 0.67 0.71 0.39 0.69 0.64
R/ ADV, CBOW, PTLKB, GloVe, NB 0.72 0.66 0.71 0.38 0.71 0.60
R/ ADV, CBOW, FT, GloVe, NB 0.72 0.67 0.70 0.39 0.70 0.62
R/ ADV, CBOW, FT, PTLKB, NB 0.71 0.68 0.71 0.39 0.71 0.61
R/ ADV, CBOW, FT, PTLKB, GloVe 0.71 0.66 0.69 0.40 0.69 0.65
R/ ADV, CBOW, GloVe, NB 0.72 0.66 0.71 0.38 0.73 0.57
R/ ADV, CBOW, GloVe 0.72 0.65 0.71 0.38 0.73 0.57
R/ ADV, DP, CBOW, PTLKB, GloVe, NB 0.72 0.66 0.71 0.38 0.71 0.60
R/ ADV, DP, CBOW, PTLKB, NB 0.72 0.66 0.71 0.38 0.73 0.58
R/ ADV, DP, PTLKB, GloVe, NB 0.72 0.66 0.72 0.37 0.72 0.59
R/ ADV, DP, PTLKB, NB 0.72 0.65 0.72 0.37 0.73 0.59

The REDUCED-27 model achieved the best performance in ASSIN-2 (ρ = 0.75), but not in ASSIN,
where several other models achieved the best Pearson correlation (ρ = 0.72). Performance differences
are not substantial. However, we can say that Numberbatch or PT-LKB embeddings do not contribute
enough to good performance, and when each of them is the only model of embeddings (lines 6 and
8), performance is generally low. Unlike the others, which have been learned from large quantities of
text, these were learned from semantic networks, and thus have lower vocabulary coverage. At the
same time, fastText seems to be essential for a good performance in ASSIN-2. Out of the tested models,
we selected three for comparison in the AIA-BDE corpus, namely those that we see as a having a good
balance between performance and number of used features. None of the selected models uses the
dependencies nor the adverbs feature and all use fastText.

The test in AIA-BDE allows for an analysis of the models behavior in a scenario closer to what we
expect from Amaia, especially when considering the manually-created variations (VIN, VUC, VMT).
As we did in other tables concerning tests in AIA-BDE, Table 9 has the performance of REDUCED-27
and of the selected models when used for matching the original questions and the set of all variations.
It shows that the performance of REDUCED-27 and the selected models are not harmed by the
reduction of features. Even if by a low margin, the best performing model overall uses GloVe instead
of word2vec-CBOW. Its accuracy is 81.3% and 94.1%, respectively, for the first result and for the top-5,
which, though not substantial, is still more than one point higher than the unsupervised approaches,
based on IR (Table 3) and word vectors (Table 5)
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Table 10 has the performance for each variation. The best model overall, in the second row, is also
the best for all variations, except for VMT, where the best performance is by REDUCED-27, with all
the others tied. When looking at the performance in the top-5, the best model is also not always the
same, but differences are low.

Table 9. Proportion of original questions and variations correctly matched with original FAQs (Top1),
in Top-3 and in Top-5 most similar, using the most promising reduced STS models.

Approach Original (855) Variations (4973)
Top1 Top3 Top5 Top1 Top3 Top5

REDUCED-27 99.4 100.0 100.0 80.0 91.4 93.9
R/ ADV, DP, CBOW, PTLKB, NB 98.8 99.6 99.9 81.3 92.0 94.1
R/ ADV, DP, PTLKB, GloVe, NB 99.5 99.9 99.9 78.2 90.2 93.2

R/ ADV, DP, PTLKB, NB 98.8 99.9 99.9 79.3 90.6 93.3

Table 10. Proportion of variations of different types correctly matched with original FAQs (Top1),
in Top-3 and in Top-5 most similar, using different reduced models.

Approach
Variation

VG1 (855) VG2 (855) VIN (2279) VUC (816) VMT (168)
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

REDUCED-27 87.8 95.4 96.8 85.9 94.3 96.4 81.3 93.5 95.7 64.5 79.3 83.8 69.1 87.5 91.1
R/ ADV, DP, CBOW, PTLKB, NB 88.8 95.6 96.5 86.9 94.4 95.9 83.5 93.9 95.8 65.3 81.6 85.4 64.3 85.1 91.7
R/ ADV, DP, PTLKB, GloVe, NB 84.6 93.6 95.6 82.0 91.9 94.7 82.3 93.3 95.9 58.8 77.5 82.7 64.3 83.3 87.5

R/ ADV, DP, PTLKB, NB 85.4 93.5 95.4 82.8 92.3 94.5 82.4 93.4 95.5 63.9 78.4 83.0 64.3 83.9 91.1

5.3. Combining IR with STS

Even with a reduced model of 19 features, relying on a STS model implies that STS is computed
between each user interaction and all the questions in the agent’s KB. For a large KB, this might result
in higher response times.

In the IR alternative, however, this problem is minimized, due to the index. Therefore, in a
final experimentation, we aimed at combining the IR approach with the STS model. More precisely,
we create an index with the best Whoosh configuration (Stemming + CharsetFilter, see Table 4) and
then, for each user interaction, we use Whoosh for retrieving the 30 most relevant questions in the KB,
and only apply the STS model to the questions in this subset. While this definitely makes the system
more scalable, we had to test whether it could harm performance.

Table 11 has the overall performance of REDUCED-27 and of the best model in the previous
section (Table 9). Surprisingly, when considering only the first result, performance is not at all
harmed. Together with the results of Section 4.1, this supports that traditional IR is already a good
baseline for matching user interactions with questions. Though not always in the first position,
it often includes the best candidate in the top retrieved candidates. Moreover, STS is better for
discriminating the single best candidate out of the top retrieved. On the other hand, considering
the presence in the top-5, performance has a small drop of 0.4 points for the best model and 0.3 for
REDUCED-27. However, given that scalability can be significantly increased with the initial selection
by the IR approach, with a still neglectable loss of performance, we opted for this combination as the
question-matching approach of Amaia.

Table 11. Proportion of original questions and variations correctly matched with original FAQs (Top1),
in Top-3 and in Top-5 most similar, using the most promising STS models only on the Top-30 most
relevant questions, according to Whoosh.

Approach Original (855) Variations (4973)
Top1 Top3 Top5 Top1 Top3 Top5

REDUCED-27 96.5 98.5 98.6 80.7 91.1 93.6
R/ ADV, DP, CBOW, PTLKB, NB 98.5 99.9 99.9 81.4 91.7 93.7
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6. Identifying Out-of-Domain Interactions

A common limitation of IR-based conversational agents is in handling Out-Of-Domain (OOD)
interactions. Though not always required, to give the agent a more human-like behavior, it would
be interesting to have responses for virtually any question. Therefore, to complement Amaia’s
capability of answering entrepreneurship questions (domain), we have compiled the Chitchat
corpus (see Section 3.2), to be used instead of AIA-BDE, when OOD interactions are identified.

In order to identify OOD interactions and decide whether to search for matching questions in the
AIA-BDE or in the Chitchat corpus, a text classifier was trained with all 855 original questions of AIA-BDE
(domain) and the same amount of randomly selected interactions from the original Subtle corpus (OOD),
for balancing reasons. The Chitchat corpus was not used directly for being too small to provide both
training and test data. The performance of the classifier was computed for the classification of OOD
interactions in four test sets, each one with all the available variations of each type, namely VG1, VG2,
VIN, and VUC. A new random selection of 855 questions from the Subtle corpus was added to each
test set. This selection was the same for the four datasets. For an overall performance, a fifth dataset
contained all of the 4805 question variations (except VMT, which were not available at the moment),
and the same number of randomly selected OOD interactions, again obtained from Subtle.

Three classification algorithms available in the scikit-learn library were tested for this, namely a
Linear SVM, a Random Forest classifier (RF) and a Naïve Bayes (NB) classifier, all used with default
parameters. For all, questions were represented by their TF-IDF-weighted vectors. Table 12 shows the
performance of each classifier, measured with the precision, recall and F1-score of correctly identifying
OOD interactions.

Table 12. Performance of different algorithms, when classifying out-of-domain interactions against
question variations of different types.

Method VG1 VG2 VUC VIN All
P R F1 P R F1 P R F1 P R F1 P R F1

SVM 96% 93% 95% 96% 93% 92% 95% 93% 94% 92% 93% 93% 96% 86% 91%
NB 95% 88% 92% 95% 88% 92% 96% 88% 92% 91% 88% 90% 96% 80% 87%
RF 97% 96% 96% 97% 96% 96% 95% 96% 96% 95% 78% 86% 95% 79% 86%

Results show that the performance of the classifiers in this task is positive. This happens
mostly due to the significant differences between the questions in AIA-BDE and in Subtle
(see, e.g., Tables 1 and 2). Nevertheless, performance is slightly lower for the VIN and VUC variations,
created manually, than for VG1 and VG2, which have more similarities with the original questions.
In any case, the SVM classifier performed better than the other two, with a precision of 96% and a
recall of 86% overall. This still means that 14 out of 100 OOD interactions will be incorrectly classified,
i.e., will be considered domain questions, and thus their response will be retrieved from AIA-BDE.
This should not harm the system too much—at least not as much as the 4 out of each 100 interactions
that will be incorrectly classified as OOD. Given that this is a binary classification problem, this means
that such interactions were domain questions and that, unless they are rephrased, users will never get
their answer. This is why we decided to use the SVM classifier for classifying OOD interactions but,
at the same time, included a flag that enables the programmer to turn it off easily.

7. Amaia: A Portuguese Conversational System

Amaia is a Portuguese conversational agent that results from the combination of the previous
components. Besides the two corpora (AIA-BDE and Chitchat) used, each indexed in a different
Whoosh index, it includes a reduced version of the SVR model for STS, and a SVM classifier of
OOD interactions.

In order to get a suitable response R, any interaction I with Amaia goes through the workflow in
Algorithm 1. Two parameters are configurable, namely the maximum number of returned questions and
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answers (n) and a threshold for including a question that is similar to top (θ). We empirically set these
parameters to n = 3 and θ = 0.1, but, depending on the desired behavior, they can be changed when
launching Amaia. The same happens for other options. For instance, handling OOD interactions may be
turned off, which makes Amaia always search for the most similar domain question. Whoosh may also
be turned off, which implies that the STS model is used for computing STS against all questions in the
KB, and not just a subset. This may also be the option for those cases when Whoosh does not retrieve
any question for an interaction. However, currently, in this case, Amaia just gives the default response:
“Desculpe, não percebi, pode colocar a sua questão de outra forma?’ (I’m sorry, I didn’t understand,
could you rephrase your question?). While it is unlikely to happen with the current configuration (In a
Whoosh index of AIA-BDE with the configuration selected in Section 4.1, this happens for four out of
the 4973 variations), this behavior works as a fallback mechanism.

The algorithm is complemented with the diagram in Figure 1, which shows the different paths
taken by interactions, depending on their classification as OOD or domain, then resulting in different
responses. Depending on the classification, a different retriever is used. Moreover, before returning a
response, domain interactions are re-ranked according to the STS model.

Algorithm 1: Amaia’s workflow.
Given an interaction I, use the classifier to label it as OOD or domain;
if I is labelled as OOD then

Search for I in a Whoosh index of the Chitchat corpus;
Use the response of the first retrieved interaction as R;

else
Search for I in a Whoosh index of AIA-BDE;
Get the top-30 questions retrieved;
Compute the STS with each of those questions;
Build R with the following template: “Se a sua pergunta foi: <P> R: <R>” (“If your question was <P> R:

<R>”), with <P> replaced by the question and <R> replaced by its answer;
For each additional retrieved questions in the top-n for which the difference of the STS is only θ lower than the

best, concatenate the following text to R: “Também poderá estar interessado em: <P> R: <R>” (“You may
also be interested in <P> R: <R>”)

end
Give R as the answer.

As it is, Amaia can be easily integrated in Slack (https://slack.com/) or any other communication
platform with an API that allows for the integration of bots. Figure 2 is a brief real conversation
with Amaia that illustrates its capabilities. We highlight how it switches between domain and
OOD interactions.

OOD
Classifier

Chitchat
Retriever

Chitchat

Domain
Retriever

AIA-BDE

STS
Model

Interaction OOD OOD response

domain

top-30 Domain response

Amaia

Figure 1. Amaia’s workflow.

https://slack.com/
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Figure 2. A conversation with Amaia.

The user starts by greeting Amaia (‘Good evening’) and Amaia says hello, meaning that the
interaction was correctly labeled as OOD. In the second interaction, the user asks what Amaia can do
to help them, which is again answered with a question in the Chitchat corpus, this time a personal
question where Amaia describes its goal. After this, the user asks several domain questions, for which
Amaia provides good answers. For the third question (a quem tenho de pedir autorização...), the best
answer is not the first given, but the second, which supports our option for returning also questions
with a close STS. For the fourth question (e o RNAL é mesmo necessário?), Amaia’s answer is simply
“Sim” (Yes). This happens to be a good answer, but only by chance. In fact, the interaction was labeled
as OOD. When, in the fifth question, the acronym RNAL is replaced by its full version, the correct
answer is given, in the first position. In the final interactions, the user thanks Amaia and says goodbye,
with Amaia giving suitable responses (roughly, ‘You’re welcome’ and ‘Goodbye’).

8. Conclusions

We have described the steps towards the development of Amaia, a conversational agent for
helping Portuguese entrepreneurs. After presenting AIA-BDE, the corpus used both as Amaia’s
KB and as our benchmark, we make an extensive comparison of approaches for matching user
requests with existing questions. Those included IR-based approaches, unsupervised STS approaches,
and supervised STS models. In the end, we combined the STS model with reduced features, which had
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achieved the best performance, but only apply it to a subset of the available questions, pre-selected
with the best IR-approach. Furthermore, we presented how Amaia uses a text classifier for labeling
interactions as domain or OOD, and thus either look for matching questions in AIA-BDE or in a
chitchat corpus. Having responses for OOD interactions gives Amaia a more human-like behavior,
even if the same interaction has always the same response.

For more variation in the answers, in the future, we may improve how OOD interactions are
handled. While learning a generative model could have a negative impact on coherence, we may
always define different possible answers for the same question. Moreover, we aim to study how
an agent like Amaia may deal with context, and thus avoid giving the same answer several times,
while also increasing its performance. This should involve some kind of history, or memory that is
updated with each interaction.

The current version of Amaia can be easily integrated in communication platforms, like Slack.
In the future, its KB will be increased with more FAQs, which, given our previous options, should not
pose challenges on scalability. New FAQs will come from new lists and, ideally, some will be generated
automatically, either from structured documents, or from raw text. However, the latter poses a difficult
challenge due to the complex language used in most documents we have so far looked at, so additional
work is required.

We can say that interesting results were achieved, but there is still much room for improving
accuracy. Several improvements may come from alternative ways of combining all the features
and/or approaches tested here. For instance, we have not tested promising approaches for STS,
namely those based on fine-tuning Transformer neural networks like BERT, which recently achieved
high performances for Portuguese [39,40]. Thus far, we just used pre-trained BERT models directly.
We also aim to test different combinations of approaches in a voting system, to see whether it is capable
of outperforming supervised STS models or not. Finally, some of the approaches could possibly
benefit from considering the answers, when matching questions. However, from our preliminary
experiments, some of the answers in AIA-BDE are too large and thus an additional source of noise that
harms performance.
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