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Abstract: During the search for S-boxes resistant to Power Attacks, the S-box space has recently
been divided into Hamming Weight classes, according to its theoretical resistance to these attacks
using the metric variance of the confusion coefficient. This partition allows for reducing the size of
the search space. The swap operator is frequently used when searching with a random selection
of items to be exchanged. In this work, the theoretical probability of changing Hamming Weight
class of the S-box is calculated when the swap operator is applied randomly in a permutation. The
precision of these probabilities is confirmed experimentally. Its limit and a recursive formula are
theoretically proved. It is shown that this operator changes classes with high probability, which
favors the exploration of the Hamming Weight class of S-boxes space but dramatically reduces the
exploitation within classes. These results are generalized, showing that the probability of moving
within the same class is substantially reduced by applying two swaps. Based on these results, it is
proposed to modify/improve the use of the swap operator, replacing its random application with the
appropriate selection of the elements to be exchanged, which allows taking control of the balance
between exploration and exploitation. The calculated probabilities show that the random application
of the swap operator is inappropriate during the search for nonlinear S-boxes resistant to Power
Attacks since the exploration may be inappropriate when the class is resistant to Differential Power
Attack. It would be more convenient to search for nonlinear S-boxes within the class. This result
provides new knowledge about the influence of this operator in the balance exploration–exploitation.
It constitutes a valuable tool to improve the design of future algorithms for searching S-boxes with
good cryptography properties. In a probabilistic way, our main theoretical result characterizes the
influence of the swap operator in the exploration–exploitation balance during the search for S-boxes
resistant to Power Attacks in the Hamming Weight class space. The main practical contribution
consists of proposing modifications to the swap operator to control this balance better.

Keywords: swap operator; balance exploration–exploitation; permutations; S-box; Hamming weight
class; power attacks; heuristic search

MSC: 42A61; 08C10

1. Introduction

Nowadays, side-channel attacks, in conjunction with deep learning techniques, are
threatened computational systems [1–3]. Those systems rely on the security that emerges
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from cryptographic algorithms. At the lowest level, the security is provided by vector
Boolean functions or S-boxes, an important component in block ciphers [4].

The search for secure S-boxes is considered as a combinatorial optimization problem
given the high dimension of the search space [5] and the existence of several properties.
Some of them are in contradiction with each other and redefine the problem as multi-
objective [6–8]. S-boxes with high theoretical resistance against side-channel attacks that use
power consumption as a side-channel can be found by applying heuristics methods. Many
of these methods apply the swap operator over a permutation (sometimes as mutation) in
the S-box space [7,9–16].

For heuristic methods over a solution space, an essential aspect that determines the
efficiency is the trade-off between exploration and exploitation [17,18]. However, there
are several interpretations and definitions of those concepts. From [19], we cite these
definitions: “Exploration refers to the ability of a search algorithm to discover a diverse
assortment of solutions, spread within different regions of the search space. On the
other hand, exploitation emphasizes the idea of intensifying the search process over-
promising regions of the solution space to find better solutions or improve the existing
ones” and also “the relationship between an individual’s representation and the balance
between exploration and exploitation is still not well understood, and more research is
needed” taken from [20]. While there are metrics to analyze the trade-off in a general
fashion [19,21], the different components of heuristic methods are designed to ensure the
exploration, the exploitation, or both, search strategy, solution representation, operators,
hybridization, etc. The exploration–exploitation balance vacuum is frequently carried
out experimentally, using some of these metrics [21]. At the same time, in this work,
a theoretical (probabilistic) assessment is obtained in a specific setting, which is confirmed
experimentally with great precision.

In [10,22,23], a partition of S-box space into Hamming Weight classes was considered.
Each class was represented by a family of sets of inputs, such that, for each set, all the
outputs corresponding to inputs of that set have the same weight. All S-boxes belonging to
a class showed the same theoretical resistance against Power Attacks under the Hamming
Weight leakage model. The partition identifies regions of the S-box space that can either be
used for exploration or exploitation, depending on the components of the heuristic search.
In [7], at the second phase of the hybrid method, they were taking into account a random
variable p to choose if the local search (exploitation) was applied over Hamming Weight
classes or inside a class. In this case of the multi-objective function, a balanced approach
is used to increase the nonlinearity [24] and the Confusion Coefficient Variance [25] of
the S-boxes. Moving inside a Hamming Weight class implies focusing on nonlinearity
optimization; in this case, the Confusion Coefficient Variance is constant. Moving between
classes is exploitation that can be seen as exploring new regions into the solution space.

The Confusion Coefficient Variance and the remaining theoretical metrics [26–28]
used to measure a device’s physical power drain in which a cryptographic algorithm is
implemented are nothing more than theoretical abstractions. None of these models is
exact, nor does it accurately capture the value of actual leakage. There is no guarantee
that the physical leakage will follow the theoretical abstraction of the confusion coefficient.
The design or search criteria of S-boxes based on these metrics are not enough to stop a
Power Attack, but they contribute to increasing the resistance of the S-box obtained against
these attacks [26]. These criteria must be complemented with other countermeasures.
The search for more exact metrics constitutes an interesting line of research.

These observations prompt us to make a probabilistic evaluation of the random swap
operator influence of the exploration and exploitation trade-off in the particular scenario
of searching permutation, taking into account a solution space partitioned by Hamming
Weight classes.

The objective of this work is to theoretically determine the influence used by the swap
operator (with a random selection of the elements to be exchanged), in the very important
balance between exploration and exploitation in the Hamming Weight class space, dur-
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ing the search for S-boxes, nonlinear bijective, resistant to Power Attacks. To achieve this
objective, the probabilities p1

n of changing Hamming Weight class by applying one swap
were theoretically calculated, with a random selection of the elements to be exchanged,
similarly, for two swaps. The theoretical calculation of these probabilities and the experi-
mental confirmation of their high accuracy give a definitive answer to the problem under
investigation. They precisely determine the balance between exploration and exploitation
in the Hamming Weight class space during the search for resistant, nonlinear bijective
S-boxes to Power Attacks. The calculated probabilities show that there is a significant
imbalance (a great exploration of space is carried out, but very little exploitation), since
the application of a random swap causes the Hamming Weight class to be changed with a
very high probability (1− p1

n). If two swaps are applied, this probability (1− p2
n) increases

even more. The importance of this result is that the exploration may be inappropriate
when the Hamming Weight class is resistant to Differential Power Attacks (high CCV
value). It would be more convenient to search for nonlinear S-boxes within the class. To
modify/control this imbalance, it is proposed to replace the random selection of the two
elements to be exchanged, during the swap, with the selection of the elements according to
their weight (equal weights or different weights). The selection of the same or different
weights will depend on a parameter selected by the researcher to control the balance.

2. Preliminaries

In this section, we present some basic concepts that aid with understanding the rest of
the work.

The swap operator is one of the most used operators by heuristics methods [29].
This operator is applied to create neighborhoods at single solution methods or to mutate
solutions at population methods. This operator swaps two elements that are usually
adjacent elements or randomly selected elements. In the rest of this work, it is assumed that
the two elements are randomly selected. Sometimes, this operator works over permutation
vectors and can be considered for the trade-off between exploration and exploitation.

Given a permutation σ∗ = (σ1, σ2, . . . , σn) and two random positions i, j; i 6= j, the
swapped permutation σ̇ is defined as:

σ̇ = swap(σ∗) =


σ̇(i)←− σ∗(j)
σ̇(j)←− σ∗(i)
σ̇(x)←− σ∗(x), ∀x|x 6= i, x 6= j

(1)

An S-box is a vector Boolean function F : {0, 1}n → {0, 1}m, with n bits as input and
m bits as output. In this work, we consider bijective S-boxes where F is a mapping from
{0, 1}n to {0, 1}n [30]. Bijective S-boxes can be efficiently represented in a computational
sense by a Look Up Table [6]. This representation only takes into account the output of the
S-box and conceive the S-box itself as a permutation F = (F(x0), ..., F(x2n−1)).

The Hamming Weight class of a bijective S-box F is the set of all S-boxes B that has the
same vector of weights of the outputs as F, i.e., the S-box B belongs to the class of F if and
only if it holds that: HW(B) = HW(F), where

HW(F) = (HW(F(x0)), . . . , HW(F(x2n−1))).

One of the representations of the class is precisely by means of this vector of weights
of the outputs of the S-box class [22,30]. This representation is not a permutation by itself
because some weights of the outputs will share the same value. Appendix B shows the AES
S-box permutation vector and the vector of weights that represent its Hamming Weight
class; see Table A1.

Since each output of a bijective S-box F can have a weight between 0 and n, it is possible
to define n + 1 sets of inputs such as Ck = {x ∈ {0, 1}n|HW(F(x)) = k}, 0 ≤ k ≤ n. Given
two bijective S-boxes, if their respective n + 1 sets are equal, then it can be concluded
that the S-boxes belongs to the same Hamming Weight class [10,22,23]. Let Fa be an S-
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box represented as a permutation vector (Fa(x0), ..., Fa(x2n−1)), if the values at positions
i, j, i 6= j are swapped, then the new permutation vector Fb represents a new S-box which
may or may not belong to the same class as Fa. Fb belongs to the same Hamming Weight
class of Fa if and only if the weights of the output of the two elements exchanged are
equal, i.e., HW(Fa(xi)) = HW(Fa(xj)), which causes HW(Fa(xi)) = HW(Fa(xj)) = k =
HW(Fb(xi)) = HW(Fb(xj)).Because each class contains several S-boxes, the search space
of classes is smaller than the permutation search space; a swap over a permutation that
implies the new permutation belongs to a new Hamming Weight class, which also implies
a movement across the class search space; see Figure 1.

Figure 1. S-box and HW-class search spaces.

3. Main Contribution: Probabilistic Evaluation of the Effect of the Swap Operator on
the Exploration-Exploitation Balance during the Search in the Space of Permutations
of Integers of n Bits

Our main theoretical result is presented in Propositions 1–3, which characterize, in a
probabilistic way, the influence of the swap operator in the exploration–exploitation balance
during the search for S-boxes nonlinear resistant to Power Attacks in the Hamming Weight
class space. The main practical contribution consists of proposing modifications to the
swap operator to better control this balance.

3.1. Theoretical Probabilities P1
n of Staying in the Same Hamming Weight Class, after Applying

Once, Randomly, the Swap Operator in a Permutation of the 2n Integers of n Bits

Let the search space be formed by the set of permutations whose inputs and outputs
are all integers of n bits. In [23], the (2n)! permutations Fa(x) of this space were partitioned
into Hamming Weight (HW) classes according to the weight of their outputs. The vector
(HW(Fa(0)), . . . , HW(Fa(2n−1))) of weights of the outputs of a permutation Fa(x) is the
representative of its Hamming Weight class, denoted by < Fa >. It will be assumed
that it is of interest to optimize some properties of the permutations and an evolutionary
search method with some multi-objective function used. One of the operators used in this
process will be the swap operator. In this scenario, the search within the permutations
space becomes a search between classes or within Hamming Weight classes. For this work,
exploration will be understood as the movement between Hamming Weight classes and
exploiting the movement within a Hamming Weight class. The main result of this research
is to determine the influence of the swap operator on balance between exploration and
exploitation in this scenario. In previous works, this topic has been investigated in other
specific problems, most of the time experimentally. Here, this problem is approached and
solved theoretically, confirming the results with experiments. The solution method used
will be the theoretical calculation of the probabilities P1

n :
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P1
n = P{(< Fa >=< Fb >)/(swap(Fa(xi1), Fa(xi2)))},

of staying in the same Hamming Weight class, (< Fa >=< Fb >; exploitation), and the
probabilities (1− P1

n) of changing class, HW(< Fa > 6=< Fb >; exploration), when exactly
just one swap is applied between two randomly selected items in a permutation of the 2n,
n-bit integers.

The result is generalized, calculating the probability P2
n , when two swaps are applied,

in two pairs of randomly selected elements. Using these probabilities, the exploration–
exploitation balance caused by this operator in this scenario is determined, and a modifica-
tion is proposed to control the balance. The exact theoretical probabilities P1

n are calculated
by the following:

Proposition 1. (P1
n probability of staying in the same Hamming Weight class after a random

swap). Let Fa(x) be a permutation of the 2n, n-bit integers, and < Fa > its Hamming Weight class.
If two different elements Fa(xi1), Fa(xi2) are randomly selected from the output of Fa(x), and the
operator swap(Fa(xi1), Fa(xi2)) is applied between them, a new permutation Fb is obtained whose
Hamming Weight class is denoted < Fb >. Then, the probability P1

n that the new class < Fb > is
equal to the previous class will be:

P1
n = P{(< Fa >=< Fb >)/(swap(Fa(xi1), Fa(xi2)))} =

P1
n =

1
2n · (2n − 1)

n−1

∑
k=1

[C(n, k) · (C(n, k)− 1)],

from which the probability of class change is directly calculated: 1− P1
n .

Example 1 (Calculation of P1
n for n = 3).

P1
n = P{(< Fa >=< Fb >)/(swap(Fa(xi1), Fa(xi2)))}

The necessary and sufficient condition for the class < Fb > obtained after the swap to
be equal to the initial class < Fa >, is that the swap(Fa(xi1), Fa(xi2)) is carried out between
elements of equal weight: HW(Fa(xi1)) = HW(Fa(xi2)) [23]. For n = 3, there are four possible
weights HW(Fa(x)) = k ∈ {0, 1, 2, 3} which appear with different frequencies C(3, k), since
C(3, 0) = C(3, 3) = 1, while C(3, 1) = C(3, 2) = 3. The only weights repeated two or more times
are k = 1 and k = 2; therefore, the swap of two elements of equal weight k can only be done between
elements with weight k = 1 and k = 2, it remains:

P1
3 =

2

∑
k=1

P{HW(Fa(xi1)) = HW(Fa(xi2)) = k}

= P(HW(Fa(xi1)) = 1) · P{HW(Fa(xi2)) = 1)/HW(Fa(xi1)) = 1} +

P(HW(Fa(xi1)) = 2) · P{(HW(Fa(xi2)) = 2)/HW(Fa(xi1)) = 2}

Each element Fa(xis) of the permutation output can be represented as a binary vector of length
n = 3. There are 8 = 23 possible elements. In each addend, to calculate the first probability, it is
taken into account that there are exactly C(3, 1) = 3 elements of weights one, and C(3, 2) = 3
of weight two, among the eight possible ones. For the second probability, the element of weight
k that was previously selected (i1 6= i2) must be discounted (from the favorable and possible)
and [C(3, k) − 1] = 2 elements of weight k(k = 1, 2) to choose one, among the 7 = 23 − 1
remaining elements:
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P1
3 =

[
2

∑
k=1

C(3, k)
23 · C(3, k)− 1)

23 − 1

]
=

1
23 · (23 − 1)

[
2

∑
k=1

C(3, k) · (C(3, k)− 1)

]

=
1

(8 ∗ 7)
[C(3, 1) · (C(3, 1)− 1) + C(3, 2) · (C(3, 2)− 1)] =

1
56
· [3 · 2 + 3 · 2] = 12

56

P1
3 = 0.2142857

P1
3 ∼ 0.2143: It is the Probability of moving to the same Hamming Weight class after a

random swap in a permutation of 8 = 23 elements. As can be seen, the probability P1
3 = 0.2142

is very low even for the small value of n = 3. This result raises questions about whether this
probability increases or decreases as n increases. It will be answered in two ways, first, through its
practical calculation for several n and, second, theoretically demonstrating its monotony.

Proof. Demonstration of Proposition 1.
The probabilities P1

n = P{(< Fa >=< Fb >)/(swap(Fa(xi1), Fa(xi2)))} are obtained
directly by the total probability formula. Let Fa(xi1) and Fa(xi2) be the two elements of the
output of the S-box Fa, randomly selected to do the swap, then:

P1
n = P{(< Fa >=< Fb >)/(swap(Fa(xi1), Fa(xi2)))}

As the necessary and sufficient condition for the class obtained after the swap to be
equal to the initial class < Fa >=< Fb > is that the swap is performed between elements
of equal weights [23], we obtain:

P1
n = P{HW(Fa(xi1)) = HW(Fa(xi2))}.

For the weights 0 and n, there is only one element with that weight, therefore, you can
only swap between elements with weights different from 0 and n, that is, HW(Fa(xi1)) =
HW(Fa(xi2)) 6= 0 and HW(Fa(xi1)) = HW(Fa(xi2)) 6= 1. Adding over the remaining weights:

P1
n =

n−1

∑
k=1

P{HW(Fa(xi1)) = HW(Fa(xi2))} = k}

=
n−1

∑
k=1

P(HW(Fa(xi1)) = k) · P{HW(Fa(xi2)) = k/HW(Fa(xi1)) = k}

Each element Fa(xis) of the permutation output can be represented as a binary vector of
length n. In each addend, to calculate the first probability, it is taken into account that there
are C(n, k) elements of weight k among the 2n possible elements. For the second probability,
the element of weight k that was previously selected (i1 6= i2) must be discounted (from
the favorable and possible), and there are [C(n, k)− 1] elements of weight k to choose one
among the remaining (2n − 1) elements:

P1
n =

n−1

∑
k=1

C(n, k)
2n · C(n, k)− 1

2n − 1
=

1
2n · (2n − 1)

[
n−1

∑
k=1

C(n, k) · (C(n, k)− 1)

]

The expressions P1
n of the Proposition 1 are valid for any n. The values of n of greatest

practical interest are n = 4 and n = 8. The S-boxes with values of minimum and maximum
n of which we have found reports are n = 3 and n = 16 [8,31,32]. The probabilities P1

n in
the range n ∈ {3, . . . , 16} are then calculated, tabulated, and plotted. Later expressions will
be given that facilitate the calculation of P1

n for values greater than n.
Table 1 and Figure 2 illustrate the high probability (1 − P1

n) ≥ 0.775 of changing
Hamming Weight class after a random swap. The curve of these probabilities as a function
of n is shown in Figure 3.
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Table 1. Values of the theoretical probabilities P1
n and (1− P1

n) of Proposition 1, n = 3, . . . , 16.

n Theoretical Probability P1
n Theoretical Probability 1− P1

n Entropy

3 0.214 0.786 0.75
4 0.225 0.775 0.77
5 0.222 0.778 0.76
6 0.213 0.787 0.75
7 0.203 0.797 0.73
8 0.193 0.807 0.71
9 0.184 0.816 0.69
10 0.175 0.825 0.670
11 0.168 0.832 0.653
12 0.161 0.839 0.637
13 0.155 0.845 0.622
14 0.149 0.851 0.608
15 0.144 0.856 0.596
16 0.140 0.860 0.584
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HW Class 
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HW Class 

𝑷𝒏
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𝟏) ≥ 𝟎. 𝟕𝟕  

(𝟏 − 𝑷𝒏
𝟐) ≥ 𝟎. 𝟗𝟒 

(a)

 

 

23%

77%

same
HW Class

different
HW Class

6%

94%

same
HW Class

different
HW Class

(b)
Figure 2. Graphical representation of the probabilities P1

n of moving towards the same Hamming
Weight class and (1− P1

n) of changing Hamming Weight class after a random swap: (a) probability
of transition between classes; (b) pie chart. (The probabilities P2

n correspond to two random swaps,
calculated in Proposition 3).

Observed properties of P1
n . In Table 1 and Figure 3, two properties of P1

n are clearly
seen. First, the theoretical probabilities Pn

1 have a small value for any n (P1
n < 0.225).

Second, starting with n ≥ 4, a strictly monotonous decreasing behavior of its values
is clearly observed. These and other properties will be theoretically demonstrated in
Proposition 2. The greatest probability of staying in the same class is reached at n = 4 with
P1

4 = 0.225 < 0.5.
Interpretation of the probabilities P1

n . The values of P1
n and (1− P1

n) show that, al-
though the elements Fa(xi1) and Fa(xi2) of the swap are chosen randomly, the move to
another Hamming Weight class is much more likely than the move within the same class,
that is, the random swap strongly favors the exploration of the Hamming Weight class space
but reduces, limits, the exploitation within the Hamming Weight classes. The exploration–
exploitation ratio depends on the probability P1

n , whose values are shown in Table 1. It
is observed that, as n increases, the probability P1

n of moving to the same class decreases
more and more.
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Figure 3. The curve of the theoretical probabilities P1
n (y-axis), as a function of n (x-axis),

for n = (3, 16).

3.2. Properties of the Probabilities P1
n

In this section, three properties of the probabilities P1
n are demonstrated, which are

confirmed experimentally.

Proposition 2. (Properties of the probabilities P1
n)

1. Limit expression P1L
n of the probabilities P1

n as n increases. It allows for approximating the
value of P1

n by a more compact limit expression P1L
n , which facilitates the theoretical analysis

of its properties and also its approximate practical calculation:

a. P1L
n = limn→∞ P1

n = (2n)!
22n ·(n!)2 .

b. P1L
n ≈ 1√

πn

Proof.

a.

P1
n = P{(< Fa >=< Fb >)/(swap(Fa(xi1), Fa(xi2)))}

=
1

2n · (2n − 1)

[
n−1

∑
k=1

C(n, k) · (C(n, k)− 1)

]
.

For large values of n and for all k, this expression can be approximated superiorly,
by means of a very close upper bound:

1

22n ·
(

1− 1
2n

) n−1

∑
k=1

[C(n, k)]2

For [C(n, k)]2 − C(n, k) ≈ [C(n, k)]2, the differences between [C(n, k)]2 and
[C(n, k)]2 − C(n, k), determine the precision of this approximation. This approxi-
mation is accurate even for small values of n, which can be verified numerically.
On the other hand, for values of n, such that 1� 2n and this expression converges
very quickly to:
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lim
n→∞

P1
n = lim

n→∞
P{(< Fa >=< Fb >)/(swap(Fa(xi1), Fa(xi2)))}

≈ lim
n→∞

1

22n ·
(

1− 1
2n

) n

∑
k=0

[C(n, k)]2 =
1

22n

n−1

∑
k=1

[C(n, k)]2

=
1

22n

[
n

∑
k=0

[C(n, k)]2 − [C(n, 0)]2 − [C(n, n)]2
]
=

1
22n

[
n

∑
k=0

[C(n, k)]2 − 2

]
and applying the combinatorial identity:

∑n
k=0[C(n, k)]2 = C(2n, n) = (2n)!

(n!)2 , whose proof can be seen in Appendix A,

it remains: = 1
22n ·

[
(2n)!
(n!)2 − 2

]
≈ 1

22n ·
[
(2n)!
(n!)2

]
= (2n)!

22n ·(n!)2

lim
n→∞

P1
n = lim

n→∞
P{< Fa >=< Fb > /swap(Fa(xi1), Fa(xi2))} ≈

(2n)!
22n · (n!)2

b. Substituting, for large n, the Catalan number Cn = 2n!
(n+1)!n! =

C(2n,n)
(n+1) by its limit

expression [33]: Cn ≈ 4n

n
√

πn .

It remains that P1L
n = limn→∞ P1

n = (2n)!
22n ·(n!)2 = (n+1)!

22nn!
(2n)!

(n+1)!·n! =
(

n+1
22n

)
Cn ≈(

n+1
22n

)
· 4n

n
√

πn = n+1
n
√

πn

For n >> 1, it can be approximated by: P1L
n ≈ 1√

πn
The principal value of this new expression is that it is even more compact and facil-
itates the visualization and theoretical analysis of the properties of this probability.
Another practical advantage of this limiting expression is that, for arbitrarily
large values of n, it substantially simplifies the calculation of this probability.

By giving values to n, this expression can be calculated and compared with the previous results.
Table 2 and Figure 4 show that there is a great coincidence between the two limit expressions
of P1

n , since the difference is in the order of the thousandths.
Although the difference is minimal, it can be seen that the limit probabilities P1L

n are always
less than those obtained by the limit of the numbers Cn in Catalan.

2. Recursive Formula P1R
n for P1

n . Monotony of P1
n .

It is another way for the recursive and approximate calculation of P1
n and allows for determining

its monotony.

P1R
n+1 ≈

(
1− 1

2(n + 1)

)
P1

n < P1
n ,

P1
n is monotonic decreasing function of n.

The limit expression obtained using the Catalan numbers (part b of Proposition 2) allows
us to easily observe the decreasing monotony of these probabilities since the numerator is
constant and when increasing n and therefore its root. This quotient is the approximate value
of probability.

Proof. The decreasing monotony of P1
n is demonstrated, which allows us to demon-

strate its convergence for large values of n and to find the exact limit.
Be part of the Property # 1 of the Proposition 2.
Since P1

n ≈
(2n)!

22n ·(n!)2 , then, for n + 1, we get: P1
n+1 ≈

(2n+2)!
22n+2·[(n+1)!]2

P1
n+1 ≈

(2n+2)!
22n+2·[(n+1)!]2

= (2n+2)(2n+1)((2n)!)
2222n(n+1)2(n!)2 = (2n+2)(2n+1)

22(n+1)2
(2n)!

22n(n!)2

P1
n+1 = 2(n+1)(2n+1)

22(n+1)2 P1
n = (2n+1)

2(n+1)P1
n = 2(n+1)−1

2(n+1) P1
n =

(
1− 1

2(n+1)

)
P1

n
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3. Convergence from P1
n+1 to P1

n .
As n increases, the difference between successive probabilities P1

n , P1
n+1(P1

n+1 < P1
n) becomes

smaller and smaller, so that the value of their quotient converges to 1.

lim
n→∞

P1
n+1

P1
n
≈
(

1− 1
2(n + 1)

)
−−−−→n→ ∞ 1.

Proof. Property # 2 (Proposition 2) indicates that the values of P1
n decrease with

increasing n, which suggests that they could converge to zero with increasing n,
but Property # 3 (Proposition 2) indicates that the speed of convergence decreases with
increasing n (see Figure 3). The values of P1

n+1 decrease as n increases, but at an increas-
ingly slower rate, so that consecutive values tend to be very close to (Figure 5).

Table 2. Comparison of the two limit approximations obtained for P1
n .

n P1L
n

1√
πn

1√
πn
− P1L

n

3 0.3125 0.325735 0.01323500
4 0.273438 0.282095 0.00865729
5 0.246094 0.252313 0.00621950
6 0.225586 0.230329 0.00474350
7 0.209473 0.213244 0.00377096
8 0.196381 0.199471 0.00309052
9 0.185471 0.188063 0.00259261
10 0.176197 0.178412 0.00221536
11 0.168188 0.17011 0.00192146
12 0.16118 0.162868 0.00168725
13 0.154981 0.156478 0.00149702
14 0.149446 0.150786 0.00134003
15 0.144464 0.145673 0.00120868
16 0.13995 0.141047 0.00109746

0.15

0.20

0.25

0.30

3 4 5 6 7 8 9 10 11 12 13 14 15 16
n

Pr
ob
ab
ilit
ie
s

Probabilities

Limit Pn
1L of Pn

1

Pn
1L approximation by Catalan number

Figure 4. Curves of the two limits’ approximations obtained for P1
n .

Example 2 (n = 4). Application of the limit formulas for the calculation of P1
n+1:

P1L
4 = (2·4)!

22·4(4!)2 = 8!
28(24)2 = 0.2734375 P1L

4 ∼ 0.2734 > 0.225 = P1
4 : The limiting

probability P1L
4 is greater than the exact P1

4 .
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Example 3 (n = 4). Application of the recursive formula for the calculation of P1
n+1. In Example 1,

the exact probability was obtained for
n = 3 : P1

3 = 0.2142857
By the recursive formula:
P1R

4 =
(

1− 1
2∗3+2

)
P3 = (0.875)(0.2142857) = 0.18749 < P1

4 = 0.225

The recursive probability P1R
4 is less than the exact P1

4 .
Observe that, for n = 4, the following was obtained: P1R

4 < P1
4 < P1L

4 .

For higher values of n, the behavior of P1L
n and P1R

4 will be studied in two ways:
first through their calculation and comparison with P1

n and second through the theoret-
ical demonstration of its relationship with P1

n . The tabulation, graphical representation,
and comparison of the probabilities P1L

n and P1R
n are presented below.

0.15

0.20

0.25

0.30

3 4 5 6 7 8 9 10 11 12 13 14 15 16
n

Pr
ob
ab
ilit
ie
s

Probabilities

Theoretical Probability (Pn
1)

Limit Pn
1L of Pn

1

Recursive Theoretical Probability Pn
1R

Enhanced Recursive Theoretical Probability Pn
1RM

Figure 5. Comparison of the limiting probabilities P1L
n and the recursive probabilities P1R

n with the
exact theoretical probabilities P1

n .

3.2.1. Comparison of P1L
n and P1R

n with P1
n

Table 3 and Figure 5 show an important difference between P1R
n and P1L

n . It can be
seen that the limiting probabilities P1L

n of property 1 are more exact than the recursive
probabilities P1R

n of Property # 2, since:

• P1R
n < P1

n for all values of n.
• P1

n < P1L
n for n < 7,

• P1
n ≈ P1L

n for n ≥ 6. From n = 6, the limit P1L
n coincides with the exact P1

n up to
2 decimal places (P1

n = P1L
n ); therefore, the error eL = P1L

n − P1
n ≈ 0.00X.

On the other hand, for the recursive ones, it is also observed, in Tables 3–5, and
Figure 5, that the error e1R

n = (P1
n − P1R

n ) is approximately constant, with approximately
zero variance, which it can be reduced by neglecting the small finite set of values n < 6,
since they are not important for studying the limit behavior.
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Table 3. Comparing the probabilities limits P1L
n and P1R

n recursive probabilities with exact theoretical probabilities P1
n .

n
Theoretical
Probability

P1
n

Theoretical
Probability Limit

P1L
n

Recursive
Theoretical
Probability

P1R
n

eL = P1L
n − P1

n eR = P1
n − P1R

n

3 0.2143 0.3125 0.2143 0.0982 0.0000
4 0.2250 0.2734 0.1929 0.0484 0.0321
5 0.2218 0.2461 0.1768 0.0243 0.0450
6 0.2133 0.2256 0.1642 0.0123 0.0491
7 0.2032 0.2095 0.1539 0.0063 0.0493
8 0.1932 0.1964 0.1453 0.0032 0.0479
9 0.1839 0.1855 0.1381 0.0016 0.0458

10 0.1754 0.1762 0.1318 0.0008 0.0436
11 0.1678 0.1682 0.1263 0.0004 0.0415
12 0.1610 0.1612 0.1215 0.0002 0.0395
13 0.1549 0.1550 0.1171 0.0001 0.0378
14 0.1494 0.1494 0.1132 0.0000 0.0362
15 0.1444 0.1445 0.1097 0.0001 0.0347
16 0.1399 0.1399 0.1064 0.0000 0.0335

Table 4. The mean and estimated variance of the errors made when calculating P1
n , by its limit

formula, for two different ranges of n.

Range of n {3, . . . , 16} {7, . . . , 16}
E(eL) 0.0140 0.0013

Var(eL) 0.0008 0.0000

Table 5. The mean and estimated variance of the errors made when calculating P1
n , by its recursive

formula, for two different ranges of n.

Range of n {3, . . . , 16} {7, . . . , 16}
E(eR) 0.0383 0.0410

Var(eR) 0.0002 0.0000

3.2.2. Improving the Accuracy of the Recursive Calculation P1R
n of P1

n

For the recursive formula, the errors eR = (P1
n − P1R

n ) 6= 0, but its variance is close
to zero (it vanishes for n > 7), which suggests using this estimate of the constant error to
calculate a formula improved recursive P1RM

n+1 , estimating the error eR = (P1
n − P1R

n ) and
adding it to P1R

n :
P1RM

n =
(

1− 1
2n+2

)
· P1

n−1 + ēR, where ēR = 0.0140, for n ≥ 7.
Figure 5 shows the increase in effectiveness, which was confirmed by comparing

higher values of n with the limiting probabilities. Thus far, Properties # 1 and # 2 have been
compared. Let us now look at a representation of Property # 3, which illustrates very well
the convergence between successive probabilities as n increases.

It can be seen how by increasing n, the quotient
(

Pn+1
Pn

)
(in red), converges to

(
1− 1

2n+2

)
(in blue), which in turn converges to 1. This Figure 6 illustrates the high accuracy of Prop-
erty # 3 starting from n ≥ 9, where the coincidence is almost exact.
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Figure 6. Representation of the convergence between successive probabilities, as n increases. (Prop-
erty # 3).

3.3. Experimental Validation of Propositions 1 and 2

Experiment 1. The objective of the experiment is to evaluate the practical precision of
the theoretical probabilities calculated according to Proposition 1. The probabilities P1

n will
be estimated by applying M successive random swaps, starting from a randomly selected
and comparing the Hamming Weight classes obtained between successive permutations.

Design of experiment 1. A permutation F was randomly generated, and its Hamming
Weight class, denoted < Fa >, was calculated. M successive random swaps were made
from it. In each step, the Hamming Weight class obtained was calculated and compared
with the previous class. The absolute and relative frequencies of changing classes and
staying in the same class were calculated. The probabilities (̂P1

n) were estimated through
the relative frequency of staying in the same class, and its value was compared with the
theoretical P1

n .
Results of experiment 1. Table 6 and Figure 7 show the estimated probabilities (̂P1

n)
and their comparison with the theoretical P1

n .
Discussion of the results of experiment 1. The most notable result of Table 6 and Figure 7

is the excellent fit, which is observed, for all n, between the exact theoretical probabilities
P1

n calculated using Proposition 1 with the probabilities estimated by experiment 1. These
results strongly confirm the practical validity and precision of the theoretical probabilities
of Proposition 1. (The theoretical probabilities are always slightly less than or equal to the
estimated ones, and the fit gets better and better when the value of n is increased).

Experiment 2. The objective of the experiment is to evaluate the influence of the initial
permutation on the estimated probabilities (̂P1

n).
Design of experiment 2. The same probabilities P1

n will be estimated, but generating
M different permutations and each one of them was performed only one random swap:
For n = 3, . . . , 16, M = 1,000,000 were generated randomly of permutations, and each one
was made a random swap. After each swap, the Hamming Weight class obtained was
calculated and compared with the original Hamming Weight class. The frequency with
which one changes Hamming Weight classes and the frequency with which one falls in the
same Hamming Weight class were counted. The probabilities P1

n were estimated using the
relative frequencies, and their value was compared with the theoretical ones.

Results of experiment 2. Table 7 and Figure 8 show the estimated probabilities and
their comparison with the theoretical ones.
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Table 6. Comparison between the Theoretical Probability P1
n of falling into the same Hamming

Weight class after a random swap with its estimate (̂P1
n) obtained using M = 1,000,000 successive

swaps made from a fixed, arbitrary initial permutation.

n
Theoretical
Probability

P1
n

Estimation
P̂1

n
P̂1

n − P1
n

3 0.2143 0.3125 0.0982
4 0.2250 0.2734 0.0493
5 0.2218 0.2461 0.0243
6 0.2133 0.2256 0.0123
7 0.2032 0.2095 0.0063
8 0.1932 0.1964 0.0032
9 0.1839 0.1855 0.0016
10 0.1754 0.1762 0.0008
11 0.1678 0.1682 0.0004
12 0.1610 0.1612 0.0002
13 0.1549 0.1550 0.0001
14 0.1494 0.1494 0.0000
15 0.1444 0.1445 0.0001
16 0.1399 0.1399 0.0000
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0.23
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Theoretical Probability Estimation of𝑃𝑛
1

 𝑃𝑛
1

 

Figure 7. For n = 3, . . . , 16: Graph of the Theoretical probabilities P1
n of falling into the same

Hamming Weight class after a random swap (in blue) and comparison with its estimate (in red) using
M = 1,000,000 successive permutations fixed initially.

Figure 8. For n = 3, . . . , 16: Graph of the Theoretical probabilities P1
n (in blue) and comparison with

their estimate (̂P1
n) (in red) using a swap in M = 1,000,000 of different initial permutations.

Discussion of the result of Experiment 2. The first notable aspect of Table 7 and
Figure 8 are the excellent fit, which is observed, for all n, between the exact theoretical
probabilities P1

n calculated by Proposition 1, with the probabilities estimated by experiment
2. On the other hand, it is observed how the estimated probabilities of experiment 2
coincide with those estimated in experiment 1 and with the theoretical ones, which shows
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that their values depend little on that of the initial permutation. In experiment 2, the fit is
slightly better than in experiment 1, which could be explained because, in experiment 2,
we started from M = 1,000,000 different initial permutations.

Table 7. For n = 3, . . . , 16: theoretical probability P1
n and comparison with its estimate (̂P1

n) by means
of a swap in M = 1,000,000 of different initial permutations.

n
Theoretical
Probability

P1
n

Estimation
of
P̂1

n

P̂1
n − P1

n

3 0.2143 0.2149 0.0006
4 0.225 0.2263 0.0013
5 0.2218 0.2217 −0.0001
6 0.2133 0.2133 0
7 0.2032 0.2029 −0.0003
8 0.1932 0.1935 0.0003
9 0.1839 0.1849 0.001

10 0.1754 0.1758 0.0004
11 0.1678 0.1677 −0.0001
12 0.161 0.1611 0.0001
13 0.1549 0.1553 0.0004
14 0.1494 0.1495 0.0001
15 0.1444 0.1442 0.0002
16 0.1399 0.1396 −0.0003

3.4. Generalization of Proposition 1, for Two Random Swaps

How do the probabilities P{< Fa >=< Fb >} and P{< Fa > 6=< Fb >} change, when
two pairs of elements of the initial permutation Fa are chosen, and two swaps are made,
one in each pair? Intuitively, it is to be expected that P{< Fa >=< Fb >} will decrease
because, in a swap, there are restrictions on two weights, and, if two swaps are made,
there are restrictions on four weights. Proposition 3 confirms that intuition, answering that
question through the exact calculation of the probabilities, which will be denoted as P2

n .

Proposition 3. (Exact calculation of the probability P2
n). By randomly selecting two pairs of four

different elements (Fa(xi1), Fa(xi2)) and (Fa(xj1), Fa(xj2)) from the output of the permutation
Fa(x) and applying within each pair the operator swap(Fa(xi1), Fa(xi2)) and swap(Fa(xj1), Fa(xj2)),
we obtain a new permutation Fb whose class is denoted < Fb >. Then, the probability that the
classes < Fa > and < Fb > are equal after two simultaneous swaps, in two pairs of outputs of
< Fa >, will be:

P2
n = P{< Fa >=< Fb > /swap(Fa(xi1), Fa(xi2)) and swap(Fa(xj1), Fa(xj2))}

=
∑n−1

k=1 C(n, k) · [C(n, k)− 1] · [C(n, k)− 2] · [C(n, k)− 3]
2n(2n − 1)(2n − 2)(2n − 3)

+
∑n−2

k=1 ∑n−1
r=1,r 6=k C(n, k) · [C(n, k)− 1] · C(n, r) · [C(n, r)− 1]

2n(2n − 1)(2n − 2)(2n − 3)

Proof. It is analogous to the proof of Proposition 1; the difference is that now there are two
different cases to stay in the same Hamming Weight class—first that the four weights are
equal to each other; second that the weights are equal between the elements of each pair
but different between pairs, which gives rise to two different addends:
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P2
n = P{< Fa >=< Fb > /swap(Fa(xi1), Fa(xi2)) and swap(Fa(xj1), Fa(xj2))}

= P{HW(Fa(xi1)) = HW(Fa(xi2)) = HW(Fa(xj1)) = HW(Fa(xj2))}
+P{(HW(Fa(xi1)) = HW(Fa(xi2))) 6= (HW(Fa(xj1)) = HW(Fa(xj2)))}

=
n−1

∑
k=1

P{HW(Fa(xi1)) = HW(Fa(xi2)) = HW(Fa(xj1)) = HW(Fa(xj2)) = k}

+
n−2

∑
k=1

n−1

∑
r 6=k

P{HW(Fa(xi1)) = HW(Fa(xi2)) = k} · P{HW(Fa(xj1)) = HW(Fa(xj2)) = r}

=
n−1

∑
k=1

P{HW(Fa(xi1)) = k} · P{(HW(Fa(xi2)) = k)/(HW(Fa(xi1)) = k)}

·P{(HW(Fa(xi3)) = k)/(HW(Fa(xi1)) = HW(Fa(xi2)) = k)}
·P{(HW(Fa(xi4)) = k)/(HW(Fa(xi1)) = HW(Fa(xi2)) = HW(Fa(xi3)) = k)}

+
n−2

∑
k=1

n−1

∑
r 6=k

P{HW(Fa(xi1)) = k} · P{(HW(Fa(xi2)) = k)/(HW(Fa(xi1)) = k)}

·P{(HW(Fa(xi3)) = r)/(HW(Fa(xi1)) = HW(Fa(xi2)) = k)}
·P{(HW(Fa(xi4)) = r)/(HW(Fa(xi1)) = HW(Fa(xi2)) = kandHW(Fa(xi3)) = r)}

Each element Fa(xis) of the output of the permutation can be represented as a binary
vector of length n, with weights k ∈ {0, . . . , n}. In the first addend, first probability, it is
taken into account that there are C(n, k) elements of weight k between those 2n elements.
For the second probability, the previously selected element of weight k(i1 6= i2) must be
discounted and [C(n, k)− 1] elements of weight k remain to choose one among the (2n − 1)
remaining items. Similarly, the elements of weight k already selected from the first addend
are discounted for the two remaining probabilities. In the second summation, for the first
two probabilities, it is analogous to the previous case, but for the last two probabilities,
the difference is that the weight r is different from the weight k of the first two; therefore,
they are not discounted in the elements of the weight sought, but in the total number of
possible elements. In addition, you get:

P2
n = P{< Fa >=< Fb > /swap(Fa(xi1), Fa(xi2)) and swap(Fa(xj1), Fa(xj2))}

=
n−1

∑
k=1

C(n, k)
2n · C(n, k)− 1

2n − 1
· C(n, k)− 2

2n − 2
· C(n, k)− 3

2n − 3

+
n−2

∑
k=1

n−1

∑
r 6=k

C(n, k)
2n · C(n, k)− 1

2n − 1
· C(n, r)

2n − 2
· C(n, r)− 1

2n − 3

=
∑n−1

k=1 C(n, k) · [C(n, k)− 1] · [C(n, k)− 2] · [C(n, k)− 3]
2n(2n − 1)(2n − 2)(2n − 3)

+
∑n−2

k=1 ∑n−1
r 6=k C(n, k) · [C(n, k)− 1] · C(n, r) · [C(n, r)− 1]

2n(2n − 1)(2n − 2)(2n − 3)

3.5. Experimental Validation of Proposition 3

Experiment 3. Estimation of the probabilities P2
n of staying in the same class after

doing two simultaneous random swaps from a pre-fixed permutation. The experiment
has two objectives. The first is to evaluate the precision of the theoretical probabilities
calculated according to Proposition 3, comparing them with the probabilities estimated in
this experiment. The second is to compare the P2

n probabilities obtained using two random
swaps with the P1

n obtained using a random swap to know exactly the influence of the
swap number on the probability values.
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Experiment 3a. Calculation of the exact theoretical probabilities P2
n . The calculation of

the exact probabilities P2
n was implemented, according to the formulas of Proposition 3.

Experiment 3b. Estimation of the probabilities P2
n of staying in the same Hamming

Weight class after making two simultaneous random swaps from a pre-fixed permutation.
Design of experiment 3b. An initial permutation F0 is randomly generated and

its class < F0 > is calculated. M = 1,000,000 iterations will be performed. For each
iteration, r = 1, . . . , M, a new permutation Fr is generated from the previous permutation
Fr−1, randomly selecting two pairs of indices (i1, i2), (j1, j2), and swapping each pair:
swap(Fr−1(xi1), Fr−1(xi2)) and swap(Fr−1(xj1), Fr−1(xj2)). For Fr, the obtained class <

Fr > is calculated and compared with the previous class < Fr−1:
If < Fr >=< Fr=1 >, a counter of equal classes is incremented. If < Fr > 6=< Fr=1 >,

a counter of different classes is incremented. At the end of the M iterations, the probabilities
(̂P2

n) are estimated, using the relative frequencies of equal classes. Comparison of these
estimated probabilities (̂P2

n), with the theoretical P2
n . Evaluate the influence of the swap

number on the probability values by comparing the probabilities P2
n with P1

n .

3.6. Results of Experiment 3

Discussion of the results of experiment 3. About the comparison between P1
n (one

swap) and P2
n (two swaps), the most important difference is in the decrease of the values

of P2
n concerning P1

n and the increase in the speed of convergence to zero, as can be seen
in Figure 9. It means that, by increasing the swap number, the probability P2

n of moving
towards the same class is further reduced. This behavior is intuitively understandable since,
by doing two swaps, the number of weights on which a restriction is imposed increases to
move within the same class, reducing the probability. This reduction in the probability P2

n
of remaining in the same class when going from one to two swaps (P2

n << P1
n) suggests the

hypothesis that, if the number of swaps NS is increased to NS >= 3, 4, . . ., the probability
PNS

n to change classes HW must converge to 1 (since they increase the restrictions on the
number of equal weights between the elements exchanged, which is necessary to stay in
the same class). This hypothesis is easily testable by direct calculation or estimation. Taking
into account that PNS

n ≈ 1 is equivalent to exploring the class space, this result could be
applied in practice, when it is desired to explore the class space, to eliminate the check of
the condition of different weights of the exchanged elements and replace it with an increase
in the number of swaps. It is not clear which of the two ways of exploring the space is
more efficient since, in one swap to change classes, the condition on the different weights
is checked, which is eliminated by performing many NS swaps. The investigation of this
aspect is an open problem that will be investigated in future works.

About fit estimation (̂P2
n)-theory P2

n . Starting from n = 6, a great coincidence is
observed between the theoretical probabilities P2

n and their estimation (̂P2
n). For n < 6,

the theoretical ones are less than the estimated ones, and the difference is greater for the
smaller values of n, such as n = 3, 4, 5. The cause of this reduced fit for small n is unclear.
It is important to note that, even for these small values of n the difference is very small,
of decimals for n = 3, 4 and hundredths for n = 5; see Figure 10 and Table 8.
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n (two swaps, in red) of Proposition 3

and the theoretical probabilities P1
n (one swap, in blue) of Proposition 1, when increasing n (X-axis).
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n of Proposition 3 and its estimate (̂P2

n).

Table 8. Comparison between the theoretical probabilities P2
n of Proposition 3, and its estimation (̂P2

n).

n
Theoretical
probability

P2
n

Estimation
of
P2

n

3 0.0214 0.0428
4 0.0374 0.0486
5 0.0437 0.0485
6 0.0435 0.0449
7 0.0406 0.0413
8 0.0371 0.0371
9 0.0337 0.0338
10 0.0307 0.0311
11 0.0281 0.0283
12 0.0259 0.0259
13 0.0240 0.0241
14 0.0223 0.0222
15 0.0209 0.0208
16 0.0196 0.0196
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About monotony. Comparison of the monotony of P2
n (two swaps) with that of P1

n

(one swap). For n = 3, 4, 5, a slight growth of P2
n (and of (̂P2

n)) is observed. From n = 6,
they begin to decrease. In the case of P1

n , the growth was only when going from n = 3 to
n = 4. The cause of this difference is not clear.

3.7. Modification of the Swap Operator (Selection Criteria of the Elements to Be Exchanged)

The previous results show that the random application of the swap favors the explo-
ration of the class space but drastically limits the exploitation within the classes. To control
the exploration of the class space in proportion U0, it is necessary and sufficient to change
the random selection of the elements to be exchanged and select elements of equal or
different weight, depending on U0.

Proposed modification of the Swap.

• Set the proportion U0 ∈ [0, 1] that controls the balance of exploration, exploitation
in the Hamming Weight class space. (The Hamming Weight class is changed with
probability U0.)

• Generate a random number Na in the interval [0, 1]
• If Na ≥ U0, then swap between elements of different Hamming weight to explore

between classes.
• If Na < U0, then swap between elements of equal weight to exploit within classes.
• Advantage. This modification allows the exploration/exploitation ratio to be easily

controlled by the researcher’s decision, through the proportion U0 of pairs of elements
(Fa(xi1), Fa(xi2)) of different weight HW(Fa(xi1)) 6= HW(Fa(xi2)) that are selected,
that is, the class is changed with probability U0.
Comparison with the antecedents. For U0 = 0.5, it coincides with the swap applied
in [10]. In comparison, the strategy proposed in [23] consists of taking U0 = 0,
when Confusion Coefficient Variance (CCV) is less than the preset value (the class is
changed) and U0 = 1, when CCV is greater than or equal to the preset value (moves
within the class). As already mentioned, in the case U0 = 1, the check of the condition
of the equal weight could be eliminated and replaced by the increase in the NS number
of swaps. However, the determination of the minimum value of NS (to reduce the
number of operations required by the NS swaps) that guarantees with high probability
that the change of class HW is an open problem.
The selection of the optimal U0 parameter is a problem of great interest, but it is
beyond the objectives of this work and will be investigated in future works.

3.8. Application in Search of Nonlinear S-Boxes Resistant to Power Attacks

According to the Hamming Weight class space, during the search for S-boxes, not
linear resistant to Power Attacks, it is satisfied that the resistance to Power Attacks accord-
ing to the CCV metric is constant within each Hamming Weight class. At the same time,
the nonlinearity varies within each class [23]. For this reason, a good balance between
exploration between classes and exploitation within classes is desirable. If during the
exploration, Hamming Weight classes with a high value of the CCV metric are found,
the search algorithm should start to exploit within these classes to search for S-boxes that
meet the remaining cryptographic properties, such as nonlinearity.

The result of the work does not have a direct relationship with differential or linear
attacks. Still, it does provide new knowledge about the influence of the swap operator
during movement in the Hamming Weight class space of bijective S-boxes. This knowledge
must be taken into account when searching for S-boxes resistant to these attacks: If the
swap operator is intentionally applied to move from class to class trying to increase the
resistance to power attacks (higher CCV), then S-weaker boxes before the linear attack
(lower NL value). For this reason, the movement between classes Hamming Weight to
raise the value of the CCV metric cannot ignore the compromise between CCV and NL,
which is usually taken into account in the objective function.
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The results on the values of P1
n and P2

n obtained in the previous sections mean that,
when applying the swap operator, with a random selection of the elements to be exchanged,
the search algorithm will change classes with very high probability, and it practically
does not explore within classes, as illustrated in Figure 11. This figure shows how the
positive answer to the question about the equality of the weights of the swapped elements
(movement within the same class) occurs with very low probabilities P1

n ≤ 0.23 for one
random swap and P2

n ≤ 0.06 for two random swaps.
This limitation is resolved if the modified swap, proposed in the previous section, is

applied since the desired exploration can be set a priori. You can also apply the strategy
proposed in [23] that recommends setting a CCV threshold and changing classes while this
is not reached.
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Figure 11. Influence of the random swap operator (for 1 or 2 swaps) on the exploration–exploitation
balance during the search for S-boxes resistant to Power Attacks in the Hamming Weight class space.

4. Conclusions

In many of the previous investigations on the search for nonlinear bijective S-boxes,
resistant to Power Attacks, the S-boxes are represented as permutations, and in the search
process, to move within the space of S-boxes, the swap operator is applied with random
selection of the elements to be exchanged [7,9,10]. Recently in [23], the space of bijective
S-boxes was partitioned into equivalence classes, denoted as Hamming Weight classes.
This partition allowed us to understand that the movement within the space of S-boxes
can occur within the same Hamming Weight class (intra-class) or between different classes
(inter-class). All the S-boxes of the same Hamming Weight class have the same CCV value,
which causes an exponential reduction of the search space when the search for S-boxes
with high CCV is carried out on the Hamming Weight space (illustrated in Figure 1).
The inter-class or intra-class movement is equivalent in this scenario to the exploration
or exploitation of the Hamming Weight space. The exploitation–exploration balance is
an essential aspect of the efficiency of any heuristic search method on a solution space.
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This balance can determine the success or failure of the search [17,18]. In most cases, this
balance is investigated by experimental methods and very rarely by theoretical methods.

In this work, a probabilistic evaluation of the exploration–exploitation equilibrium
caused by the swap operator during the search in Hamming space was carried out in
weight classes of S-boxes for nonlinear S-boxes, resistant to Power Attacks. The main
theoretical result consists of the proof that, when applying the swap operator, with a
random selection of the elements to be exchanged, this operator changes class with high
probability (approximately 0.77 for the cases of greater practical interest), which favors
exploration of the Hamming Weight class space but reduces exploitation within classes. We
consider that this behavior of the swap operator in this specific problem may be ineffective
when the class is resistant to Differential Power Attacks, and it would be more convenient
to exploit within the class to find S-Boxes with high nonlinearity. As the main practical
result, it is proposed to modify/improve the use of the swap operator, replacing its random
application with the convenient selection of the elements to be exchanged, which allows
for controlling the relationship between exploration and exploitation at the researcher’s
convenience. As an open problem, the previous result will be used to investigate in future
works, which is the optimal ratio between exploration-exploit in this specific problem. It
will also be investigated in future works how the increase in the number of swaps made
during the exploration influences the effectiveness and efficiency of the search.
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Appendix A. Proof of Identity

n

∑
k=0

[C(n, k)]2 = C(2n, n).

The right term C(2n, n) is the number of choosing n elements from a set A made up of
2n elements. As is usual in many combinatorial proofs, consider a partition A = A1 ∪ A2
of the same set A into two disjoint subsets A1, A2 of n elements each. The left term can
be expressed as: ∑n

k=0[C(n, k)]2 = ∑n
k=0[C(n, k) · C(n, n− k)]. To choose n elements of A,

we can take k elements of A1 which can be made of C(n, k) forms, and (n− k) elements of
A2 which can be made of C(n, n− k) forms. To find the total number C(2n, n) of ways to
choose n elements from the 2n elements of A, using this partition, all the values of k must
be traversed, and we obtain C(2n, n) = ∑n

k=0[C(n, k) · C(n, n− k)] = ∑n
k=0[C(n, k)]2.

Appendix B. AES S-Box

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72
c0 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2
75 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58
cf d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
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ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16.

Table A1. Class HW < FAES > of the S-box of the AES algorithm.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 4 5 6 6 5 5 6 4 2 1 5 4 7 6 5 5

1 4 2 4 6 6 4 4 4 5 4 3 6 4 3 4 2

2 6 7 4 3 4 6 7 4 3 4 5 5 4 4 3 3

3 1 5 3 4 2 4 2 4 3 2 1 4 6 4 4 5

4 2 3 3 3 4 5 4 2 3 5 5 5 3 5 5 2

5 4 4 0 6 1 6 4 5 4 5 6 4 3 3 3 6

6 3 7 4 7 3 4 4 3 3 6 1 7 2 4 6 3

7 3 4 1 5 3 5 3 6 5 5 5 2 1 8 6 4

8 5 2 3 5 6 5 2 4 3 5 6 5 3 5 3 5

9 2 2 5 5 2 3 2 2 3 6 4 2 6 5 3 6

A 3 3 4 2 3 2 2 4 3 5 4 3 3 4 4 5

B 6 3 5 5 4 5 4 4 4 4 5 5 4 5 5 1

C 5 4 3 4 3 4 4 4 4 6 4 5 4 6 4 3

D 3 5 5 4 2 2 6 3 3 4 5 5 3 3 4 5

E 4 5 3 2 4 5 4 3 5 4 4 5 5 4 2 7

F 3 3 3 3 7 5 2 3 2 4 4 4 3 3 6 3
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20. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.
(CSUR) 2013, 45, 1–33. [CrossRef]

21. Cuevas, E.; Diaz, P.; Camarena, O. Experimental Analysis Between Exploration and Exploitation. In Metaheuristic Computation: A
Performance Perspective; Springer: Berlin/Heidelberg, Germany, 2021; pp. 249–269.

22. Sánchez, R. Generación de s-Cajas Equivalentes según su Resistencia a los Ataques por Análisis Diferencial de Potencia; Technical Report;
Facultad de Ingeniería Informática, Universidad Tecnologica de la Habana, CUJAE: La Habana, Cuba, 2016.

23. Legón-Pérez, C.M.; Sánchez-Muiña, R.; Miyares-Moreno, D.; Bardaji-López, Y.; Martínez-Díaz, I.; Rojas, O.; Sosa-Gómez, G.
Search-Space Reduction for S-Boxes Resilient to Power Attacks. Appl. Sci. 2021, 11, 4815. [CrossRef]

24. Nyberg, K. Differentially uniform mappings for cryptography. In Workshop on the Theory and Application of of Cryptographic
Techniques; Springer: Berlin/Heidelberg, Germany, 1993; pp. 55–64.

25. Picek, S.; Papagiannopoulos, K.; Ege, B.; Batina, L.; Jakobovic, D. Confused by confusion: Systematic evaluation of DPA resistance
of various s-boxes. In Proceedings of the International Conference on Cryptology in India, New Delhi, India, 14–17 December
2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 374–390.

26. Prouff, E. DPA attacks and S-boxes. In International Workshop on Fast Software Encryption; Springer: Berlin/Heidelberg, Germany,
2005; pp. 424–441.

27. Chakraborty, K.; Sarkar, S.; Maitra, S.; Mazumdar, B.; Mukhopadhyay, D.; Prouff, E. Redefining the transparency order. Des.
Codes Cryptogr. 2017, 82, 95–115. [CrossRef]

28. Li, H.; Zhou, Y.; Ming, J.; Yang, G.; Jin, C. The Notion of Transparency Order, Revisited. Comput. J. 2020, 63, 1915–1938. [CrossRef]
29. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 74.
30. Wang, Y.; Zhang, Z.; Zhang, L.Y.; Feng, J.; Gao, J.; Lei, P. A genetic algorithm for constructing bijective substitution boxes with

high nonlinearity. Inf. Sci. 2020, 523, 152–166. [CrossRef]
31. Bilgin, B.; Nikova, S.; Nikov, V.; Rijmen, V.; Tokareva, N.; Vitkup, V. Threshold implementations of small S-boxes. Cryptogr.

Commun. 2015, 7, 3–33. [CrossRef]
32. Khadem, B.; Ghasemi, R. Improved algorithms in parallel evaluation of large cryptographic S-boxes. Int. J. Parallel Emergent

Distrib. Syst. 2020, 35, 461–472. [CrossRef]
33. Qi, F. Some properties of the Catalan numbers. Ars Comb. 2021, 2022, 1–9.

http://dx.doi.org/10.12785/amis/080306
http://dx.doi.org/10.1016/j.swevo.2020.100671
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.3390/app11114815
http://dx.doi.org/10.1007/s10623-016-0250-3
http://dx.doi.org/10.1093/comjnl/bxaa069
http://dx.doi.org/10.1016/j.ins.2020.03.025
http://dx.doi.org/10.1007/s12095-014-0104-7
http://dx.doi.org/10.1080/17445760.2020.1760863

	Introduction
	Preliminaries
	Main Contribution: Probabilistic Evaluation of the Effect of the Swap Operator on the Exploration-Exploitation Balance during the Search in the Space of Permutations of Integers of n Bits
	Theoretical Probabilities Pn1 of Staying in the Same Hamming Weight Class, after Applying Once, Randomly, the Swap Operator in a Permutation of the 2n Integers of n Bits
	Properties of the Probabilities Pn1
	Comparison of Pn1L and Pn1R with Pn1
	Improving the Accuracy of the Recursive Calculation Pn1R of Pn1

	Experimental Validation of Propositions 1 and 2
	Generalization of Proposition 1, for Two Random Swaps
	Experimental Validation of Proposition 3
	Results of Experiment 3
	Modification of the Swap Operator (Selection Criteria of the Elements to Be Exchanged)
	Application in Search of Nonlinear S-Boxes Resistant to Power Attacks

	Conclusions
	Proof of Identity
	AES S-Box
	References

