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Abstract: A profiling attack is a powerful variant among the noninvasive side channel attacks. In
this work, we target RSA key generation relying on the binary version of the extended Euclidean
algorithm for modular inverse and GCD computations. To date, this algorithm has only been
exploited by simple power analysis; therefore, the countermeasures described in the literature are
focused on mitigating only this kind of attack. We demonstrate that one of those countermeasures is
not effective in preventing profiling attacks. The feasibility of our approach relies on the extraction of
several leakage vectors from a single power trace. Moreover, because there are known relationships
between the secrets and the public modulo in RSA, the uncertainty in some of the guessed secrets
can be reduced by simple tests. This increases the effectiveness of the proposed attack.

Keywords: Euclidean algorithm; GCD; RSA key generation; side channel attack; profiling attack;
machine learning-based attack

1. Introduction

Modular inversions are widely used in cryptography. For example, modular inver-
sions are used in signature schemes such as the ECDSA (elliptic curve digital signature
algorithm) and the key generation stage of the RSA (Rivest, Shamir and Adleman cryp-
tosystem). Some multiplicative masking techniques also employ modular inversions.
Montgomery multiplication, which is extensively used for multiprecision operands, re-
quires inversion as well.

A well-known method to solve a−1mod p is the algorithm based on Fermat’s Little
Theorem (FLT), even though it is valid only for the prime modulus [1]. The Montgomery
inversion is another method that has a variant (almost Montgomery Inversion) that pro-
duces the modular inverse multiplied by 2k [2]. The latter can be conveniently used to
accelerate the computation. Other methods to produce a−1mod pk were introduced in [3–6].
The special case of these methods for modulo 2k is useful to compute the Montgomery
constant. Some of these methods are based on the Euclidean algorithm.

A binary variant of the Euclidean algorithm, introduced in [7], computes the greatest
common divisor (GCD) of two integers. The extended variant (BEEA, binary extended
Euclidean algorithm) also gives the inverse of one of the inputs modulo the other [8].
This is a very helpful algorithm, because it can work modulo a prime and modulo a
composite as well. In fact, it is currently used in one of the most widely used cryptographic
schemes to date, namely, the above-mentioned RSA. The key generation stage of the RSA
performs (after the primes generation) coprimality tests and, at least, an inversion modulo
a composite. These two procedures can be performed using the same BEEA algorithm.
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Such implementation can be found in many products, for example, banking smartcards.
Unfortunately, some successful side channel attacks (SCAs) have been reported against
BEEAs.

The execution flow of the Euclidean algorithm is directly related to its inputs. This
allowed Acıiçmez et al. in [9] to deduce the inputs by first identifying the specific branches
executed in a classical BEEA implementation [10]. Similar vulnerabilities related to BEEA
power consumption have also been exploited in [11], where the authors retrieve by simple
power analysis (SPA) all of the secret bits of an ECDSA nonce during the modular inverse
operation using a low number of power traces. The authors claim their attack is still
effective in the presence of the countermeasures introduced in [12]. Moreover, the authors
discuss some countermeasures to overcome the SPA risks. In [13], an SPA is conducted
against an RSA key generation implementation based on a binary Euclidean algorithm. In
this work, the authors retrieve the secret by deducing the whole execution flow of the BEEA
(implemented as in [10]). The power traces of hardware and software implementations
given in the work show that the right-shifts and the subtraction operations can be easily
distinguished, thus acting as markers of the conditional branches. This attack exploits the
difference between the bit length of the inputs, and then makes it easy to infer the input
being manipulated at each branch. A similar SPA is described in [14], except that the target
is the specific case of the GCD.

With one exception, all of the aforementioned attacks were performed over nonpro-
tected implementations of the binary Euclidean algorithm. In all cases, they exclusively
focused on the SPA. However, as we will discuss in the next section, countermeasures can
be used to prevent this kind of attack.

On the other hand, the authors of [15] conduct an attack against an ECDSA method
based on an NIST curve. The first stage of their attack targets a variant of the Euclidean
algorithm (which they do not know, but they infer from an SPA) that apparently is used to
invert the nonce involved in the signature generation. A template attack (TA) is carried out
after the initial stage, but the authors give new details about its implementation.

Due to the COVID-19 pandemic, non-face-to-face services have gained more impor-
tance to reduce human contact. In many cases, user certification is essential to provide this
kind of service. Secure authentication through a public-key infrastructure (PKI) is used
for this purpose. This work addresses a relevant security issue that may affect the key
generation mechanism that is a critical part of a PKI.

Profiling attacks (PAs) are a powerful form of SCA that have not been sufficiently
considered to exploit the power-based leakage that may exist in a BEEA implementation.
The key contribution in this work is the introduction of a PA against an RSA key genera-
tion relying on the BEEA. The provided theoretical demonstration shows that the attack
succeeds even in the presence of a certain masking technique, while it is possible to extract
several leakage vectors from a single power trace. In addition, a machine learning-based
profiling attack (ML-based PA) is performed to validate our approach. Moreover, based
on existing relationships between secret and public values, a simple test is suggested to
strengthen the reliability of the obtained profiles. Consequently, the use of more effective
protection in BEEA implementations is recommended.

This paper is organized as follows: In Section 2, an introduction to RSA key generation
is given, and some of the BEEA details are emphasized. Section 3 addresses the PAs
fundamentals. An ML-based PA on BEEA-based RSA key generation is described in
Section 4. The experimental results are shown in Section 5. Finally, conclusions are given in
Section 6.

2. RSA Key Generation

The RSA cryptosystem security relies on the intractability of factorizing a large integer,
namely, N = p · q, where p and q are randomly chosen large prime numbers [16]. This
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method is widely used for encryption and authentication purposes. The main operations
of the RSA are given by:

s = mdmod N, (1)

and
m = semod N, (2)

where m is the input message and s is its corresponding signature.
Additionally, the private key is obtained following:

d = e−1mod φ(N), (3)

where e is the public key and φ(N) is the Euler totient function that is computed as

φ(N) = (p− 1) · (q− 1). (4)

There are two characteristics of φ(N) that are quite important for the objective of
this work. φ(N) is divisible by four because it results from the multiplication of two even
numbers. Besides, it is known that φ(N) shares approximately half of its most significant
bytes (MSB) with N.

The key pair generation in RSA starts looking for two large prime numbers. This
may be a long process due to the primality tests that must be carried out for the randomly
chosen candidates. The algorithm based on FLT is often used to perform these tests.

Once the prime factors are generated, the public exponent e is chosen. Then, to
guarantee that e is coprime with p− 1 and q− 1, coprimality tests are performed. The
Euclidean algorithm is widely employed to carry out these tests. Finally, d is computed as
above, and the Euclidean algorithm is usually used in this process as well.

In resource-constrained devices, for efficiency, the public key may be pre-established
with a convenient value (e = 65,537 is commonly used). The coprimality tests involving e,
p− 1 and q− 1 are computed separately to update p or q if necessary.

The following steps resume a key generation stage on the RSA, where e is pre-
established:

1. Generate two random primes p and q;
2. Verify that e is coprime with p− 1 and q− 1;
3. Compute the modulus N = p · q;
4. Compute φ(N) = (p− 1) · (q− 1);
5. Compute the private key d = e−1mod φ(N).

2.1. The Binary Extended Euclidean Algorithm

The BEEA computes the inverse of a modulo m by solving Bézout’s identity [17]. The
fact that this algorithm works for both prime and composite moduli makes it quite versatile.
In addition to being used in the RSA key generation, BEEA can also be employed to invert
the nonce k in ECDSA. These can be considered the two currently most commonly used
asymmetric cryptosystems.

The Euclidean algorithm is a suitable choice for hardware devices. It substitutes
costly divisions by shifts, allowing more efficient circuits. Recently, it was demonstrated
that a BEEA variant implementation performs better than FLT in the processors based on
the residue number system (RNS) [18,19]. RNS arithmetic allows for the construction of
efficient parallel circuits for large operands.

In the remainder of this paper, we will refer to a generic BEEA coded as Algorithm 1,
which is its classical definition [8]. Note that we avoid including the oddness verification of
the inputs for simplicity. We write the algorithm following a notation corresponding to the
RSA private key computation: BEEA(e, φ(N)), although it will be used later to analyze the
coprimality test that has different inputs namely, GCD(e, p− 1) and GCD(e, q− 1). BEEA
and GCD are conveniently used to emphasize the different operations required at certain
key generation steps. However, particularly since Section 3, BEEA and GCD always refer
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to a unique implementation of the binary extended Euclidean algorithm that gives both
the modular inverse of one input and the greatest common divisor of both inputs.

It is observed from Algorithm 1 that the v-loop (step 12) will be executed first because
v = φ(N) is even, but e is not. In addition, the v-loop will run twice because φ(N) is
divisible by four. Upon entering this loop for the first time, D is odd; thus, the ELSE branch
(step 17) will be executed. In the second iteration, and C and D are both even; thus, the
flow will go through the IF branch (step 14). Once the shifted v becomes odd, the v-loop
ends, and the algorithm flow continues with the verification at step 18. In the case of the
coprimality tests of RSA, only one iteration of the v-loop can be predicted, because it can
only be ensured that both secrets p− 1 and q− 1 are even.

Algorithm 1 Binary Extended Euclidean Algorithm.

Inputs: e and φ(N); where e is odd
Outputs: GCD (e, φ(N)) and d = e−1mod φ(N)

1. u = e
2. v = φ(N)
3. A = D = 1
4. B = C = 0
5. while u 6= 0 do
6. while (u is even) do - - - - - - - - - - - u-loop
7. u = u/2
8. if (A is even) and (B is even) then
9. A = A/2; B = B/2
10. else
11. A = (A + φ(N))/2; B = (B− e)/2
12. while (v is even) do - - - - - - - - - - - v-loop
13. v = v/2
14. if (C is even) and (D is even) then
15. C = C/2; D = D/2
16. else
17. C = (C + φ(N))/2; D = (D− e)/2
18. if u ≥ v then
19. u = u− v
20. A = A− C
21. B = B− D
22. else
23. v = v− u
24. C = C− A
25. D = D− B
26. return (v = GCD(e, φ(N)), d = C mod φ(N))

2.2. Countermeasures against SCA on BEEA

A large bit length difference in BEEA inputs is exploited to predict the execution
of the algorithm and extract sensitive information, as mentioned above. Therefore, the
countermeasures that have been proposed to date focus on making both operands the same
size or directly mask the sensitive input.

In [14], two methods were patented to protect the GCD algorithm from an SPA. The
first one follows the property:

GCD(X− 1; e) = GCD(X− 1 + r · e; e). (5)

It consists of applying additive masking to X− 1, where X is a secret prime (p or q) in an
RSA scheme, e is the public key, and r is a random. If r is a sufficiently large nonce (e.g.,
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sizeo f (X)− sizeo f (e)), then all of the bits of the secret are masked. In such a case, even if
an adversary is able to follow the complete algorithm flow, no relevant information will be
disclosed.

Note that, even assuming the case in which an adversary obtains the masked
X′ = X− 1+ r · e through an SPA and X′ is reduced modulo e, the brute force complexity
to obtain X will make the attack unfeasible.

This is because the length of X has been properly chosen (e.g., ≥512 bits), and
sizeo f (X) is much larger than sizeo f (e), which is the common scenario.

The second method introduced by Chartier in [14] relies on the property:

GCD(X− 1; e) = GCD(GCD(X− 1; r · e); e). (6)

In [11,20], the proposed countermeasure to protect the BEEA from SPA is based on
Equation (6). The same technique is also used to protect the modular inversion in the
well-known open source library Mbed TLS [21]. This countermeasure ensures that both
operands have the same bit length to avoid the algorithm’s flow prediction. In this case, if
the random number is a sufficiently large nonce, the specific conditional branch that the
algorithm takes at each iteration cannot be guessed by an SPA on the power trace. This
removes the vulnerability exploited in [11]. The steps to blind the secret k are as follows:

1. Select r at random such that 0 < r < p;
2. Compute a = k · r mod p;
3. Compute b = a−1 mod p;
4. Compute k−1 = r · b mod p.

These two methods, although they were originally intended to protect the coprimality
tests involving e and the candidates for p and q, are equally useful to protect the pri-
vate key computation in the case it is performed by means of the Euclidean algorithm
(BEEA(e, φ(N))).

In Equation (5), the secret is blinded before the GCD execution. On the other hand,
notice how the same secret is manipulated in plaintext in Equation (6). This is not relevant
when SPA is the only threat being considered, and we emphasize that these countermea-
sures aim to mitigate such attacks. However, another kind of SCA may take advantage of
this plaintext secret.

3. Profiling Attacks

In electronic devices, under certain conditions, a power consumption profile of some
operations can be constructed. Using this power profile, an adversary may be able to
extract sensitive data from the target device by matching its power consumption with the
computed profile. When this PA is realized through the use of templates, the procedure is
known as TA. This kind of attack was introduced by Chari et al. in [22], and is considered
one of the strongest types of SCA reported to date. A necessary condition is that the device
has side channel leakage related to the manipulated data.

An ideal scenario for performing a PA is to acquire both profiling and attack power
traces from the same device in the same acquisition campaign. For this purpose, it is advan-
tageous to have a profiling operation similar to the target operation in which inputs and
outputs can be controlled. Under such conditions, the power consumption characterization
will be close to optimal.

An attack method using deep learning technology in the process of constructing a
profile is called ML-based PA. Deep learning is a machine learning technique that learns
features from the input data through a neural network. The multilayer perceptron (MLP)
is a deep-learning technology that has been proposed to overcome the limitations of a
single-layer perceptron. The MLP consists of an input layer, hidden layers, and an output
layer. The hidden layers learn the features from the data and finally compute the output
value through an activation function.
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Machine learning techniques, including MLP, have been evaluated for SCA improve-
ments, particularly as a TA alternative, for the last decade [23–26]. Martinasek et al.
demonstrated the feasibility of using MLP that, in some aspects, may overcome traditional
profiling techniques, pointing out the difficult problem of parametrization. As an aside, the
reader is recommended the work of Benadjila et al. [27], where the authors discuss several
options for the parametrization problem in MLP when applied to SCA.

In this paper, the process of building a power consumption profile is performed
based on the MLP model. The specific method of ML-based PA consists of the following
two steps.

[Step1 : Learning Phase]

• First, the attacker collects several power consumption traces from a device running a
BEEA and calculates an intermediate value for each of them;

• Then, the intermediate value corresponding to the power consumption is used as a
label, and the profile is constructed through a training process by the MLP model.

[Step2 : Attack Phase]

• The attacker calculates the matching probability between the power consumption
measured from the attack device and the profile constructed in Step 1;

• The value with the highest probability is adopted as the correct intermediate value;
then, the secret value is recovered.

Single Trace Profiling Attacks

In a convenient scenario for an adversary, a large number na of power traces can be
acquired in the attack phase, where the same target value (k′) is manipulated. In such a
case, a ranking among the na probabilities Pi(k′) is built to improve the prediction accuracy.
A single trace profiling attack (STPA) is performed when only one power trace is available
in the attack phase. Because of its probabilistic basis, the STPA results will be less accurate.

In some methods, like RSA key generation and ECDSA, the secret is a nonce; thus,
they impose the limitation of only one power trace available in the attack phase. However,
there are successful cases of STPA in the recent literature, such as [28,29].

4. Profiling Attack on the Euclidean Algorithm

In this section, a PA on a masked BEEA implementation is proposed. We consider the
RSA key generation process as the scope of the attack and, more exactly, the coprimality
tests and the private key computation, assuming that they are implemented using the
Euclidean algorithm.

For the feasibility of this attack, the following assumptions are made:

• The hardware device(s) employed for the PA have a source of leakage;
• The target RSA key generation uses a classical Euclidean algorithm to compute d

and/or GCD(e, x− 1);
• The BEEA implementation uses the masking method defined in Equation (6);
• An adversary can acquire sufficient power (or electromagnetic) signals from the target

device (preferred) or similar signals running the BEEA or a similar function;
• An adversary can acquire the power (or electromagnetic) signals of the whole target

RSA key generation phase.

In this work, we consider as the power trace (or indistinctly, a leakage vector), the
vector of the power consumption measurements where a target operation manipulates a
secret value. The points of interest (PoIs) are those within the resultant leakage vector after
applying a compression method, as suggested in [30]. In addition, every execution of a
target operation will be herein referred to as an attack point.

Usually, once an RSA key pair is generated, it is stored to be used several times. The
coprimality tests are performed only once involving p and q (the two finally successful
prime candidates). A similar procedure is used in ECDSA with the nonce k. These
facts impose a restriction, as the target secrets are used in only one algorithm execution.
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Therefore, our proposed attack is specifically an STPA. Nevertheless, due to the nature of
the Euclidean algorithm and φ(N), we can target at least eight attack points in a single
trace to obtain eight leakage vectors (see Section 4.1 for further details). This approach is
still formally an STPA but is equivalent to an 8-trace PA where the success probabilities
are higher.

Let us denote by Pap the probability of a successful attack on a single attack point;
then,

PSTPA = 1− (1− Pap)
8, (7)

will be the probability of a successful attack on the key generation process of the RSA.
Furthermore, if an adversary can acquire n traces of the key renewal procedure, the
probability of a successful attack increases and can be defined by:

Pn−STPA = 1− (1− Pap)
8n. (8)

The proposed attack can also be conducted on the ECDSA when the nonce k is inverted.
However, in this case, the conditions for performing the attack are less convenient than
those of the RSA key generation.

4.1. Attack Points on Private Key Generation

In the case of private key generation, the v-loop of the Algorithm 1 is executed first
and at least twice because φ(N) is divisible by four. The operation sequence for the first
and second iterations can be easily predicted. Table 1 shows the ordered execution of the
relevant operations involved.

Table 1. Target operations on BEEA (e, φ(N)).

Operation 1 Operation 2

1st iteration v = v/2 C = (C + φ(N))/2
2nd iteration v = v/2 C = C/2

Result 1 Result 2

1st iteration v = φ(N)/2 C = φ(N)/2
2nd iteration v = φ(N)/4 C = φ(N)/4

All of these operations that we define as attack points perform a right shift followed
by a copy-to-register. Furthermore, the manipulated data are only the secret φ(N); thus,
the leakage of both the shift and the copy-to-register operations is uniquely related to that
value. At the low level, every operation in Table 1 manipulates the secret (at least) twice,
shifting it and copying it to a register. This should generate two sets of POIs per attack
point. In fact, having as many POIs as possible is an advantage because TA is probabilistic;
thus, its success is strongly linked to the number of available samples.

The manipulation of φ(N) and φ(N)/2 does not prevent the consideration of these
operations as equivalent attack points operating with the same value. The guessed bytes in
the second iteration that shifted one bit to the left corresponded to those guessed in the
first iteration; alternatively, the guessed bytes in the first iteration that shifted one bit to
the right corresponded to those guessed in the second iteration. Therefore, (from Table 1)
operations 1 and 2 for the first and second iterations of BEEA (e, φ(N)) can be considered
four equivalent attack points from which four leakage vectors are obtained.

If φ(N) has more than two trailing zero bits, it will be easily detected by a visual
inspection of the signal trace. This is because the power profile of the following iterations
(into the v-loop) will be quite similar to the previous profile. This can be observed for
hardware and software implementations in the power signal figures given by Cartaya et al.
in [13], where the v-loop profile looks very different from the subtraction profile. Therefore,
the presence of more than two trailing zero bits in φ(N) yields additional attack points.
Thus, it can be said that the more trailing zero bits there are in φ(N), the higher the
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probability of a successful attack. Table 2 shows how the guesses should be performed for
four trailing zero bits.

Table 2. Target operations on BEEA (e, φ(N)) after 2nd iteration.

Operation 1 Operation 2

3rd iteration v = v/2 C = C/2 or
C = (C + φ(N))/2

4th iteration v = v/2 C = C/2 or
C = (C + φ(N))/2

Result 1 Result 2

3rd iteration v = φ(N)/8 C = φ(N)/8 or
C = 5φ(N)/8

4th iteration v = φ(N)/16 C = φ(N)/16 or
C = 13φ(N)/16

Note that for our attack, it is assumed that the masking method in Equation (6) is
used, and then the public key e is randomized. In this case, the evenness of D cannot be
predicted. Therefore, the conditional branch that will execute into the v-loop cannot be
predicted either. For this reason, in Table 2, the two possible results from the execution of
the second operation are given.

4.2. Attack Points on the Coprimality Tests

The analysis to define the attack points in the coprimality tests is rather similar to that
in the previous section. Let e and x− 1 be the GCD inputs, where x is either the secret p
or q that are indeed the targets. Then, since x − 1 is even, the v-loop is executed first. It
cannot be ensured that x− 1 is divisible by four as φ(N); thus, only the first iteration can
be predicted. This allows us to define the attack points as the first and second operations in
Table 1 but only within the first iteration. These operation results are v = x/2 and C = x/2
for the computation of GCD (e, x− 1).

Because the coprimality tests are performed for p− 1 and q− 1, we have another four
attack points. Moreover, the latter analysis in Section 4.1 regarding the probable further
trailing zeroes can be applied herein. Therefore, with some probability, more than four
leakage vectors can be obtained from the whole coprimality tests of p and q.

4.3. Profiles and Guesses Verification

The reliability of the obtained profile (templates in the case of TA) and the accuracy of
the guesses can be verified by exploiting some known bytes. It is known that φ(N) shares
roughly half of its most significant bytes with N, which is public. Then, the leakage vectors
on the private key generation can be exploited starting by the known bytes of φ(N). A
significant correlation should appear among the MSB of φ(N) for each of the known bytes
if the profile is good enough. In a convenient (although casuistic) scenario for an adversary,
one or more correlations corresponding to known bytes can also appear among the lower
half of φ(N), which is indeed the secret part.

On the other hand, matching the guessed p and q with N is a straightforward approach
for carrying out a partial verification of the attack phase on the coprimality test. It can be
demonstrated that, for a certain byte length, NH = pH · qH and NL = pL · qL, where XH
and XL are the most and least significant bytes of X, respectively.

Let N be l-bytes long; then, pH , qH , pL and qL have approximately l/2 bytes (assuming
p and q have the same byte length, as commonly occurs). Then, N can be written as a
function of the primes as given by:

N = 2l/2(pH · qH) + 2l/4(pH · qL + qH · pL) + pL · qL. (9)
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Equation (9) shows that approximately l/4 of the MSB of N depends on half of the MSB
of p and q. On the other hand, one quarter of the LSB of N strictly depends on half of the
LSB of p and q. These relationships allow us to verify the accuracy of some of the guessed
values of p and q and to tune them to achieve the match with N.

5. Experimental Results

In this section, we describe the experimental results of the attack on the protected
BEEA algorithm using ML-based PA. In the first subsection, we describe how to measure
the power consumption trace of the protected BEEA algorithm while it is running. In the
second subsection, we describe the multilayer perceptron (MLP) model used to perform
the attack and describe the method of cross-validation. The success rate of the attack is
described in the last subsection.

5.1. Experiment Environment

The attack is applied against the countermeasure in Equation (6) that protects a BEEA
implementation. More specifically, we target the inner operation where the secret (X− 1)
is manipulated in plaintext. We coded and implemented an 8-bit-based BEEA following
Algorithm 1, which is a classical definition [8].

We measure the power consumption that includes the operations of Table 1. The
traces are collected while the algorithm runs 50,000 times on the ChipWhisperer-Lite power
collection board, at a sampling rate of 29.54 ms/s. To obtain a profile for the secret value
φ(N) = (p − 1) · (q − 1), we select φ(N) as a random 128-bit value that is divisible by
four. The options for compiling the 8-bit-based BEEA algorithm code for uploading on the
ChipWhisperer-Lite board were configured as shown in Table 3.

Table 3. Optimization level for each option.

Optimization Option Description of Optimization Level

-O0 None
-O1 Optimization of speed (Low)
-O2 Optimization of speed (Medium)
-O3 Optimization of speed (High)
-Os Optimization of size

5.2. Attack Model

To perform the ML-based PA, we must first construct a profile for the value φ(N) that
we seek to recover. In other words, we train the MLP model by using the value φ(N) as
a label. We concatenate the power consumption traces of the four attack points, namely,
points of interest (PoIs), shown in Figure 1 . The concatenated trace is an input to the neural
network. Of the 50,000 power consumption traces collected, 40,000 were used for training,
and 5000 were used for verification. The remaining 5000 traces are used for the attack,
and only one trace is used for each attack, that is, we select one trace from 5000 traces and
perform the attack. The hyperparameters of the MLP model used in this paper are shown
in Table 4. The (x · 4) in the input layer indicates the input data size when a range of each
PoI is set to x. This is done to generalize the power consumption trace collected by each
optimization option since four PoI ranges exist and are different in size.

Figure 1. Power trace of protected BEEA with optimization option -Os.
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For example, the power consumption trace collected with optimization option -Os
is shown in Figure 1. We applied an SPA to identify PoIs. The four PoIs presented in
Section 4.1 are the same parts of PoI 1, PoI 2, PoI 3, and PoI 4, respectively, shown in the
power consumption trace of Figure 1. The time positions of each section are 150–1850,
3286–4986, 8274–9974 and 9849–11549, namely, the x of Table 4 is 1700. These four locations
are concatenated and used as the input to the MLP model. Similarly, for power consumption
traces collected at -O0, -O1, -O2, and -O3, four PoIs found in the trace were used as the
input to the neural network.

Table 4. Hyperparameters used in MLP model.

Optimization Option Description of Optimization Level

Input Layer (x · 4)
Hidden Layer Dense(200) with activation function ELU

BatchNormalization
Dropout(0.3)

Dense(200) with activation function ELU
BatchNormalization

Dropout(0.3)
Output Layer 256

Optimizer NAdam(lr = 0.002, beta1 = 0.9, beta2 = 0.999, decay = 0.004)
Loss Function categorical cross entropy

Epoch 500
Batch Size 32

5.3. Experiment Results

In this experiment, of the 50,000 power consumption traces collected, 40,000 were
used for training, 5000 were used for the validation of training, and 5000 were used for
attack processes. For attack, only one trace selected from 5000 traces is used, that is, the
attack is a single-trace attack. Then, all of the data were divided into a total of ten cases, as
shown in Figure 2 and K-Fold cross-validation [31] was performed.

The attack was performed using one power trace, and the average success rate was
calculated by repeating it 1000 times for each case. In other words, we repeated the task of
choosing one out of 5000 traces and performing the attack 1000 times. The success rates
derived when these attacks are carried out are shown in Table 5 for each optimization
option. An examination of the results in Table 5 shows that each byte 8-bit value of the
secret value φ(N) is recovered with a probability of more than 98.90% in a single-trace
attack, regardless of the optimization option used to collect the power consumption trace.

Figure 2. Selection of data for K-fold cross-validation.
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Table 5. Success rate of the single-trace attack for each optimization option.

-O0 -O1 -O2 -O3 -Os

Case 1 100.00% 100.00% 98.90% 99.20% 99.30%
Case 2 100.00% 100.00% 98.90% 99.20% 99.30%
Case 3 100.00% 100.00% 98.80% 99.30% 99.20%
Case 4 100.00% 100.00% 99.20% 99.50% 98.90%
Case 5 100.00% 100.00% 99.30% 99.40% 99.70%
Case 6 100.00% 100.00% 98.10% 99.10% 99.40%
Case 7 100.00% 100.00% 98.80% 99.40% 99.40%
Case 8 100.00% 100.00% 98.70% 99.00% 96.70%
Case 9 100.00% 99.80% 98.70% 88.00% 99.40%
Case 10 100.00% 99.98% 98.82% 97.46% 99.03%
Average 100.00% 100.00% 98.90% 99.20% 99.30%

6. Conclusions

In this work, an ML-based PA on an RSA key generation is proposed that targets a
protected BEEA that is used to obtain the prime secrets, p, q, and the private key.

It was demonstrated that at least eight leakage vectors can be extracted from a single
power trace. This is not common in single-trace attacks, and such a finding denotes the
high risk of a naive implementation of the BEEA. According to recent works, we believe
this attack is feasible in 8-bit devices and can also be extended to 16-bit devices.

Furthermore, we have pointed out that one of the most well-known countermeasures
(described by Equation (6) and actually intended to prevent SPA) is not effective against
our attack. On the other hand, the countermeasure described by Equation (5) prevents both
the SPA and the PA presented herein. Therefore, we suggest the use of the countermeasure
described by Equation (5), or even the combination of both, as proposed in [14] for ensuring
safe BEEA implementation.
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