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Abstract: Multimedia feature graphs are employed to represent features of images, video, audio,
or text. Various techniques exist to extract such features from multimedia objects. In this paper,
we describe the extension of such a feature graph to represent the meaning of such multimedia
features and introduce a formal context-free PS-grammar (Phrase Structure grammar) to automatically
generate human-understandable natural language expressions based on such features. To achieve
this, we define a semantic extension to syntactic multimedia feature graphs and introduce a set of
production rules for phrases of natural language English expressions. This explainability, which is
founded on a semantic model provides the opportunity to represent any multimedia feature in a
human-readable and human-understandable form, which largely closes the gap between the technical
representation of such features and their semantics. We show how this explainability can be formally
defined and demonstrate the corresponding implementation based on our generic multimedia
analysis framework. Furthermore, we show how this semantic extension can be employed to increase
the effectiveness in precision and recall experiments.
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1. Introduction and Motivation

Bridging the semantic gap has been a research goal for many years. Narrowing down
the gap between detected features from multimedia assets (i.e., images, video, audio, text,
and social media) and their semantic representation has led to numerous investigations and
research in the field of Multimedia Information Retrieval (MMIR) [1]. With the extraction
of MMIR supporting features and the integration of these features into data models,
internal representations of these features are created. MMIR applications process these
representations e.g., w.r.t. indexing, retrieval, and querying and employ them to analyze
relationships between or within assets. In particular, the topic of querying becomes highly
important, as e.g., every single minute, 147,000 photos are uploaded to Facebook, 41.6
million WhatsApp messages are sent, or 347,000 stories are posted by Instagram [2] and
the users still expect highly accurate query results. Due to higher resolutions of images and
video, the Level-Of-Detail (LOD) in multimedia assets has increased significantly. Current
professional cameras such as the Sony α7R IV 35 are equipped with a resolution of 61.0
megapixels [3], and smartphones such as the Xiaomi Redmi Note 10 Pro even push that
boundary to 108 megapixels [4]. This high LOD is also reflected by other multimedia types,
e.g., text, where news agencies maintain huge archives of textual information, enriched by
user comments, web information, or social media [5].

The figures given above demonstrate that it has become more and more important
to semantically understand MMIR supporting features to increase the precision and recall
of quasi-semantic MMIR querying. The Semantic Web [6] and all its related technolo-
gies and concepts are a sound basis for knowledge representation, reasoning, inferencing,
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and truth maintenance. To bridge the gap between detected features and their seman-
tic representation, a machine-readable and formal approach is required, as well as a
human-understandable explanation of the corresponding processing steps. However, the
requirement of a high LOD, the increasing number of assets, and the demand for fast and
accurate semantic querying contradict each other and lead to further challenges in the area
of explainability in a human-understandable way.

In this paper, we present a solution for the automated explainability of MMIR process-
ing steps in the form of human-understandable natural language texts based on a semantic
modeling, which also supports inferencing and reasoning.

2. State-of-the-Art and Related Work

This section gives an overview of current techniques and standards for semantic
indexing and retrieval and discusses related work. We introduce the Multimedia Feature
Graph (MMFG) and the Graph Code concept, also discussing semantic analysis and intelligent
information retrieval methods.

In previous work, we already introduced the Generic Multimedia Analysis Framework
(GMAF) [7–10] as a unifying framework that can integrate various multimedia features
into a single data structure. The GMAF utilizes selected existing technologies as plugins to
support various multimedia feature detection algorithms for text (e.g., social media posts,
descriptions, tag lines) [11–13], images (especially object detection and spatial relationships
including the use of machine learning) [11,14–16], audio (transcribed to text) [15,17,18],
and video including metadata [19] and detected features [18,20,21].

The GMAF produces a Multimedia Feature Graph (MMFG), which is defined in [7] and
represents various integrated multimedia features. Within an application, these MMFGs
are typically represented as a collection. For the remainder of this paper, some internal
structures, sets, and definitions of the MMFG are relevant (see also [7,22]):

• FVTMMFG = { f t1, ..., f tn} is the feature term vocabulary, i.e., the set of feature term
labels, which represent detected features. Elements of FVTMMFG are represented by
Nodes(n) in the MMFG graph structure.

• FVTColl =
⋃n

i=1 FVTMMFGi is the feature term vocabulary of the collection of MMFGs
within a MMIR application.

• the set FRTMMFG = {cn, s, sr} representing the feature relationship types of an MMFG,
where cn represents the “child” relationship, s represents the “synonym” relationship,
and “sr” represents the “spacial” relationship between feature vocabulary terms.
Elements of FRTMMFG are represented by links between Nodes in the MMFG graph
structure.

As the integration of multimedia features within MMFGs produce a much higher
level-of-detail (LOD), effective and efficient algorithms are required to process these feature
graphs. Hence, we introduced Graph Codes, which are a 2D projection of MMFGs and
corresponding algorithms, performing calculations based on matrices instead of graph
traversal and also support the higher LOD of MMFGs [7]. For these Graph Codes, we
introduced a metric for similarity calculation, the mathematical concepts of the indexing
and retrieval algorithms, including a detailed evaluation regarding performance, precision,
and recall. Figure 1 briefly summarizes this concept as a foundation for subsequent sections
of this paper. Figure 1a shows a snippet of an exemplary MMFG visualized in a graph
editing tool [23]. Figure 1b illustrates a part of the MMFG in an object diagram including
various node and relationship types, which can be represented as a Graph Code table (see
Figure 1c) based on the graph’s valuation matrix. A Graph Code’s matrix representation
is shown in Figure 1d, where the correspondence to mathematical matrix calculations is
obvious (It is notable for multimedia that due to the current object detection algorithms,
MMFGs and their corresponding Graph Codes contain semantic information (e.g., “is a”),
spatial information (e.g., “above”), and also temporal information (by the temporal ordering
of sub-collections of Graph Codes)).
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Figure 1. Exemplary MMFG and its related representations.

To calculate MMIR results based on Graph Codes, a Graph Code Metric is defined, which
can be applied for similarity algorithms. In general, every detected feature can be re-
garded as a multimedia indexing term. The indexing term of any relevant feature thus
becomes part of the vocabulary of the overall retrieval index. In Multimedia Indexing
and Retrieval (MMIR), typically these terms have structural and/or semantic relationships
to each other and represent the basis for semantic query construction and result repre-
sentation. In [7], we already defined a metric for similarity of Graph Codes, which is a
triple MGC = (MF, MFR, MRT) containing a feature-metric MF based on the vocabulary, a
feature-relationship-metric MFR based on the possible relationships, and a feature-relationship-
type-metric MRT based on the actual relationship types. This metric can be applied for
result representation and has to be considered when constructing corresponding queries.
Querying and result presentation based on Graph Codes is discussed in [24].

Current Graph Code Query Construction technologies employ structured query lan-
guages (e.g., SQL, OQL, XML-Query), including Visual Query Languages (VQLs) and
Natural Language Querying (NL) [25]. A Meaning Driven Data Query Language (MD-
DQL) [25,26] can support query construction by system-made suggestions of natural
language based terms. In the field of Natural Language Processing (NLP), there have been
several approaches to automatically translate natural language into structured queries,
e.g., NLP to SPARQL processing [27,28]. Typically, results of these kinds of queries are
represented in the form of ranked lists. All these query construction methodologies require
semantic modeling.

Semantic Representation is covered by the concepts and standards defined by the Seman-
tic Web [29], where the manual, semiautomatic, and automated generation of annotations
is defined. The basis for these representations and annotations is a set of domain-oriented
vocabulary terms. Once a basic "subclass" relationship is introduced between vocabulary
terms, taxonomies can be built, which structure these terms in the form of class/subclass
relationships. Typically, taxonomies also contain a consistent set of predefined textual
labels and synonyms. Thesauri can be used to model further relationships (e.g., “broader”,
“narrower”) for additional structuring, scoping, and increased expressiveness. Resource
Description Framework (RDF) [6] can serve as a foundation. It covers the description of any
kind of resource by employing XML Syntax. The Resource Description Framework Schema
(RDFS) provides domain specific extension points and a standardized model of exchanging
RDF documents. As RDF is based on XML, it can automatically be represented in the form
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of a graph model, which provides the opportunity to employ a mapping to the MMFG on
a structural level. RDF-techniques such as publishing or linking, with a shared data model
can act as a base layer for other technologies [6,29–31]. Finally, ontologies describe arbitrary
relationships between taxonomy terms (now called concepts) going beyond the hierarchical
taxonomy structure. OWL [29] represents these concepts and relationships as classes and
properties [32]. Once such a well-defined formal semantic model is in place, reasoning and
inference algorithms can also be applied to such semantic representations [33].

However, to clearly define how the concepts of an ontology can be combined automat-
ically (e.g., during automatic inferencing), a well-defined grammar [34] is required. Based
on such grammars, an algorithmic implementation can distinguish between valid and
invalid statements of a given formal or natural language. According to [34], a grammar
G = (V, T, P, S) for a language L is defined by the tuple of vocabulary terms V, the list of
terminal symbols T, which terminate valid sentences of L, production rules P, which de-
scribe valid combinations of vocabulary terms and a set of starting symbols S for sentences
of L.

In [35], PS-grammars (Phrase Structure grammars) are employed as a specialized form to
generate language terms by production rules, in which the left side of the rule is replaced
by the right side. If, e.g., α → β is a production rule in P, and φ, ρ are literals in V, then
φαρ → φβρ is a direct replacement. Rules of PS-Grammars (PSG) are further detailed by
four types, 0: unlimited PS-rule, 1: context sensitive PS-rule, 2: context-free PS-rule, 3: regular
PS-rule, which denote systematic restrictions of the production rules. These restrictions
lead to a hierarchy of formal languages and the corresponding calculation and validation
complexities (see Table 1).

Table 1. PS-grammar (Phrase Structure grammar) hierarchy of formal languages according to [35].

Restriction PSG Class Language Class Complexity

type 3 regular PSG regular language linear
type 2 context free PSG context free language polynomial
type 1 context sensitive PSG context sensitive language exponential
type 0 unrestricted PSG recursive enumerable language unsolvable

Typically, when defining grammars, the set V will contain additional classes to struc-
ture the possible production rules (typically defined as Chomsky rules [34]), e.g., classes to
describe Nominal Phrases (NP), Verbal Phrases (VP), Prepositional Phrases (PP), or other word
types such as Adjectives (ADJ), and their location in validly produced sentences [35]. In
many cases, grammars are designed that V ∩ T = ∅. As an example, the sentence “The hat
is above the head” can be represented by the context-free grammar Gen = (Ven, Ten, Pen, Sen)
for simple English sentences:

• Ven = {Sen, NP, VP, V, N, DET, PR} representing the variables of the grammar.
• Ten = {the, hat, is, above, head} is the set of terminal symbols, with V ∩ T = ∅.
• The production rules for this grammar can be defined as follows:

Pen = {Sen → NP VP,

VP→ V PP,

NP→ DET N,

PP→ PR NP}

The production rules of PS− Grammars can be visualized in form of so called PS-
trees [35]. Figure 2 shows such a PS-tree with the sentence, “The hat is above the head”
based on the exemplary MMFG of Figure 1b. In this example, the use of Nominal Phrases
(NP), Verbal Phrases (VP), Prepositional Phrases (PP), and the Start Symbol S are also illustrated.
For example:

• The NP, “The hat”, consists of the determiner “The”, and the noun “hat”.
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• The NP, “the head”, is built by the determiner “the”, and the noun “head”.
• The PP, “above the head”, is constructed by the preposition “above”, and the NP “the

head”.
• The VP, “is above the head”, consists of the verb “is”, and the PP “above the head”.
• The starting symbol for this sentence is constructed by a NP, “The hat” and the VP, “is

above the head”.

Figure 2. Production rules for the example “The hat is above the head” visualized as Phrase-Structure
tree (PS-tree).

By applying these production rules, both construction and the analysis of well-formed
sentences can be approved. The introduction of a grammar is also a prerequisite for reason-
ing [35], where additional semantic features are generated by calculating inferences and
conclusions [36]. A formal grammar for MMFGs and Graph Codes and the corresponding
concepts based on this grammar, is defined in Section 3 (modeling) and will be the basis
for constructing Semantic MMFGs (SMMFG).

To manage and maintain such semantic information based on MMFGs, several more
technical Knowledge Representation and Processing Systems have been specified and in-
troduced. For example, the W3C introduced the Simple Knowledge Organization System
(SKOS) [37] as a standard way to represent knowledge organization systems with RDF [6].
Reasoning (i.e., the automated extension and maintenance of information), Truth Main-
tenance (i.e., the automated calculation of information validity), and Inference Systems
(i.e., deducting new information based on logical rules) also contribute to improving the
semantic information of a MMIR collection [33,38,39].

One common approach for Automated Reasoning and Inferencing is the concept of
Non-monotonic Reasoning [38], which is based on justified beliefs and reasonable assumptions.
Typically, so called Default Logics are employed to represent knowledge in form of rules.
For example, the rule A : b/C is intended to state that, “if A is believed, and each b ∈ B
can be consistently believed, then C should be believed”. A is a prerequisite, b a set of
justifications [33,38]. For the calculation and representation of Default Logic, two major
approaches serve as a foundation and are named after their inventors Reiter [40] and
Poole [41]. Both approaches result in the common concept of Knowledge Extensions, which
represent the set of possible rules, which are assumed (or calculated) to be believed.

Semantic Querying and Retrieval can be performed by employing, e.g., SPARQL [42],
which is a standardized query language that operates on RDF, RDFS, or OWL representa-
tions and also supports the inclusion of semantic features. Semantic reasoning, which is
applied to the underlying semantic representation of an ontology, is often called, “intel-
ligent retrieval”. This means that automatic reasoning can derive new semantic feature
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annotations from existing feature representations. This further means that newly derived
features have not been detected, but are actually derived by means of reasoning. Thus, the
Multimedia object is annotated with additional features that are not a result of extraction
or detection, but derived by logical and semantic reasoning. The resulting feature index
is extended and retrieval results will be more accurate where additional features will be
attributed to MMFGs automatically [36]. In the remainder of this paper, we will call the
originally detected or extracted features, Internal Feature (FInt), and the features that have
been derived by reasoning External Features (FExt).

However, to follow this systematic approach, typically a substantial manual effort
is required to map syntactic feature representations to semantic representations. Further,
the introduction of rules, a basic logic, and truth maintenance criteria must be performed
manually. Hence, in Section 3 we define a formal, standardized, and automated approach
for the integration of these systems.

In summary, we can state that current technologies provide a sufficient set of appropri-
ate algorithms, tools, and concepts for semantic modeling, representation, indexing, and
retrieval. However, concepts such as RDF, RDFS, OWL, SPARQL, or the Semantic Web
mostly rely on graph-based semantic representation structures and thus underlie similar
constraints regarding efficiency as syntactic feature graphs. The introduction of grammars
provides a standardized way of constructing and analyzing well formed sentences. As
Graph Codes provide a set of algorithms to significantly increase effectiveness, LOD, and
efficiency for graph-based IR algorithms; we now present their application and extension
into Semantic Graph Codes and the corresponding processing algorithms.

3. Modeling and Design

In this section, we define and introduce several semantic extensions of syntactic
MMFGs, which serve as a basis for optimized Semantic Graph Code processing and the
corresponding application of semantic concepts such as annotation, topic modeling, rea-
soning, or inferencing. We also introduce Explainable Semantic Graph Codes, providing a
human-readable representation of multimedia feature graphs.

The MMFG has been designed to represent MMIR features on a pure syntactical basis,
containing only, Internal Features FInt. To support semantic extensions for MMFGs, we
apply Semantic Web concepts [29]. In addition, we introduce a context-free PS-grammar
GMMFG for the construction of human-readable, i.e., valid natural language textual phrases
and statements based on MMFG features. This enables the construction of a formal se-
mantic representation on the one hand, and establishes the basis for natural language
textual explanations on the other hand. This combination leads to a well-defined semantic
representation of MMFGs, Semantic Multimedia Feature Graph (SMMFG), and to the Ex-
plainable Semantic Multimedia Feature Graph (ESMMFG). In particular, ESMMFGs can serve
as a basis for inferencing and thus support the production of additional External Features
FExt. The employment of a PS-grammar in addition to the semantic extension has the
advantage that the representation of such an MMFG is not only machine-readable, but
also “human-readable”, i.e., the representation supports transparency, explainability, and
reproducibility for humans.

The structure of this section follows the logical sequence of extensions from simple
MMFGs to semantic SMMFGs and explainable ESMMFGs. Hence, in Section 3.1, we
discuss the initial formal foundation of the chosen approach. In Section 3.2, annotations for
MMFGs are introduced, which are then employed to define the semantic extension in the
form of SMMFGs in Section 3.3. Finally, explainability is introduced by the definition of a
PS-grammar resulting in ESMMFGs in Section 3.4.

3.1. Formal Representation of an MMFG

As shown in the state-of-the-art discussion (see Section 2), MMFGs are purely syn-
tactical structures based on a data model, which forms a multimedia feature graph with
nodes and edges. The formal model of such a syntactic MMFG representation is shown in
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Figure 3a. Here, and in subsequent sections, we further detail and extend the exemplary
MMFG from Section 2, which serves as a exemplary syntactic representation of a simple
MMFG (see Figure 3b). To support the formal representation of such an MMFG with a
formal language (i.e., grammar), an additional element—the root node SMMFG—must
be defined, which acts as a starting symbol for valid formal language expressions (see
Section 1). This is shown in Figure 3b.

Figure 3. MMFG overview: (a) formal model of the syntactic MMFG representation; (b) formal
syntactic schema of the MMFG representation of MMFGex; (c) additional starting symbol SMMFG.

A basic grammar GMMFG = (VMMFG, TMMFG, PMMFG, SMMFG) for the construction
of valid MMFG-sentences (see Section 2) can be formalized as

• VMMFG = FRT ∪ FVT is the set of feature relationship terms FRT and the set of
feature vocabulary terms (FVT).

• TMMFG is a set of textual labels (LBL) for elements in FRT and FVT.
• PMMFG is the set of production rules, which produce sentences based on, FRT and

FVT. In its simplest form, P can be defined as:

P = {
S→ FVT FRT FVT

FVT → LBL

FRT → LBL

}

• SMFG is the root node of an MMFG.

When such an initial grammar is applied to the exemplary MMFG of Figure 3c, formal
language expressions such as, “person has-child head. head has-child hat. hat is-above
head.”, can be produced based on feature vocabulary terms and feature relationship terms.
All these sentences are built on the pattern, node-relationship-node. Although this initial
grammar could be employed for a basic representation of syntactical MMFGs, further
extensions must obviously be constructed, particularly with respect to supporting higher
level semantics and improving human readability. This initial grammar leaves the following
open challenges:

• The initial grammar does not yet represent the syntactic structure of MMFGs.
• The initial grammar is not a context-free PS-grammar.
• The initial grammar for MMFGs does not reflect the structural elements of MMFGs

and their corresponding production rules. For example, the structural element cn
(i.e., child node) should be transformed into the grammatical structure, “has a child
named”, represented by several textual labels. Another example would be the spacial
relationship, sr : above, which should be represented by a set of textual labels forming
the phrase, “is above of”.

• The initial grammar does not provide a semantic description of the syntactic relation-
ships.
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However, this initial definition illustrates the overall approach of representing MMFG
structures with a formal language grammar with an approximation approach. Based
on this, we now formally model semantic and explainable MMFGs and hence introduce
several extensions to MMFGs and the corresponding grammars.

3.2. Enabling Annotation of Formal MMFG Representations

Modeling a formal representation for MMFGs, we initially apply an annotation pattern
to support the linking of external semantic annotations with a special node type Annotation
Anchor (aa) to represent a link to an external semantic annotation. Such annotation anchors
can be linked to syntactic MMFG nodes or syntactic relationships with a special relationship
type, the Annotation Relationship (ar). To support this, the representation of all MMFG
relationships has also been extended by corresponding annotation anchors to allow their
semantic annotation. Thus, any syntactic MMFG node or relationship can be linked with
an annotation relationship to an annotation anchor. This means that any syntactic resource
within an MMFG can be semantically annotated.

The formal representation of such a basic MMFG including annotation anchors is
shown in Figure 4a and is further detailed in the following sections. Figure 4b shows the
extension of an exemplary MMFG by Annotation Anchors (aa) and Annotation Relationships
(ar). To clearly distinguish between a feature and its textual representation, the introduced
variable LBL is employed, which allows the production of human-understandable textual
representations of MMIR features.

Figure 4. MMFG overview including Annotation Anchors (aa) and Annotation Relationships (ar):
(a) formal model; (b) formal syntactic schema of the MMFG representation MMFGex.

With these extensions, MMFG nodes and relationships can initially be linked to ele-
ments of existing semantic representations of vocabularies, taxonomies, or ontologies, and
their corresponding machine-readable representations in the Semantic Web. The grammar
GMMFG can be extended to support the construction of formal language expressions in-
cluding the annotation pattern by adding the elements ar and aa to the set VMMFG, so that
VMMFG = FRT ∪ FVT ∪ ar, aa and by refining the production rules as follows:

PMMFG = {SMMFG → FVT FRT FVT,

FVT → ar,

FRT → ar,

ar → aa,

aa→ LBL}

Now, the grammar GMMFG supports the construction of additional language ex-
pressions such as: “person is-annotated-with-the-semantic-concept rdf:person. has-child
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is-annotated-with-the-semantic-concept rdf:related. head is-annotated-with-the-semantic-
concept rdf:head”. This annotation pattern will now be further employed as a basis for the
semantic representation of MMFGs.

3.3. Semantic Annotation of Formal MMFG Representations

The introduction of annotation anchors and annotation relationships is a purely syntactic
extension; however, this syntactic structure must be annotated semantically. Hence, we now
introduce a semantic annotation, which means that each syntactical element of an MMFG
will be annotated with semantics and the purely syntactic MMFG becomes a semantically
annotated MMFG—a Semantic Multimedia Feature Graph (SMMFG). For such an SMMFG,
we define the following additional elements or structures:

• A Semantic Node Representation (snr) for each MMFG node, and a Semantic Relationship
Representation (srr) for each MMFG relationship. These elements are required to
represent the meaning of both nodes and relationships semantically.

• A set of Semantic Feature Vocabulary Terms SFVTSMMFG and a set of Semantic Relation-
ship Vocabulary Terms FRVTSMMFG. In previous work [7,43], we already defined the
set FVTMMFG as the representation of all syntactic MMFG vocabulary terms (i.e., the
textual labels of detected features). In an SMMFG, the semantic of each syntactic vo-
cabulary term, f vti ∈ FVTMMFG, is now represented by a semantic feature vocabulary
term s f vti ∈ SFVTSMMFG. Analogously, the set, SRVTSMMFG, is defined as the set of
semantic representations of labels related to syntactic MMFG relationships.

• While in an MMFG, relationships are simply represented by their relationship type
(e.g., cn, sr, s), in SMMFGs, these relationship types are modeled by Semantic Rela-
tionship Vocabulary Terms (srvt), which represent the semantics of vocabulary terms
describing the relationship type.

• In an MMFG, each node and each relation is linked by an Annotation Relationship (ar)
to an Annotation Anchor (aa), which now represents a Semantic Node Representation
(snr) or a Semantic Relation Representation (srr). An Annotation Anchor (aa) is a URI for
the node or relation it represents and used to link these MMFG nodes or relations to
semantic node representations and semantic relationship representations.

• In an SMMFG, the hasName relation links Semantic Node Representations with Semantic
Feature Vocabulary Terms and Semantic Relation Representations with Semantic Relationship
Vocabulary Terms. Each srr is linked via the hasDomainNode and hasRangeNode relations
to the corresponding snr’s.

Figure 5a shows how Annotation Anchors can now be linked with snr and srr to
semantic concepts described in the sets, SFVTSMMFG, and SRVTSMFG. As already outlined,
the semantic representation of the syntax of an MMFG contains relationships itself. For
example, each srr has two relationships, hasDomainNode and hasRangeNode, which link to
corresponding snr elements. They form the 1st level semantic annotation of an MMFG and
thus a Semantic Multimedia Feature Graph (SMMFG). The 2nd level semantic annotation is
modeled by the elements of s f vt and srvt, which represent the semantic information of the
feature vocabulary terms. Figure 5b shows the semantic extension applied to the above
example.
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Figure 5. SMMFG overview: (a) formal model of the syntactic SMMFG; (b) formal syntactic schema
of the SMMFG representation SMMFGEx.

Based on these syntactic extensions, also the formal grammar, GMMFG can be extended,
resulting in a formal grammar, GSMMFG for the representation of valid formal language expres-
sions of SMMFG structures. GSMMFG = (VSMMFG, TSMMFG, PSMMFG, SSMMFG = SMMFG),
where

• VSMMFG = VMMFG ∪ SNR∪ SRR∪ SFVTSMMFG ∪ SRVTSMMFG is the set of semantic
representations of descriptions of MMFG nodes and relationships (see also Figure 5).

• TSMMFG is an extension to, TMMFG, and includes additional textual descriptions
of the semantic relationships: “hasName”, “hasDomainNode”, “hasRangeNode”,
“describes”.

• PSMMFG extends the production rules, PMMFG, as follows:

PSMMFG = PMMFG ∪ {
srr → snr snr SRVT aa

snr → SFVT aa

aa→ LBL∗
}

The grammar GSMMFG supports the construction of additional language expressions
such as, “the-semantic-concept rdf:person hasName person. the-semantic-concept rdf:head
hasName head. there-is-a-semantic-relationship-between rdf:person and rdf:hat which has-
DomainNode rdf:person and hasRangeNode rdf:head. the-semantic-relationship between
rdf:person and rdf:head is-described-by rdf:relation and hasName rdf:related”.

Although these sentences describe further details of a SMMFG in a formally correct
way and increase the readability for machines, human-readability decreases due to the
mixture of syntactic, semantic, and structural labels. This means that until now human-
readability depends on the selection of adequate readable and understandable textual
labels. To eliminate this dependency, an automated construction of human-readable textual
expressions must be achieved. Summarizing this, until now we defined a formal way to
represent syntactic and semantic elements of MMFGs and SMMFGs by introducing the
formal grammars, GMMFG and GSMMFG, with which not only the syntactic structure of
an MMFG, but also the semantic enrichment of SMMFGs, can be represented by formal
language expressions. To achieve our final goal of human-understandable i.e., natural lan-
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guage expressions, we introduce a PS-grammar in the next section, which transforms these
machine-readable expressions into human-readable expressions.

3.4. Explainable SMMFGs

In Section 2 we introduced the concept of context-free PS-grammars. This type of
grammar is typically employed for the production of natural languages consisting of e.g.,
Nominal Phrases (NP), Verbal Phrases (VP), nouns (N), verbs (V), adjectives (A), determiners
(DET). The grammar Gen = (Ven, Ten, Pen, Sen) from Section 2 can be employed to produce
valid English sentences (as illustrated in Figure 2).

Based on the grammars, Gen, GMMFG, and GSMMFG, we can now define such a context-
free PS-grammar, GESMMFG, which transforms any MMFG or SMMFG formally into
human-readable (i.e., explainable) natural language expressions. MMFGs or SMMFGs
that are extended in this way, become explainable and will be called Explainable Semantic
Multimedia Feature Graphs (ESMMFG) in the remainder of this paper. Figure 6 shows the
introduction of the PS-grammar and the corresponding schema for the syntactic ESMMFG
representation.

Figure 6. ESMMFG overview: (a) formal model of the syntactic ESMMFG representation; (b) formal
schema of the syntactic ESMMFG representation.

Formally, we define, GESMMFG = (VESMMFG, TESMMFG, PESMMFG, SESMMFG) as fol-
lows:

• The variables, VESMMFG are based on the variables, Ven, of the English grammar, Gen,
and additionally includes the variables of the previously defined grammars:

VESMMFG = Ven ∪VMMFG ∪VSMMFG
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It thus represents the union of variables defining the English grammar (i.e., Ven =
NP, VP, V, N, DET, PR), the syntactic elements of an MMFG (i.e., VMMFG = FRT ∪
FVT ∪ {ar, aa}), and the semantic enrichment (i.e., VSMMFG = VMMFG ∪ SNR ∪ SRR ∪
SFVT ∪ SRVT).

• TESMMFG ∩VESMMFG = ∅ is the set of terminal symbols and represented by the labels
LBL, which can be regarded as any English word of type noun, verb, determiner,
adjective, or preposition. The production of these words is based on the semantic
feature and semantic relationship vocabulary. The order, in which such LBLs can be
arranged to formulate valid expressions, is given by the following production rules.

• PESMMFG is the set of production rules and defines how the MMFG and SMMFG struc-
tures can be formally transformed into valid natural language expressions. PESMMFG
also contains the simple production rules previously defined in, PMMFG and PSMMFG;
however, the phrase structure of, PESMMFG, leads to various additional and refining
elements:

PESMMFG = {
SESMMFG → FVT

FVT → FVT FRT FVT

FVT → ar SNR

FRT → ar SRR

SRR→ SRVT SNR SNR

SNR→ SFVT NP VP

SRVT → NP VP

SFVT → NP VP

ar → aa

aa→ LBL

VP→ V PP

PP→ PR NP

NP→ DET N

PR→ LBL

N → LBL

V → LBL

DET → LBL

}

• SESMMFG = SSMMFG = SMMFG is the starting symbol for any valid expression. This
means that any natural language representation of an MMFG or SMMFG starts with
the processing of the root-element; however, as the root-node of an MMFG is a node
itself, GESMMFG, can also be employed to produce expressions of subgraphs of an
MMFG or SMMFG.

The application of the production rules PESMMFG is shown in Figures 7–9. For illustra-
tion purposes, some of the production rules representing mostly internal structures have
been omitted for readability purposes.
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Figure 7. PS-tree with production rules, PESMMFG, of, GESMMFG, applied to MMFGex.

Figure 8. PS-tree with production rules, PESMMFG, of, GESMMFG, applied to SMMFGex including
annotation anchors.

Figure 9. Snippet of the PS-tree with production rules, PESMMFG, of GESMMFG, applied to SMMFGex,
including semantic feature vocabulary terms.

These examples show that the expressiveness of ESMMFGs increased significantly
with the introduction of, GESMMFG, and that natural language sentences can now be built
formally based on syntactic and semantic structures of MMFGs.

It is important to note that any natural language expression that is generated based on
GESMMFG is content-wise true (i.e., correct) as it purely represents the original multimedia
features in a formal, but human-readable way. In addition, GESMMFG, provides unlimited
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options for the production of valid natural language expressions due to its underlying
phrase structure. This means that any multimedia feature can now be represented as
a natural language, human-readable text. It is up to the application to define, which
phrases should be used, which level of abstraction should be applied, or which subset of
MMFG-nodes has to be selected for the natural language representation. Examples of the
application of, GESMMFG, to multimedia features of various domains is given in Section 5
(evaluation).

The formal definition of GESMMFG furthermore guarantees that any element of an
MMFG (i.e., any detected multimedia feature) can be structurally and semantically rep-
resented. It also ensures that the semantic information of any multimedia feature can be
mapped to semantic systems, interpreted, and employed for inferencing and reasoning.
Furthermore, any MMFG can now be represented as a syntactically correct and human
readable text, which further supports automatic processing by employing a selection of
numerous text-bases algorithms, e.g., for argument extraction; however, the generated text
is highly dependent on the construction of phrases based on the detected (or calculated)
MMIR features in the original MMFG. As this textual representation might be different
depending on the MMIR processing step (e.g., the explanation of query construction, result
presentation, or the ranking of an element in the result list), also different strategies for
the construction of phrases need to be employed. This is reflected by introducing various
subclasses for the corresponding processing steps as illustrated by the implementation
samples (see Section 4).

Currently, the order of the constructed sentences is based on the order of nodes in the
original MMFG data structure. This will produce good results for text-based multimedia
documents, as the order of explaining texts will follow the document structure; however,
for other multimedia types (e.g., images), the order of the descriptions of detected objects
will be random. This can be subject to further improvements in future work. It should
also be mentioned that the presented concept is a pure mathematical approach to calculate
explaining texts for multimedia features without any need of machine learning tasks as,
e.g., in deep LSTM language modeling [44].

In this section, we outline how an MMFG can be semantically represented and ex-
tended by a Semantic Multimedia Feature Graph. We define how explainability and trans-
parency can be introduced to syntactic data structures based on MMIR features resulting in
explainable multimedia feature graphs. To evaluate the full potential of this semantic extension,
we apply this concept to the Generic Multimedia Analysis Framework (GMAF), in which
MMFGs and now also SMMFGs, and ESMMFGs can be processed employing Graph Codes,
which are particularly optimized for MMIR calculations. Hence, in the following subsec-
tion, we show briefly how the concept of Graph Codes can be semantically represented and
extended by applying the algorithms of Graph Codes to Semantic Multimedia Feature Graphs.

3.5. Semantic Graph Codes

Graph Codes are a 2D representation of MMFGs, which are computationally optimized
particularly when employed for MMIR. They are calculated from MMFGs by employing
an encoding function, fenc, which transforms an MMFG into the Graph Code structure. In
the following subsections, we define how Graph Codes can be transformed into Semantic
Graph Codes with corresponding operations.

Until now, the dictionary of a Graph Code (GC) is based on the feature vocabulary
terms of detected features (i.e., textual labels describing detected features) of the MMFG.
The dictionary of Semantic Graph Codes (SGC) is based on the semantic representation of the
meaning of such feature vocabulary terms, i.e., unique labels of elements of SNR. Thus, in
a SGC, unique identifiers are used to represent the dictionary. However, this representation
can lead to ambiguous representation possibilities.

For example, the feature vocabulary term, Jaguar, of a Graph Code, GCJaguar, could be
connected to the semantic node representation for an animal, but it could also be connected
to the semantic node representation for a car. To solve these problems, a function, sq(vti),
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is introduced to determine the unambiguous semantic representation of the meaning of a
feature vocabulary term. sq(vti) performs a semantic query for each, vti, to the semantic
model and receives either a single unique result, snri ∈ SNR, representing the meaning of,
vti, or it receives a list of possible results (e.g., the Jaguar-animal or the Jaguar-car semantic
nodes). To identify the correct element in this list of possible results, we apply the Graph
Code Similarity algorithm to, GCJaguar, and each element of the result list. To do this, for
each element of the result list, we perform an additional query on the semantic model
(e.g., for the Jaguar-car) and represent the result as an MMFG, which is then transformed
into a Graph Code, GCResulti

, GCResultj
. The, GCJaguar, will not just contain the detected

feature vocabulary term Jaguar, but additional information. As Graph Codes support a high
Level-Of-Detail (LOD) and are generated by recursive processing, they will also contain
numerous additionally detected feature vocabulary terms, such as wheel, road, window, ... or
whiskers, teeth, furr, .... Our query to the semantic model also returns relationships of the
Jaguar to semantic node representations of some of these detected feature vocabulary terms.
Thus, if the Jaguar in our MMFG is a car, the similarity to the result of the semantic query
for the Jaguar-car will be more similar to, GCJaguar, than the result of the Jaguar-animal query.
In addition, topic modeling can be applied to further optimize the selection of semantic
query results as unambiguous semantic node representations.

Summarizing this, the construction of Semantic Graph Codes utilizes a semantic query,
sq(vti), for each feature vocabulary term, vti, to identify the unambiguous semantic node
representation, snri. To construct SGCs, the encoding function, fenc, has to be modified to
employ, sq(vti), when calculating the dictionary for SMMFGs:

fenc(MMFG) = GCMMFG (1)

fenc(SMMFG) = SGCSMMFG (2)

∀snri ∈ SMMFG, ∀vti ∈ MMFG : sq(vti) = snri (3)

In addition to the calculation of IDs, fenc will also eliminate synonym and relationship
nodes from a SGC-dictionary, as they are represented in the corresponding semantic model.
So, fenc will return an empty value for MMFG nodes of the type Synonym.

For further illustration of our example (see Figure 1c), we define the function, sq(vti),
in a way that it returns the following values for the vocabulary terms of this example (see
Table 2).

Table 2. Exemplary function, sq(vti), and values for GCex.

vti sq(vti)

Person 101
Head 102
Hat 103

above 104
Individual -

Human Being -

For the vocabulary terms “Individual” and “Human Being” representing MMFG
nodes of type Synonym, the function, sq(vti), does not return any value, as these relation-
ships are already represented by the semantic model and hence do not need to be repeated
in each individual Semantic Graph Code. Applying, sq(vti), and fenc, to our example would
result in a compressed Semantic Graph Code SGCex (see Table 3).
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Table 3. Table representation of, SGCex2, including external unique identifiers as row and column
descriptors.

SGCex 101 102 103 104

101 1 3 0 0
102 0 1 3 0
103 0 0 2 5
104 0 0 0 6

Further concepts of Graph Codes, such the calculation of similarity, recommendations,
querying, or result presentation remain unchanged. However, it should be noted that
Semantic Graph Codes lead to a further compression of the Graph Code matrix, as synonyms,
or common knowledge can be removed from the Graph Code, as it is already represented
in the external semantic system. Furthermore, new knowledge that exists in the external
system can be employed for Semantic Graph Codes, serving as a basis for inferencing and
reasoning. As the initial construction of Graph Codes is purely based on the detected feature
vocabulary terms of a given multimedia object, the Graph Code vocabulary is typically very
small. For Semantic Graph Codes, these feature vocabulary terms are translated into semantic
IDs, or even removed, when they exist in the general semantic model of the application,
which leads to a further compression, but also requires a representation of the overall
semantic model (i.e., the ontology or taxonomy). This model can be represented in an
SKOS, which is queried at runtime to identify such vocabulary terms. It is also possible to
represent the complete semantic knowledge in the form of a Semantic Graph Code; however,
this would lead to a very high number of feature vocabulary terms (i.e., any term in the
ontology), and to very large Semantic Graph Codes. This approach is not recommended, as
Graph Codes are optimized for indexing and not for knowledge representation.

3.6. Summary

In this section, we discussed our approach to formally defining natural language
expressions from multimedia feature graphs. We showed how a context-free PS grammar
can be built to generate human-readable English sentences formally and thus are able to
close the gap between the technical representation of a multimedia feature and a human-
understandable representation of the meaning of such a feature. We also showed how
semantics can be introduced to the GMAF framework in the form of Semantic Graph Codes.
Based on this modeling, we now provide further details of the implementation in the next
section.

4. Implementation

Basis for the implementation of the semantic extensions and concepts discussed is
the current GMAF prototype, which is written in Java and has a Java Swing UI attached.
The prototype including the presented code samples of this section is available at [9], and
frequently updated according to the ongoing progress of this research. Following the
Factory Design Pattern [45], the GMAF has been extended to utilize external semantic
representation frameworks. In this section, we discuss exemplary implementation details.
First of all, in Section 4.1, the representation of SMMFGs by RDF and RDFS is given.

4.1. RDF and RDFS Representation of MMFGs

As discussed in Section 3 (modeling), we can represent any SMMFG with RDF and
RDFS. The implementation of this is shown here:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="MMFG">
<rdfs:comment>MMFG Root Node Class</rdfs:comment>
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</rfds:Class>

<rdfs:Class rdf:ID="Node">
<rdfs:comment>MMFG Node Class</rdfs:comment>
</rfds:Class>

<rdfs:Class rdf:ID="Annotation_Anchor">
<rdfs:comment>Annotation Anchor</rdfs:comment>
</rfds:Class>

<rdfs:Class rdf:ID="Relationship">
<rdfs:comment>Relationship</rdfs:comment>
</rfds:Class>

<rdf:Property rdf:ID="Feature">
<rdfs:comment>Feature respresenting nodes of a MMFG
</rdfs:comment>
<rdfs:domain rdf:resource="#MMFG"/>
<rdfs:range rdf:resource="#Node"/>
</rdf:Property>

<rdf:Property rdf:ID="cn">
<rdfs:comment>child relationship
representing the level of detail
</rdfs:comment>
<rdfs:domain rdf:resource="#Node"/>
<rdfs:range rdf:resource="#Relationship"/>
</rdf:Property>

<rdf:Property rdf:ID="sr">
<rdfs:comment>Spacial relationship</rdfs:comment>
<rdfs:domain rdf:resource="#Node"/>
<rdfs:range rdf:resource="#Relationship"/>
</rdf:Property>

<rdf:Property rdf:ID="s">
<rdfs:comment>Synonym relationship</rdfs:comment>
<rdfs:domain rdf:resource="#Node"/>
<rdfs:range rdf:resource="#Relationship"/>
</rdf:Property>

<rdf:Property rdf:ID="ar">
<rdfs:comment>Semantic relationship</rdfs:comment>
<rdfs:domain rdf:resource="#Relationship"/>
<rdfs:range rdf:resource="#Annotation Anchor"/>
</rdf:Property>

<rdf:Property rdf:ID="aa">
<rdfs:comment>Semantic relationship</rdfs:comment>
<rdfs:domain rdf:resource="#Node"/>
<rdfs:range rdf:resource="#Annotation Anchor"/>
</rdf:Property>
</rdf:RDF>

This implementation allows the transformation of a pure syntactical vocabulary into
a semantic vocabulary, as now the syntactical model of a SMMFG can be represented by
a formally well-founded semantic schema. Thus, the syntactic labels can be linked to or
represented as semantic concepts. This means that any information of the above example
can now be represented with RDF-statements as follows:
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<rdf:RDF>
<rdf:Statement rdf:about="mmfg:Statement">
<rdf:subject rdf:resource="Node:Hat"/>
<rdf:predicate rdf:resource="Relationship:above"/>
<rdf:object rdf:resource="Node:Head"/>
</rdf:Statement>
...
</rdf:RDF>

Additionally, any information can now be linked to external semantic concepts:

<rdf:RDF xml:lang="en" ... xmlns:mmfg="mmfg.rdf">
...
<mmfg:Node rdf:about="Node">
<mmfg:name>Hat</mmfg:name>
</mmfg:Node>

<mmfg:Hat>
<mmfg:sr rdf:resource="mmfg:Head" rdf:about="above"/>
<mmfg:ar rdf:resource="mmfg:rel_3"/>
</mmfg:Hat>

<mmfg:Relationship>
<mmfg:name>rel_3</mmfg:name>
<mmfg:aa rdf:resource="mmfg:aa_3"/>
</mmfg:Relationship>

<mmfg:AnnotationAnchor>
<mmfg:name>aa_3</mmfg:name>
<mmfg:comment>
URI of external semantic representation
</mmfg:comment>
</mmfg:AnnotationAnchor>
...
</rdf:RDF>

As the MMFG is now represented in RDF and RDFS and thus aligned with semantic
concepts, a further integration based on the GMAF framework can be implemented. This
is described in the next subsection.

4.2. Semantic Extension of the GMAF

For each MMIR application based on the GMAF, an external semantic framework can
be attached by implementing (and configuring) an adapter class, which is defined by the
interface Semantic Extension (see Figure 10). The detected vocabulary term is then passed to
the external semantic framework.
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Figure 10. Factory implementation to attach external semantic frameworks.

Whenever Semantic Graph Codes must be calculated (i.e., for indexing, retrieval, query-
ing, filtering) in the GMAF, this extension is called to provide information from or to an
external semantic representation. In our prototype, we built two implementations for this.
One serves as a reference for the connection of external semantic representations and is
implemented to employ the Semantic Web (class SemWebExtension), the other serves as
an internal default implementation to illustrate and validate the concepts of Section 3, in
particular relevance and topic calculation and inferencing (class DefaultExtension).

4.3. Semantic Representation

As external semantic representation, several tools, databases, or services can be ap-
plied. In our prototypical implementation, we chose Wikidata [46,47], as it not just serves
as a basis for many other MMIR applications, it also provides a fully functioning SPARQL
interface [42], which can be utilized for semantic querying. Hence, attaching Wikidata to
the GMAF is straightforward as illustrated in Figure 11.

Figure 11. Querying an external semantic system for unique IDs with SPARQL.
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As Wikidata already supports SPARQL, GMAF-SPARQL-Queries can simple be for-
warded and fused with already existing Query Graph Codes. The resulting Semantic Graph
Codes are displayed in the GMAF-UI as shown in Figure 12 and can be applied to all kind
of queries (including Manual Querying, Query By Example, and Query Refinement) [24]
and result presentation.

Figure 12. GMAF-UI displaying image: (a) Graph Codes; (b) the corresponding Semantic Graph Code.

As illustrated in this subsection, connecting external semantic representation systems
to the GMAF is quite straightforward. In the case of external systems, the effectiveness
of semantic results in terms of precision and recall experiments mainly depends on the
external system. In our evaluation, we wanted to compare our internal default representa-
tion and the algorithms for topic modeling and intelligent information retrieval with these
external systems, as semantic extensions are handled transparently within the GMAF (i.e.,
the GMAF itself does not perform any enrichment or modification). Hence, in the next
subsection, we discuss the implementation of the defaults, which will also be employed
later for evaluation purposes.

Summarizing this, we showed in this section that the semantic extension to the GMAF
can be implemented based on an interface extension point, which generically provides
access to external systems. If no such external system is available, the internal default
algorithms for semantic extensions can serve as a good alternative, as Graph Codes and their
metrics provide a well-defined mathematical model for intelligent information retrieval.
An evaluation of our implementation including experiments is given in Section 5.

4.4. Explainability

For the implementation of Explainable Semantic Multimedia Feature Graphs, we apply
the design patterns, Interpreter, Composite, and Facade. The Composite pattern is employed to
recursively process ESMMFG nodes and to construct the final human-readable text. The
Interpreter pattern is chosen to represent the phrase structure of the underlying grammar,
where each existing element (e.g., NP, VP, FVT) is encapsulated by a subclass being respon-
sible for the correct construction of valid expressions. Finally, the Facade pattern serves as a
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wrapper and provides a simple API, with which explanations of a given MMFG can be
generated. A simple call of this module can be made as follows:

public class Explainer {
public static String explain(MMFG mmfg, int levelOfDetail,
int languageLevel) {
SMMFG smmfg = new SMMFG(mmfg);
ESMMFG esmmfg = new ESMMFG(smmfg);
LanguageModel model =
LanguageModel.getInstance(languageLevel);
String text = model.produceText(esmmfg, levelOfDetail);
return text;
}
...
}
...
public abstract class LanguageModel {
public static final int SIMPLE = 0;
public static final int NORMAL = 1;
public static final int COMPLEX = 2;

public static LanguageModel getInstance(int languageModel) {
if (languageModel == SIMPLE)
return new SimpleLanguageModel();
else if (languageModel == COMPLEX)
return new ComplexLanguageModel();
else return new DefaultLanguageModel();
}

public abstract PSTree producePSTree(
ESMMFG esmmfg, int levelOfDetail);
public abstract PSTree produceQueryPSTree(
ESMMFG esmmfg, int levelOfDetail);
public abstract PSTree produceResultPSTree(
ESMMFG esmmfg, int levelOfDetail);
public abstract PSTree produceComparisonPSTree(
ESMMFG esmmfg1, ESMMFG esmmfg2);

public final String produceText(ESMMFG esmmfg,
int levelOfDetail) {
PSTree ps = producePSTree(esmmfg, levelOfDetail);
return ps.createSentence();
}
}

The parameter levelO f Detail is used to define the number of recursions that should
be applied for the generation of natural language text. This directly corresponds to the
level of detail of the detected MMIR features. The parameter languageLevel can define the
style of the produced natural language text. Currently, there is a selection of simple, medium,
and complex. Furthermore, for each step of the MMIR process, a different PS-Tree can be
constructed. For example, the method produceComparisonPSTree will calculate a PS-Tree
with phrases to explain why esmmfg1 has been ranked before esmmfg2 in a result list. The
method produceResultPSTree calculates a PS-Tree with phrases that explain why an element
is part of the result list. Further, the method produceQueryPSTree would construct a PS-tree
with phrases to outline, which query has been calculated e.g., from a given keyword list or
from a query by example pattern. The solution has been implemented in an extendable
way, so that further subclasses of LanguageModel can be employed to refine, extend, or
newly define human-understandable natural language phrases. Figure 13 shows the result
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for a given image with settings, levelO f Detail = 2 and languageLevel = Simple. Figure 13
also shows the integration of explainability into the GMAF user interface.

Figure 13. GMAF-UI displaying a human-readable explanation of an image.

5. Evaluation

In this section, we discuss concept and algorithm evaluation. In previous work [7], we
evaluated Graph Codes retrieval against existing graph-traversal-based algorithms and were
able to prove that their efficiency and effectiveness are superior to graph-based solutions.
In the first part of this section, we extend this previous evaluation by experiments based
on Semantic Graph Codes based on images from the Flickr30k and the DIV2K dataset. In
the second part of this evaluation section, we chose to employ the text sample dataset of
the 2021 TREC conference’s News evaluation [48] with 600.000 full-text articles from the
Washington Post [5] to illustrate semantic retrieval and inference.

5.1. Semantic Retrieval

To determine the effectiveness of the Graph Code Algorithm, we selected five test queries
from the annotations of a random set of 1000 Flickr30k images and calculated values for
precision and recall for these [7]. When Graph Codes are transformed into Semantic Graph
Codes, the same evaluation employs synonyms and “is-a” relations of the external (or
internal) semantic model. In the following experiment, we compared our previous results
with results based on external and attached internal semantic models. Table 4 shows
the measured results for queries based on data, which contain rel, relevant results, sel,
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matching results. The columns, Precision PB, Recall RB, and the F1-score (F1 = 2 ∗ PB∗RB
PB+RB

),
F1B contain values for the basis experiment without any semantic extension. The values in
columns PI , RI , and F1I are calculated for the internal semantic analysis, and the values in
columns PE, RE, and F1E are calculated when using an external semantic model, in this
case the Wikidata extension.

Table 4. Effectiveness based on the Flickr30k dataset.

Dog Man Golf Guitar Bicycle Avg

Basic Experiment

tpB 188 119 5 17 54
tnB 2 85 2 13 24

PB 0.98 0.53 0.71 0.56 0.69 0.71
RB 0.91 0.25 0.45 0.89 0.94 0.69
F1B 0.94 0.35 0.55 0.69 0.80 0.67

Attachment of External Framework

tpE 188 309 6 26 63
tnE 2 104 2 6 19

PE 0.98 1.51 0.85 0.86 0.80 1.00
RE 0.91 0.67 0.54 1.36 1.10 0.92
F1E 0.94 0.92 0.66 1.06 0.93 0.90

The findings of this experiment can be summarized as follows:

• Any semantic enrichment increases the values for precision and recall (summarized
by their F1 value) by 18% (see bold in Table 4).

• An additional 4% increase can be achieved, when an external semantic system is
connected.

These results for effectiveness are currently applied to an image dataset [49]; however,
in many MMIR applications, text retrieval rates of effectiveness are also important. Hence,
in the next subsection, we discuss the evaluation of our algorithms based on text datasets.

5.2. Text Retrieval and Inference

For the evaluation of text retrieval, we employed the TREC2020 dataset of the Wash-
ington Post News Archive [5,48], and followed the evaluation criteria of the TREC2021
challenge, which is based on Similarity (Top-10) and Recommendations (Top-10). For both
tasks, the calculation of a semantic model of each text is required, in our case an MMFG
and the corresponding SGC, including the application of a metric. As discussed in [24],
similarity can be calculated by applying, MF, based on semantic vocabulary terms, and
recommendations are calculated by applying, MRT . For this evaluation, we measured
effectiveness based to the published results of previous years. In the first test scenario, we
applied a standard “Bag-Of-Words” algorithm without any semantic enhancement. The
second test-scenario then employs the full semantic analysis and features described in
Section 3, but does not yet include reasoning and inferencing. This is added in the third
experiment. In the fourth scenario, we attached an external framework (Wikidata) and
compared all the results to the TREC reference results. We measured the values, PSim,
and RSim, as Precision and Recall of Similarity, i.e., if the retrieved documents are in the
Top-10-List, PRec, and RRec, as Precision and Recall for the Recommendation Top-10, and
the corresponding F1Sim, and F1Rec values.

This experiment shows that the introduction of semantics to text analysis provides
an increase in effectiveness of 150% (see in Table 5). The difference between an external
and internal implementation exists, but is not very significant and highly dependent on
the dataset and the external system. A more detailed evaluation of external systems can
provide further insight; however, in the context of this paper, we are able to prove that the
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concepts of Section 3 are also valid for text retrieval and provide a significant increase in
effectiveness.

Table 5. Result of text analysis based on the Washington Post News dataset.

Experiment PSim RSim F1Sim PRec RRec F1Rec

Bag-Of-Words 0.3 0.3 0.3 0.2 0.2 0.2
Internal Impl. 0.7 0.7 0.7 0.6 0.6 0.6
Inferencing 0.8 0.8 0.8 0.8 0.8 0.8
External Impl. 0.7 0.8 0.7 0.5 0.5 0.5

5.3. Explainability

In addition, to these results in the area of efficiency and effectiveness, Explainability has
also been evaluated. For this evaluation, we generated various texts describing a number
of typical MMIR asset types and their corresponding features. An exemplary text is shown
in Figure 13.

Thus, in this evaluation section, we were able to show that semantic enrichment
of MMIR applications provides a significant increase in retrieval effectiveness. We also
showed that explainability provides a huge potential, in particular, in combination with
Semantic Graph Codes, topic modeling, and intelligent information retrieval, improvements
of up to 150% can be achieved. Finally, in the next section, we summarize our results.

6. Conclusions and Future Work

In this paper, we discussed concepts and algorithms for narrowing the semantic
gap [1], i.e., the gap between detected features in multimedia objects and the meaning of
these features. We introduced a well-defined semantic representation of the MMFG and
enhanced the concept of Graph Codes to fully support semantic querying, filtering, reason-
ing, and inferencing. Both external and internal implementations of the semantic model
can be attached to the GMAF, which opens a varied range of extensions to existing MMIR
applications and standards. In addition, we showed that our internal default algorithms
are also highly effective, and can serve as a solid basis for further implementations. In our
evaluation of both image- and text-based datasets, the results of our Semantic Graph Code al-
gorithms and the corresponding concepts give evidence for our modeling approach. Hence,
Semantic Graph Codes are an effective and efficient foundation for automated reasoning and
inferencing for any MMIR application.

However, there are still some remaining challenges: the presentation of inferencing
conflicts to the user, the implementation of additional integration with existing SKOS
systems, further implementation of language models, and the evaluation of our implemen-
tation with further datasets. These challenges will be part of our ongoing and future work,
which is also frequently updated in our GitHub repository [9].
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