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Abstract: Two robots and a bike are initially placed at the origin of an infinite line. The robots are
modelled as autonomous mobile agents whose communication capabilities are either in the wireless
or face-to-face model, while the bike neither can move nor communicate on its own. Thus, the bike is
not autonomous but rather requires one of the robots to ride it. An exit is placed on the line at distance
d from the origin; the distance and direction of the exit from the origin is unknown to the robots. Only
one robot may ride the bike at a time and the goal is to evacuate from the exit in the minimum time
possible as measured by the time it takes the last robot to exit. The robots can maintain a constant
walking speed of 1, but when riding the bike they can maintain a constant speed v > 1 (same for
both robots). We develop algorithms for the evacuation of the two robots from the unknown exit and
analyze the evacuation time defined as the time it takes the second robot to evacuate. In the wireless
model we present three algorithms: in the first the robots move in opposite direction with max speed,
in the second with a specially selected “optimal” speed, and in the third the robot imitates the biker
(i.e., robot riding the bike). We also give three algorithms in the Face-to-Face model: in the first
algorithm the robot pursues the biker, in the second the robot and the biker use zig-zag algorithms
with specially chosen expansion factors, and the third algorithm establishes a sequence of specially
constructed meeting points near the exit. In either case, the optimality of these algorithms depends
on v > 1. We also discuss lower bounds.

Keywords: arrival time; bike; evacuation; line; robots; search; speed; optimal trajectory

1. Introduction

Recent years have witnessed an explosive growth of research studies on search from
the perspective of mobile agent computing. One of the reasons is because one finds
countless natural applications of search and exploration in distributed systems in order
to facilitate information exchange between communicating entities. Moreover, there are
also applications in numerous other computing areas such as data mining, web crawlers,
monitoring and surveillance, just to mention a few.

Evacuation, which is the main theme of our present investigation, is related to search
in that one is also interested in searching and exploring a domain in order to find a target.
However evacuation usually involves many cooperating entities forming an ensemble
or group all of whose members are searching simultaneously by exchanging information
(according to a predefined communication model); and unlike search which typically
involves only one agent, it is aiming to optimize the arrival time of the last entity in the
ensemble. There are many factors that affect how linear search and evacuation problems
are solved. Let us assume that the exit is located on a line at a distance d from the origin
where the robot starts. The orientation represents the direction that the robot must proceed
to reach the exit. The simplest case would be if a robot moving with unit speed knows
the distance and the orientation and can thus reach the exit in time d. In this case, the
competitive ratio will be the time needed by the robot to reach the exit, which is d, divided
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by the time needed by the adversary to head to the exit directly, which is d as well. Thus
the competitive ratio will be 1. A more complicated case would be if the distance is known
and the orientation is not known. As a worst case scenario, it may take the robot 3d to find
the exit since the robot may move d in the wrong direction and thus it will need to switch
the direction and move back 2d to reach the exit. The competitive ratio in this case is 3. The
problem is even more complicated if both the distance and the orientation are not known.
The robot starts at the origin and can move with speed 1. The robot needs to explore both
directions in order to find the exit. The best way to achieve this goal is to select a direction
and move distance 1. If the exit is not found, the robot will reverse direction and move
double the previous distance up until the exit is found. The movement, which is repeated
periodically, and which uses a sequence of positive distances that specifies the turning
points, is called the Zig-Zag search algorithm. The competitive ratio for the Zig-Zag search
algorithm is known to be 9 [1]. Most of the linear search and evacuation problems in the
literature were studied using single or multiple robots. Introducing a tool such as a bike to
aid the robots was not considered before in any previous work. The study of this paper is
based on a new paradigm concerning two robots (also called hikers) aided by a bike and
searching for an unknown exit placed somewhere on an infinite line. More specifically, in
the “bike assisted evacuation” problem, the hikers and the bike all start at the origin and
want to evacuate from an exit placed at an unknown distance and direction (either left or
right from the origin) on the infinite line. Evacuation means that eventually both robots
must find the exit by reaching its exact location (not necessarily at the same time) on the
infinite line. The quality of an evacuation algorithm is measured by the time it takes the
second hiker to find the exit, which is also referred to as evacuation time of the ensemble.

1.1. Model and Notation

To analyze the problem proposed, first we describe details concerning mobility and
communication of the hikers and describe the role that the bike will play in improving the
overall evacuation time.

Mobility and Trajectories.The infinite line is the search domain. It is bidirectional in
that the hikers can move in either direction without this affecting their speeds. The hikers
can stop at any time and wait as long as they wish, can walk with maximum speed 1 or
may ride the bike with speed v > 1. An evacuation algorithm is a complete description
of the trajectories traced by the two hikers either waiting, walking or riding the bike until
they both find the exit. Throughout this paper we are interested in evacuation algorithms.

Sharing the bike. An interesting feature of our problem is the distinction between
the hikers and the bike. On the one hand, the hikers are autonomous mobile agents that
can move around on their own with speed 1 and communicate with each other. On the
other hand, the bike is not autonomous and cannot move and/or communicate on its own
and thus plays only the role of assistant in the search. The hiker using the bike has an
advantage in that it can move with speed v > 1 which is of course faster than its walking
speed 1. However, in our model the bike is also a limited resource in that it can be used by
only one hiker at a time. This creates an interesting trade off for the evacuation time. The
hikers would want to ride the bike to find the exit earlier. However, if the bike is not shared
the evacuation time may get worse as the hiker not using the bike may worsen the overall
evacuation time. This also implies that the hiker riding the bike has an advantage in sharing
the bike with the other hiker as this will ultimately improve the overall evacuation time.

Bike Switching. An important aspect in our algorithms will be “bike switching”,
by which we mean changing the rider of the bike. We will assume throughout the paper
that bike switching between hikers is instantaneous and at no time cost. Note that the
hikers may recognize the presence of the bike when they are at the same location as the
bike. From now on, to facilitate our discussions we will refer to the hiker riding the bike as
the biker, which may be either of the two hikers.

Communication. A designated point on the infinite line is the exit and can be
recognized as such by any of the hikers when they are at the same location as the exit.
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The hikers may communicate throughout the execution of the algorithms. Two types of
communication will be studied, namely wireless (also known as wifi) and face-to-face. In
the former, the hikers can communicate instantaneously and at any distance, while in the
latter only when they are at the same location and at the same time. The fact that a hiker
is riding the bike does not diminish its ability to communicate. A typical communication
exchange may involve, e.g., “exit is found”, “bike released”, “switch bike”, etc. Note that
the hikers are endowed with pedometers and have computing abilities so that they can
deduce the location of the other hiker and/or the bike from relevant communications
exchanged and/or the protocols they execute.

Notation. Throughout the paper we will be using R1 and R2 to denote the two hikers
and B to denote the bike. The hikers are equipped with pedometers and are identical in
all their capabilities (locomotion and communication) and the subscripts i = 1, 2 in Ri do
not imply that the hikers have identifiers. The origin of the real line will be at the point
x = 0 on the x-axis and this will also be the starting location of the hikers and the bike.
The adversary may place the exit at either of the points ±d, where d > 0 will denote the
unknown distance of the exit from the origin. In addition, v > 1 will denote the speed that
a biker can attain when riding the bike.

1.2. Related Work

The continuous infinite line is a widely-used search domain. It is in this particular
domain that the first search problems in the literature were proposed in the seminal
papers [2,3] with a focus on stochastic search models and their analysis. Influential research
for deterministic search by a single robot in the infinite line was developed in the work of [1]
by proving that searching for a target has competitive ratio equal to 9, and for randomized
search on the star graph by [4].

Evacuation is a form of group search in which the robots need to cooperate so that
they all find the exit. It arises as a natural problem on the infinite line for the case of
robots with faults (crash and/or Byzantine). The two important papers are [5] for robots
with crash faults and [6] for robots with Byzantine faults. The study of evacuation in
distributed computing for a unit disk is also related and was initiated in the paper [7] for
both the wireless and face-to-face models. The reader can find additional related work on
the continuous search domain in the survey paper [8].

The addition of an immobile token to aid in the exploration has been considered in
the context of the rendezvous problem on a ring [9]. An extension of this work to mobile
tokens can be found in [10]. In both of these papers the token is passive and is merely being
used as a marker for the presence of the most recent “visit” of another agent. Similarly,
in [11] the authors consider searching for a non-adversarial, uncooperative agent, called
bus, which is moving with constant speed along the perimeter of a cycle. A different related
model was investigated in [12] in which during search a robot can encounter a point or a
sequence of points enabling faster and faster movement and the main goal is to adopt the
route which allows a robot to reach the destination as quickly as possible.

Two related papers are [13] and its followup journal version [14]. In the former paper
the authors introduce evacuation on an infinite line in the F2F model for two robots having
max speed 1 and prove that 9 is a tight bound for evacuation. In the followup paper [14]
tight bounds are shown for two robots with different speeds in the F2F model. In their
model the robots can vary their speed between the min and max value. However, unlike
our model, the slower robot is never able to move at the speed of the faster robot. As
a consequence in our model a “shared” bike has the effect of averaging the speeds and
improving the overall evacuation time of the ensemble. The main idea considered in the
present paper of bike assisted evacuation modelled as a passive agent that can enhance the
robots’ evacuation time has not been considered in the relevant literature on search and
evacuation before. (The present study is revised and updated from the first author’s MCS
Thesis [15]. A preliminary study without proofs in [16]).
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It is also worth mentioning a different line of research that has evolved in recent
years, concerning bike sharing systems in complementing traditional public transporta-
tion to reduce traffic congestion and mitigate atmospheric pollution. As a consequence
bike-sharing has grown explosively everywhere [17]. This has led to extensive technical
literature on different aspects of the performance of bike based transportation systems. For
example, Ref. [18] addresses uncertainty in resource availability, Ref. [19] considers bike
utilization conflict, Ref. [20] studies system balance maintainance, Ref. [21] investigates the
efficient operation of shared mobility systems, Ref. [22] studies balancing, and [23] pro-
poses a spatio-temporal bicycle mobility model. Finally we mention the recent paper [24]
which gives a polynomial time algorithm for the Bike Sharing problem that produces an
arrival-time optimal schedule for bikers to travel across the interval.

1.3. Outline and Results of the Paper

Our main results in the Wireless model are presented in Section 3. We give three
algorithms: in the first the robots move in opposite direction with max speed, in the second
with a specially selected “optimal” speed, and in the third the hiker imitates the biker.
Results on the Face-to-Face model are presented in Section 4. We give three algorithms: in
the first algorithm the hiker pursues the biker, in the second the hiker and the biker use
zig-zag algorithms with specially chosen expansion factors, and in the third the algorithm
establishes a sequence of specially constructed meeting points near the exit. In either
communication model we conclude that the optimal algorithm depends on the speed v of
the bike which we also determine. Details of the results are in Table 1.

Table 1. Main algorithms presented in the paper in the WiFi (top three) and Face-to-Face (F2F)
(bottom three) models, the theorem where the analysis, and their corresponding evacuation time as a
function of the bike’s speed v, where v > 1.

Algorithm Theorem Evacuation Time

Algorithm 2 (WiFi) Theorem 1 max
{

2d + d
v , 2d

v + d
2 + d

2v2

}
Algorithm 3 (WiFi) Theorem 2 3d + 3vd + d

√
v2 + 26v + 9

4v

Algorithm 4 (WiFi) Theorem 3 9d
v + d

2 −
d

2v2

Algorithm 5 (F2F) Theorem 4 9d
v + d− 5d

8v2

Algorithm 6 (F2F) Theorem 5 3dv3 + 63dv2 + 15dv − 9d
2v2(3v + 1)

Algorithm 7 (F2F) Theorem 6 3d− 5v2 − 12v − 1
2v(v − 1) d + 5v2 − 12v − 1

v(v − 1)(3v − 1) d if 1 < v ≤ 6 +
√

41
5

3d− 5v2 − 12v − 1
2v(v − 1) d + 4(5v2 − 12v − 1)

v(v − 1)(3v − 1) d if 6 +
√

41
5 ≤ v

We also establish lower bounds in Section 5. The competitive ratio of the algorithms
can be given by dividing by v+1

2v d, where d is the distance of the exit from the origin
(see Theorem 7). The main motivation of our current study on robot evacuation from an
unknown target is to better understand the effect that communication models (F2F and
Wireless) have on search and evacuation time for an autonomous mobile agent which is
aided by another mobile agent (bike) which has limited mobility capabilities.

2. Preliminaries

In this section we remind the reader that the competitive ratio for the Zig-Zag search
algorithm is known to be at most 9. A canonical Zig-Zag search algorithm is defined as
follows (Algorithm 1):
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Algorithm 1: Zig-Zag Algorithm

Consider X as infinite sequence of distances 20,21,...;
for i← 0 to ∞ do

if i is odd(resp.even) then
Move right (resp. left) a distance 2k unless the exit is found;
if exit is found then

Quit search
end
Turn; then move left (resp. right), return to origin

end
end

The competitive ratio for Algorithm 1 is calculated as follows:
Every time the robot changes direction and moves twice the previous distance. Thus,

if the exit is at distance d, then 2k < d ≤ 2k+2 for some k. Hence the search time T will be
calculated as follows:

T = 2 · 1 + 2 · 2 + · · ·+ 2 · 2k+1 + d

= 2 · (2k+2 − 1) + d = 23 · 2k − 2 + d ≤ 8d + d = 9d

Thus, the competitive ratio of this algorithm is 9d
d = 9. The lower bound proof can be

found in [1].

3. Evacuation in the Wireless (WiFi) Model

In this section we provide our main algorithms in the wireless communication model.
In this model the two hikers can communicate instantaneously at any distance. Three algo-
rithms will be considered and analyzed their evacuation time depends on the maximum
speed v of the biker.

3.1. Opposite Direction with Max Speed

In Algorithm 2, the hiker and the biker move in opposite directions with their max-
imum speed, assuming that the biker moves with speed v. The one which finds the exit
first will communicate with the other to proceed to the exit. Moreover, if it is the biker that
found the exit first it returns the bike to a suitable position and shares it with the hiker.
Details of the algorithm are as follows.

Algorithm 2: (OppDirectionWithMaxSpeedWiFi)
The hiker and the biker move in opposite directions.The one that finds the exit

first communicates it to the other;
if the hiker found the exit first then

the biker moves to the exit at full speed;
end
else if the biker found the exit first then

it returns and drops the bike off to an appropriately chosen position x and
shares the bike with the hiker;

end
Stop when they both arrive at the exit;

Theorem 1. The evacuation time for Algorithm 2 in the WiFi model is at most 2d + d
v .

Proof of Theorem 1. Without loss of generality assume the hiker moves in the leftward
and the biker in the rightward direction both starting from the origin. There are two cases
to consider depending on whether the hiker or the biker finds the exit first.
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Case 1: The exit is found by the biker.

When the biker finds the exit, which is at distance d from the origin, it has spent time
d
v . The biker will communicate with the hiker, to come to the exit. Since the exit is found
by the biker first, the biker can help the hiker by returning and dropping off the bike at
some distance x away from the exit such that the hiker can pick it up and arrive to the exit
at the same time as the other robot. It is easy to see that to find the distance x where the
bike is dropped off, we need to solve the equation x

v + x = d + d
v − x + x

v . This leads to
the solution x = d

2 + d
2v . Hence the hiker which is at distance d

v when the biker reaches the
exit, will need d

v to reach the origin, in addition to d− x + x
v = d

2 + d
2v2 to reach the exit.

Therefore, the evacuation time will be 2d
v + d

2 + d
2v2 .

Case 2: The exit is found by the hiker.

When the hiker finds the exit which is at distance d to the left of the origin, the biker
will be at distance dv to the right of the origin. The hiker will communicate with the biker
to come to the exit. The biker turns back and goes to the exit which takes additional time
d + d

v . It follows that the evacuation time in this case will be d + d + d
v = 2d + d

v .
Therefore, by combining the two cases above, we conclude that the evacuation

time for this algorithm will be max
{

2d + d
v , 2d

v + d
2 + d

2v2

}
. This completes the proof of

Theorem 1.

3.2. Opposite Direction with Optimal Speed

Unlike Algorithm 2 in which the hiker and biker use their maximum speed, in the
next Algorithm 3 the biker will not use its maximum speed v. Instead it will move with
a specially chosen speed u which is less than v. The hiker or the biker which finds the
exit first will communicate with the other which will then move towards the exit with
its maximum speed. It turns out that the modified algorithm performs better than the
previous one and it is optimal up to a certain maximum speed v. Assuming that R1 is the
hiker and R2 is the biker, the algorithm will be as follows.

Algorithm 3: (OppDirectionWithOptimalSpeedWiFi)

R1 moves left with unit speed;
R2 moves right with speed u = 1

4 (−v− 1 +
√

v2 + 26v + 9);
if R1 reaches the exit then

Inform R2 about the location of the exit;
R2 moves toward the exit with its maximum speed v;

end
else if R2 reaches the exit then

Inform R1 about the location of the exit;
Drop-off the bike at distance d

2 + d
2u ;

R2 heads back toward the exit;
R1 reverses the direction back to the exit then picks up the bike and moves to
the exit with maximum speed v;

end

Theorem 2. The evacuation time for Algorithm 3 using the WiFi model is at most
3d + 3vd + d

√
v2 + 26v + 9

4v .

Proof of Theorem 2. Assume that R1 which is the hiker moves in the leftward direction
and R2, which is the biker, moves in the rightward direction. There are two cases to
consider depending on who reaches the exit first.

Case 1: Hiker reaches the exit first.
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The time needed by R1 to reach the exit is d. At this point R2 will be at distance du
away from the origin since it is moving with speed u. As mentioned in the algorithm, R2
will use its maximum speed v on the way back. Thus, it needs du

v to reach the origin and it
will need additional time d

v to join R1 and reach the exit. Therefore, the evacuation time in
this case will be

T1 = d +
du
v

+
d
v
=

dv + du + d
v

Case 2: Biker reaches the exit first.

The time needed by R2 to reach the exit is d
u . As soon as R2 reaches the exit, it will

inform R1 immediately. At this point in time, R1 will be at distance d
u on the other side of

the origin since it is moving with unit speed. R2 will go back distance x to drop off the bike
for R1. The key point to find x is to have R2 drop off the bike in a way that R1 can pick
it up and arrive at the same time as R2. We know from Algorithm 2 that R2 will not use
its maximum speed and will move with speed u only until it reaches the exit. The only
reason for not using its maximum speed before reaching the exit is to avoid having R1 and
R2 farther apart from each other since this will increase the overall evacuation time. Thus
when R2 goes back to drop off the bike, it will use its maximum speed v. Based on that we
have the following equation.

x +
x
v
= d +

d
u
− x +

x
v

whose solution is x = d
2 + d

2u . Substituting x in order to calculate the evacuation time
T2 yields:

T2 =
d
u
+ x +

x
v

=
d
u
+

d
2
+

d
2u

+
d

2v
+

d
2uv

=
2dv + duv + dv + du + d

2uv

=
3dv + du + duv + d

2uv

In order to find the best evacuation time, we need to find the best value of u which
makes the maximum of T1 and T2 minimized given that 1 ≤ u ≤ v. This means that the
objective is to minimize the following quantity

max{T2, T2} = max
{

dv + du + d
v

,
3dv + du + duv + d

2uv

}
(1)

In order to find the solution for (1), we determine the point of intersection of the
evacuation time plots for T1 and T2. This will give the following:

u + v + 1
v

=
3v + u + uv + 1

2uv
=⇒ 2u2v + 2uv2 + 2uv = 3v2 + uv + uv2 + v

=⇒ 2u2v + (v2 + v)u− 3v2 − v = 0

The last equation will have two roots, and choosing the positive one gives the follow-
ing solution for u:



Information 2021, 12, 28 8 of 20

u =
1

4v
(−v2 − v +

√
v4 + 2v3 + v2 − 8v(−3v2 − v)))

=
1

4v
(−v2 − v +

√
v4 + 2v3 + v2 + 24v3 + 8v2)

=
1

4v
(−v2 − v +

√
v4 + 26v3 + 9v2)

=
1
4
(−v− 1 +

√
v2 + 26v + 9)

In order to get the evacuation time T, we can substitute u in T1 or T2, we get the
following:

T =
dv + du + d

v

=
1
v
(dv +

−dv− d + d
√

v2 + 26v + 9
4

+ d)

=
4dv− dv− d + d

√
v2 + 26v + 9 + 4d

4v

=
3d + 3dv + d

√
v2 + 26v + 9

4v
.

This completes the proof of Theorem 2.

3.3. Slower Imitates Faster

In the next Algorithm 4 the robots perform a “doubling zig-zag” strategy with different
parameters. The biker is using a doubling strategy to search for the exit and moves a
distance 2k during the k-th iteration. The hiker is also using a doubling strategy but since it
is moving with unit speed it will try to stay as close as possible to the biker. This can be
achieved by having the hiker move a distance 2k

v during the k-th iteration, since moving
any further will cause the hiker to be farther away from the biker during the (k + 1)-st
iteration. Assuming that robot R1 is the biker and robot R2 is the hiker, the algorithm will
be as follows.

Algorithm 4: (SlowerImitateFasterWiFi)

for k← 1 to ∞ do
if k is odd (resp.even) then

R1 moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2k

v ;
if exit is found by R1 then

Communicate with R2;
R1 moves back d

2 −
d

2v to leave the bike for R2 and then returns to exit;
R2 continues toward the exit after picking up the bike left by R1;
Quit;

end
R1 turns; then moves left (resp. right), returns to the origin;
R2 turns; then moves left (resp. right), returns to the origin;

end
end

Theorem 3. The evacuation time for Algorithm 4 using the WiFi model is at most 9d
v + d

2 −
d

2v2 .
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Proof of Theorem 3. In this algorithm the biker uses a doubling strategy with maximum
speed v. The hiker will follow the biker but will move 2k

v in each iteration instead of 2k.
The biker will reach the exit first then will communicate with the hiker to proceed to the
exit. The biker will go back distance d

2 −
d

2v to drop off the bike so that the hiker can pick it
up on its way to the exit. We will justify why biker R1 needs to move d

2 −
d

2v after reaching
the exit to leave the bike for hiker R2.

After biker R1 reaches the exit, there is no benefit to stay at the exit with the bike since
hiker R2 which is moving with unit speed can benefit from the bike to reach the exit faster.
The key to find the distance x which is the distance between the exit and the point where
the bike is dropped off is to have biker R1, drop it off at a point such that when it goes back
to the exit it will reach the exit at the same time as hiker R2. If we consider that d is the
distance from the origin to the exit and x is the distance from the exit to the point where
biker R1 drops off the bike, then we have d− x + x

v = d
v + x

v + x which leads to x = d
2 −

d
2v .

This will guarantee that when the biker drops off the bike at distance x, it will reach the exit
at the same time as the hiker. Hence we guarantee that the bike is not kept unnecessarily
with the robot which reaches the exit first.

Assume that the exit is found during the kth iteration, then 2k−2 < d ≤ 2k. We can
calculate the evacuation time as follows:

T =
2 · 20

v
+

2 · 21

v
+ · · ·+ 2 · 2k−1

v
+ d− x +

x
v

=
2(2k − 1)

v
+ d− x +

x
v

=
2k+1

v
− 2

v
+ d− d

2
+

d
2v

+
d

2v
− d

2v2

=
2k+1

v
− 2

v
+

d
2
+

d
v
− d

2v2

≤ 23.
2k−2

v
− 2

v
+

d
2
+

d
v
− d

2v2

≤ 8d
v
− 2

v
+

d
2
+

d
v
− d

2v2

≤ 9d
v

+
d
2
− d

2v2 −
2
v

≤ 9d
v

+
d
2
− d

2v2

This completes the proof of Theorem 3.

Figure 1 depicts and compares the performance of the three algorithms presented for
the WiFi model.
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Figure 1. Graph for the three algorithms using the wi-fi model. On high speed, the evacuation time
for Algorithm 4 converges to d

2 versus 2d and d for Algorithms 2 and 3, respectively.

4. Evacuation in the Face-to-Face (F2F) Model

In this section we provide our main algorithms in the face-to-face communication
model. Recall that in this model the hikers can exchange messages only if they occupy the
same location at the same time.

4.1. Slower Pursues Faster

In the first Algorithm 5, we assume that the hiker will follow the biker. Since the biker
is using a “doubling zig-zag” strategy, during any iteration, let us say the k-th one, the
biker will reverse the direction after reaching 2k and will meet the hiker at some point Xk.
At the meeting point the hiker will reverse its direction. We notice from this that the hiker is
following a deterministic strategy specified through a sequence of points X1, X2, . . . , Xk, . . .
(to be defined later), where each Xk represents the meeting point for the hiker and the biker
during the k-th iteration. In other words, the biker will follow a doubling strategy with
factor 2k while the hiker will follow the sequence X1, X2, . . . , Xk, . . . above. When the biker
reaches the exit, it will go back a certain distance x, which will be determined later, to drop
off the bike and then will return back walking toward the exit.

In the algorithm below we use the parameters a := 1 − v
1 + v , b := 1

1 + v . Further, we
assume that R1 is the biker and R2 is the hiker.

Theorem 4. The evacuation time for Algorithm 5 using the F2F model is at most 9d
v + d− 5d

8v2 .

Proof of Theorem 4. In order to find the sequence {X1, X2 . . . Xk}, we argue as follows.
During the 1st iteration, in order to calculate X1, we know that the biker will move 20 to
reach the peak point and then will come back 20 − X1 with speed v to reach point X1 while
the hiker will move X1 with unit speed during the same time. Given that a = 1 − v

1 + v and
b = 1

1 + v , we have the following:

X1 =
20

v
+

20

v
− X1

v
=⇒ X1 =

2
1 + v

= 2 · b
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Algorithm 5: (SlowerPursueFasterF2F)

for k← 1 to ∞ do
if k is odd(resp.even) then

R1 moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2b(2k−ak)
2−a ;

if the exit is found by R1 then
Move back distance x to drop off the bike for R2 then switch direction
toward the exit ;

R2 picks up bike and moves toward the exit;
Quit;

end
R1 turns; then moves left (resp. right), return to origin;
R2 turns; then moves left (resp. right), return to origin;

end
end

During the 2nd iteration we have the following:

X1 + X2 =
1
v
(X1 + 2 + 2− X2)

=⇒ X2 =
4

1 + v
+

1− v
1 + v

· X1 = a · X1 + 22 · b

Since X2 = a · X1 + 22 · b, then for the kth iteration we have:

Xk = a · Xk−1 + 2k · b

Replacing Xk−1 = a · Xk−2 + b · 2k−1 in the above equation gives

Xk = a(a · Xk−2 + b · 2k−1) + 2k · b

Similarly replacing Xk−2 = a · Xk−3 + b · 2k−2 gives

Xk = a3 · Xk−3 + a2 · 2k−2 · b + a · b · 2k−1 + 2k · b

Recursing down to X1 leads to the following calculation:

Xk = b · 2k
(( a

2

)0
+ · · ·+

( a
2

)k−1
)

=
b · 2k(1− ( a

2 )
k)

1− a
2

=
2 · b(2k − ak)

2k(2− a)
· 2k · b

=
2 · b(2k − ak)

2− a

Assume that the exit is found during the kth iteration of the algorithm. Before writing
down the evacuation time, let us find the distance x away from the exit, where the bike
will be dropped off by the biker. We know that the biker and the hiker will meet at each
entry of the sequence and eventually they will meet at Xk−1.

• Define T1 to be the time needed by the biker to go to the exit from the point of
intersection between the the biker and the hiker at Xk−1 then to return distance x to



Information 2021, 12, 28 12 of 20

drop off the bike and subsequently go back to the exit. Thus T1 can be defined as
follows:

T1 =
1
v
(Xk−1 + x + d) + x.

• Define T2 to be the time needed by the hiker to go from the point of intersection
between the hiker and the biker at Xk−1 to the exit while picking up the bike on its
way. Thus T2 can be defined as follows:

T2 = Xk−1 + d− x +
x
v

.

The best thing that the biker can do is to drop off the bike and arrive at the same time
to the exit with the hiker who will pick up the bike on its way. This can be achieved by
having T1 = T2. In turn, this yields

1
v
(Xk−1 + x + d) + x = Xk−1 + d− x +

x
v

=⇒ x =
1
2
(Xk−1 + d)− 1

2v
(d + Xk−1)

Thus, the evacuation time T can be written as follows:

T =
1
v
(2 · 20 + 2 · 21 + · · ·+ 2 · 2k−1) +

d
v
+

x
v
+ x

Replacing the value of x which was calculated above gives:

T =
2
v
(2k − 1)+

d
v
+

d
2v
− d

2v2 +
d
2
− d

2v
+

1
2v

Xk−1 −
1

2v
Xk−1 +

1
2

Xk−1 −
1

2v2 Xk−1

=
2k+1

v
− 2

v
+

d
v
+

d
2
− d

2v2 +

(
1
2
− 1

2v2

)
Xk−1

Now recall that Xk−1 = 2b(2k−1−ak−1)
2−a , where a = 1−v

1+v and b = 1
1+v . Since −1 < a < 0

and 0 < b ≤ 1
2 it is obvious that Xk−1 ≤ 1

2 (2
k−1 + 1) = 2k−2 + 1

2 . Moreover, knowing that
2k−2 < d ≤ 2k, the evacuation time T can be simplified as follows:

T ≤ 2k+1

v
− 2

v
+

d
v
+

d
2
− d

2v2 + (
1
2
− 1

2v2 )(2
k−2 +

1
2
)

≤ 2k+1

v
− 2

v
+

d
v
+

d
2
− d

2v2 + 2k−3 +
1
4
− 2k−2

2v2 −
1

4v2

≤ 8d
v
− 2

v
+

d
v
+

d
2
− d

2v2 +
d
2
+

1
4
− d

8v2 −
1

4v2

≤ 9d
v

+ d− 5d
8v2 −

1
4v2 +

1
4
− 2

v

≤ 9d
v

+ d− 5d
8v2

This completes the proof of Theorem 4.

4.2. Slower Evacuation Close to Exit without Aid

In the second Algorithm 6, the biker uses a “doubling zig-zag” strategy with its
maximum speed v, while the hiker will try to be as close as possible to the biker. In order to
achieve that, the hiker will use a doubling strategy as well but will use its own “expansion”
factor. The factor will be determined based on the fact that both the hiker and the biker
should meet at a specific point during each iteration. These meeting points will form a
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sequence whose k-th element during iteration k is taken to be equal to 2k+2

3v+1 . During the last
iteration, when the biker finds the exit, the hiker will eventually reach the meeting point
and will not find the biker there. This will let it know that it should keep going toward
the exit. Assuming that initially R1 is the biker and R2 is the hiker, the algorithm will be
as follows:

Algorithm 6: (SlowerEvacuationCloseToExitWithoutAidF2F)

for k← 1 to ∞ do
if k is odd (resp.even) then

R1 moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2k+2

3v+1 ;
if k=1 then

R2 waits for R1;
end
if exit is found by R1 then

Move back distance d
2 −

d
2v + 2k(v−1)

v(3v+1) to drop off the bike for R2 then

switch direction toward the exit;
R2 picks up bike and moves toward exit;
Quit;

end
R1turns; then moves left (resp. right), return to origin;
R2 turns; then moves left (resp. right), return to origin;

end
end

Theorem 5. The evacuation time for Algorithm 6 using the F2F model is at most
3dv3 + 63dv2 + 15dv − 9d

2v2(3v + 1) .

Proof of Theorem 5. The biker is using a doubling strategy and is moving 2k during each
iteration k. The hiker will use a doubling strategy as well and it will follow the biker. In
order to keep the hiker as close as possible to the biker, we must find the sequence that the
hiker should follow. We assume that both the hiker and the biker meet at a certain point
Xk and that they are willing to meet at point Xk+1 at the same time without waiting for
one another, taking into consideration that Xk+1 = 2Xk. The sequence can be calculated
as follows:

Xk + Xk+1 =
1
v
(Xk + 2k+1 + 2k+1 − Xk+1)

=⇒ Xk + 2Xk =
1
v
(Xk + 2k+1 + 2k+1 − 2Xk)

=⇒ 3v + 1
v

Xk =
2k+2

v

=⇒ Xk =
2k+2

3v + 1

We have the sequence {X0, X1, . . . , Xk} given that Xk =
2k+2

3v+1 where k ≥ 1. Each of the
hiker and the biker will use its own doubling strategy. During each iteration, they will meet
on both sides at specific points which are elements of the above sequence. During the kth
iteration, when the biker reaches the exit, it will move back distance x to drop off the bike
such that the hiker can pick it up and reach the exit at the same time as itself. The distance
x can be calculated as follows: d

v + 1
v · Xk−1 +

x
v + x = d + Xk−1 − x + x

v . Substituting Xk−1

this becomes d
v + 2k+1

v(3v + 1) +
x
v + x = d + 2k+1

3v + 1 − x + x
v Solving for x, the last equation
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yields x = d
2 −

d
2v + 2k(v − 1)

v(3v + 1) . Assuming that 2k−2 < d ≤ 2k and replacing x which was
calculated above, the evacuation time T can be computed as follows:

T =
1
v
(2 · 20 + 2 · 21 + · · ·+ 2 · 2k−1) +

d
v
+

x
v
+ x

=
2
v
(2k − 1) +

d
v
+

x
v
+ x

=
2k+1

v
− 2

v
+

d
v
+

x
v
+ x

=
2k+1

v
− 2

v
+

d
v
+

d
2v
− d

2v2 +
2k(v− 1)

v2(3v + 1)
+

d
2
− d

2v
+

2k(v− 1)
v(3v + 1)

≤ 16d
2v
− 2

v
+

d
v
+

d
2
− d

2v2 +
4d(v− 1)
v2(3v + 1)

+
4d(v− 1)
v(3v + 1)

≤ 18d
2v

+
d
2
− d

2v2 +
4d(v− 1)
v2(3v + 1)

+
4d(v− 1)
v(3v + 1)

− 2
v

≤ 54dv2 + 18dv + 3dv3 + dv2 − 3dv− d + 8vd− 8d + 8dv2 − 8dv
2v2(3v + 1)

− 2
v

≤ 3dv3 + 63dv2 + 15dv− 9d
2v2(3v + 1)

− 2
v

≤ 3dv3 + 63dv2 + 15dv− 9d
2v2(3v + 1)

This completes the proof of Theorem 5.

4.3. Nearest Meeting to Exit

In order to reduce the evacuation time, it is more suitable for the biker to search for
the exit while the hiker follows a “doubling zig-zag” strategy that will keep it as close as
possible to the biker and will expedite its travel time to the exit during the last iteration of
the evacuation algorithm. In order to achieve that, the purpose of the next algorithm will
be to find this deterministic doubling strategy that the hiker should follow. Assuming that
R1 is the biker and R2 is the hiker, Algorithm 7 will be as follows.

Algorithm 7: (EvacuatingWithBikeF2F)

for k← 1 to ∞ do
if k is odd (resp.even) then

R1moves right (resp. left) a distance 2k unless the exit is found;

R2 moves right (resp. left) a distance 2k+1

3v−1 ;
if k = 1 then

R2 waits for R1;

if exit is found by R1 then
R1switches direction to inform R2;
R1drops off the bike at distance x

2 ;
R2 picks up the bike and continues to the exit;
Quit;

if exit is found by R2 then
R2 waits till R1comes to the exit;

Break;

R1turns; then moves left (resp. right), return to origin;
R2 turns; then moves left (resp. right), return to origin;
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Theorem 6. The evacuation time for Algorithm 7 using the F2F model is upper bounded by

3d− 5v2 − 12v− 1
2v(v− 1)

d +
5v2 − 12v− 1

v(v− 1)(3v− 1)
d if 1 < v ≤ 6+

√
41

5

3d− 5v2 − 12v− 1
2v(v− 1)

d +
4(5v2 − 12v− 1)
v(v− 1)(3v− 1)

d if 6+
√

41
5 ≤ v

Proof of Theorem 6. Let us consider the sequence:X = {X1, X2, X3, . . . , Xk}, where
Xk = r · Xk−1. The purpose is to find the best value of r which is the factor related to
the doubling strategy that the hiker follows. Definitely the best meeting point would be
the peak point reached by the hiker during each iteration, since it will be the closest to the
exit. Assume that both the hiker and the biker meet at some point Xk−1 during the k− 1
iteration and they are willing to meet during the k-th iteration without waiting for one
another, then we have:

Xk−1 + Xk =
1
v
· (2k−1 − Xk−1) +

2k−1

v
+

Xk
v

and after substituting Xk

Xk−1 + r · Xk−1 =
1
v
· (2k−1 − Xk−1) +

2k−1

v
+

r
v
· Xk−1.

In turn, this implies

(r + 1) · Xk−1 =
2k

v
+

r− 1
v
· Xk−1

=⇒ r · v · Xk−1 + v · Xk−1 − r · Xk−1 + Xk−1 = 2k

=⇒ Xk−1 =
2k

r · v + v− r + 1

Similarly we have Xk = 2k+1

r·v + v − r + 1 . Consider Xk = r · Xk−1, then we can deduce

that r = 2. Substituting r = 2 gives Xk = 2k+1

3v − 1 . So we conclude that the hiker will use

doubling strategy and will follow the sequence X = { 4
3v − 1 , 8

3v − 1 , . . . , 2k+1

3v − 1}. Assume
that R1 is the biker which moves with speed v and R2 is the hiker which moves with unit
speed. Consider d = 2k+1

3v − 1 + e where e ≥ 0. Definitely R1 will reach the exit before R2.
Since the exit is at distance e from the meeting point, then from that point on, R1 needs
time e

v to reach the exit. During this time, R2 will be at distance e on the other side of the
meeting point. Therefore, when R1 reaches the exit, R2 will be at distance e + e

v = e v + 1
v

away from the exit. The distance z that hiker R2 moves from the point where R1 reaches
the exit till the point it meets R1 will be as follows:

z =
e(v + 1)

v2 +
z
v

=⇒ z(v− 1)
v

=
e(v + 1)

v2

=⇒ z =
v + 1
v− 1

· e
v

Therefore, when biker R1 reaches hiker R2 to inform it about the exit, R2 will be far
from the exit by a distance x = v + 1

v − 1 ·
e
v + e v + 1

v . Now it is required to find at what distance
y away from the exit should biker R1 drop off the bike so that hiker R2 can pick it up and
proceed to the exit and reach it at the same time as R1. After we find out the distance y, we
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will go back to create the algorithm for the two hikers with a bike model. In order to find
out the distance y we have the following:

x
v
− y

v
+ y = x− y +

y
v

=⇒ x
v
− y

v
+ 2y = x +

y
v

=⇒ y(2v− 2) = x(v− 1)

=⇒ y =
x(v− 1)
2(v− 1)

=
x
2

The evacuation time T can be calculated as follows:

T =
2 · 20 + 2 · 21 + · · ·+ 2 · 2k−1

v
+

d
v
+

x
v
+

y
v
+ y

=
2(2k − 1)

v
+

d
v
+

x
v
+

x
2v

+
x
2

=
2k+1

v
− 2

v
+

d
v
+

3
2v

(e +
e
v
+

v + 1
v− 1

· e
v
) +

1
2
(e +

e
v
+

v + 1
v− 1

· e
v
)

Since d = e + 2k+1

3v−1 , replacing 2k+1

v = 3d− 3e− d
v + e

v in the above equation gives the
following:

T = 3d− d
v
− 3e +

e
v
− 2

v
+

d
v
+

3e
2v

+
3e

2v2 +
3e(v + 1)

2v2(v− 1)
+

e
2
+

e
2v

+
e(v + 1)

2v(v− 1)

= 3d− 2
v
+

3e
v
− 5e

2
+

3e
2v2 +

3ev + 3e + ev2 + ev
2v2(v− 1)

= 3d− 2
v
+

3e
v
− 5e

2
+

3e
2v2 +

ev2 + 4ev + 3e
2v2(v− 1)

= 3d− 2
v
+ e · 6v2 − 6v− 5v3 + 5v2 + 3v− 3 + v2 + 4v + 3

2(v− 1)v2 =

= 3d− 2
v
− e · 5v2 − 12v− 1

2v(v− 1)

= 3d− 2
v
− 5v2 − 12v− 1

2v(v− 1)
(d− 2k+1

3v− 1
)

= 3d− d · 5v2 − 12v− 1
2v(v− 1)

+ 2k 5v2 − 12v− 1
v(v− 1)(3v− 1)

− 2
v

There are two cases to consider here:

Case 1: 1 < v ≤ 6+
√

41
5 .

Since 5v2 − 12v− 1 ≤ 0 and d ≤ 2k we have that

T ≤ 3d− 5v2 − 12v− 1
2v(v− 1)

d +
5v2 − 12v− 1

v(v− 1)(3v− 1)
d− 2

v

≤ 3d− 5v2 − 12v− 1
2v(v− 1)

d +
5v2 − 12v− 1

v(v− 1)(3v− 1)
d

Case 2: 6+
√

41
5 ≤ v.
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Since 0 ≤ 5v2 − 12v− 1 and 2k−2 ≤ d we conclude that

T ≤ 3d− 5v2 − 12v− 1
2v(v− 1)

d +
5v2 − 12v− 1

v(v− 1)(3v− 1)
· 22 · 2k−2 − 2

v

≤ 3d− 5v2 − 12v− 1
2v(v− 1)

d +
4(5v2 − 12v− 1)
v(v− 1)(3v− 1)

d− 2
v

≤ 3d− 5v2 − 12v− 1
2v(v− 1)

d +
4(5v2 − 12v− 1)
v(v− 1)(3v− 1)

d

This completes the proof of Theorem 6.

Figure 2 depicts and compares the performance of the three algorithms presented for
the face-to-face model.

1 5 50

Speed

d/2
d

T
im

e

Face-to-Face Model

Algorithm4
Algorithm5
Algorithm6 (v<(6+sqrt(41))./5)
Algorithm6 (v>(6+sqrt(41))./5)

Figure 2. Graph for the three algorithms using the face-to-face model. On high speed, the evacuation
time for Algorithm 7 converges to d

2 . The same is for Algorithm 6 versus d for Algorithm 5.

5. Lower Bounds

In this section we establish lower bounds on the competitive ratio in the WiFi and F2F
models. Using bike sharing, first we prove a tight bound on the evacuation time when the
robots know in which direction from the origin the exit is. Note that Theorem 7 can readily
be used to compute the competitive ratio of the algorithms presented in Sections 3 and 4.

Theorem 7. If the direction of the exit is known to the robots then evacuation time is v + 1
2v · d and

this is optimal.

Proof of Theorem 7. Consider the algorithm whereby robot R1 rides the bike for a distance
x, releases the bike at x and continues by walking the remaining distance d− x, while robot
R2 walks for a distance x, picks up the bike at x and rides it for the remaining distance
d− x. Note that robot R1 reaches the exit at time x

v + d− x, while robot R2 reaches the
exit at time x + d − x

v . For the two robots to arrive at the same time it is required that
x
v + d− x = x + d − x

v , which solves for x = d
2 . Hence, the algorithm ensures that the two

robots evacuate in time 1
2 + 1

2v = v + 1
2v .

Next we prove that the evacuation time above is optimal. If the robots never share
the bike then the evacuation time will be d, which is also the arrival time of the slowest
robot. So we may assume the robots share the bike. Let ti be the termination time for robot
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Ri in an optimal algorithm. Let xi be the distance that robot Ri rides the bike. Without
loss of generality let R1 be the robot that fetches the bike from the origin. Clearly, this
takes time x1

v + d− x1. Therefore t1 ≥ x1
v + d− x1. Similarly, for robot R2 we have that

t2 ≥ x2
v + d− x2. It follows that

max{t1, t2} ≥
1
2

( x1

v
+ d− x1 +

x2

v
+ d− x2

)
= d− x1

2
− x2

2
+

x1

2v
+

x1

2v

= d− (x1 + x2)
v− 1

2v

≥ d− v− 1
2v
· d =

v + 1
2v
· d,

where in the last inequality we used the fact that x1 + x2 ≤ d, since by assumption only
one robot can ride the bike at a time. This completes the proof of Theorem 7.

Using Theorem 7 we can prove the following result.

Theorem 8. The evacuation time of any algorithm in either the WiFi or F2F model is bounded
from below by min

{
d
v + v + 1

2v · d, d + v + 1
v · d

}
.

Proof of Theorem 8. Assume the two robots are starting at the origin and that the exit is
placed at one of the two locations ±d which are unknown to the robots. Lets call the points
±d endpoints of the interval [−d,+d]. Without loss of generality assume that −d is the first
endpoint visited by a robot.There are two cases to consider depending on who is visiting
this endpoint first.

Case 1: The biker visits −d first.

To arrive at the endpoint −d the biker has already spent time at least d
v since he

travels with speed v. At the time the biker arrives at −d the hiker may be located either
in the subinterval [−d, 0] or in the subinterval [0,+d]. There are two subcases to consider
depending on which of the two subintervals the hiker is located

• If the hiker is located in the interval [−d, 0] then the adversary places the exit at +d in
which case by Theorem 7 the evacuation time will be at least d

v + v + 1
2v · d.

• If the hiker is located in the interval [0,+d] then the adversary places the exit at −d in
which case again by Theorem 7 the evacuation time will be at least d

v + v + 1
2v · d.

Therefore regardless of the position of the hiker the evacuation time in this case is at
least d

v + v + 1
2v · d.

Case 2: The hiker visits −d first.

To arrive at the endpoint −d the hiker has already spent time d since he travels with
speed v. As before, the adversary will place the exit at the other endpoint +d. Unaided
from the bike the hiker will take additional time 2d to arrive at the exit which is located at
+d. However, in the wireless model the hiker can announce the exit has been found and
therefore the two robots can share the bike to arrive at the exit +d. In view of Theorem 7
this takes additional time at least v+1

2v · 2d = v+1
v · d. Hence, in this case a lower bound on

the evacuation time is d + v+1
v · d.

Combining the two cases completes the proof of Theorem 8.
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6. Conclusions

We proposed several evacuation algorithms in the wireless and face-to-face models.
For each communication model we presented three algorithms which take advantage of
the existence of the bike, a limited resource which can increase the search speed of the
system of two robots. The resulting trajectories of the robots are specially designed so as
to share the bike and ultimately reduce the overall evacuation time. We also discussed
lower bounds.

The problem investigated is of theoretical nature and helps illuminate the trade offs
between communication, and search time in search with mobile agents. Our study gives
rise to several challenging open problems. For two robots, one could consider the problem
when the speed of the bike depends on the hiker riding it. The case of multiple hikers
and multiple bikes (not necessarily the same number) has never been investigated before.
Additionally, one could also consider the case of faulty robots (crash or Byzantine). It
would also be interesting to investigate other search domains such as stars and cycles or
robots with reduced and/or enhanced capabilities.
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